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Abstract - Brain neoplasms represent the tenth most prevalent cause of morbidity among all oncological conditions. The manual 

identification of cerebral neoplasms via Magnetic Resonance Imaging (MRI) is laden with inaccuracies, as disparate 

radiologists may interpret identical imaging studies in divergent manners. This proposed research showcases an automated 

system for the identification of brain neoplasm that employs a pretrained Convolutional Neural Network (CNN) architecture 

and transfer learning techniques to classify brain MRI scans into four categories: glioma, meningioma, pituitary adenoma, and 

absence of tumor. Pretrained architectures such as ResNet50, EfficientNetB1, Xception, MobileNet, VGG19, 

InceptionResNetV2, and ConvNeXtLarge were utilized to extract complex features from MRI scans. The models were trained 

employing three distinct optimization algorithms: Stochastic Gradient Descent (SGD), ADAM, and NADAM. In this study, we 

implement explainable AI using Grad-CAM to enhance trust in tumor detection mechanisms by highlighting the specific regions 

in MRI scans that inform decision-making. Empirical findings reveal that the EfficientNetB1 architecture, when paired with the 

ADAM optimizer, demonstrated improved performance compared to the other models, attaining training and validation 

accuracies of 95.17% and 89.26%, respectively. The proposed model exhibited remarkable performance metrics, achieving an 

F1 score, accuracy, recall, and precision value of 100%. 

Keywords - Brain tumor detection, EfficientNetB1, Explainable AI, Grad-CAM, Transfer Learning. 

1. Introduction 
In a fundamental context, neoplasms are categorized into 

two principal types: benign and malignant. Benign neoplasms 

are characterized by their non-cancerous nature, whereas 

malignant neoplasms are identified as cancerous entities. In 

instances of malignancy, the cancerous cells infiltrate the 

surrounding healthy cerebral tissues with considerable 

aggression, adversely affecting them and possessing the 

potential to metastasize to other regions of the body. 

Conversely, benign tumors remain localized and do not 

disseminate to other anatomical sites, thereby being classified 

as non-cancerous. 

The protective membranes encompassing the brain and 

spinal cord are referred to as the meninges, which consist of 

three distinct layers of tissue. A neoplasm arising within this 

anatomical region is designated as a meningioma [1]. 

Frequently, the dimensions of this meningioma are 

comparable to that of a pea. Among the various types of brain 

tumors, this specific neoplasm poses a greater risk to pediatric 

and adult populations alike. In the United States, an estimated 

170,000 individuals receive a diagnosis of meningioma 

annually.  

Glioma constitutes approximately 33% of all existing 

brain tumors. The glioma tumor arises from the cerebral 

region's excessive proliferation of glial cells. These tumors are 

predominantly malignant in nature. They are primarily 

observed in the adult population. Frequently, they disseminate 

within the intracranial and spinal regions rather than 

metastasizing to other anatomical sites. Based on the various 

classifications of glial cells, gliomas are categorized into three 

principal types: glioblastoma, oligodendrogliomas, and 

ependymomas. Among the diverse brain tumors, glioblastoma 

represents a significant proportion, whereas 

oligodendrogliomas account for only 1% to 2%, and 

ependymomas contribute a mere 2%. Surgical intervention is 

the primary therapeutic modality recommended by medical 

professionals. During surgical procedures, the physician can 

typically excise only the visibly accessible tumor tissue. 

However, the delicate nature of certain brain areas renders 

complete resection challenging. To address the residual 

malignant cells, radiation therapy and chemotherapy are 
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advocated by clinicians as they assist in the comprehensive 

eradication of the affected cells. The five-year life expectancy 

for glioblastoma remains alarmingly low, ranging from 6% to 

20% [2]. The pituitary gland is a diminutive organ, 

comparable in size to a pea, situated posterior to the nasal 

cavity and at the inferior region of the brain. Tumors that 

develop inside this gland are classified as pituitary tumors. 

Tumors in the pituitary gland may induce the overproduction 

or underproduction of hormones. These hormones are vital in 

controlling numerous physiological functions within the 

human body. In most instances, these types of tumors are 

benign in nature [3].  

The presence of a brain tumor induces alterations in 

cerebral tissues and applies pressure on various cerebral 

regions. Such pressure disrupts the functional capabilities of 

humans. The manifestations in individuals may include 

cephalalgia, emesis, visual disturbances, compromised limb 

mobility, loss of equilibrium, speech difficulties, and 

cognitive impairment, among others. Should the brain tumor 

be classified within stages I or II, it may be amenable to 

therapeutic intervention; conversely, a tumor in stages III or 

IV is likely to culminate in mortality. 

Brain tumors exhibit rapid proliferation within the 

cerebral region. Statistical data from the United States 

indicates that approximately 700,000 individuals have been 

diagnosed with primary brain tumors. In the year 2023, a total 

of 94,390 individuals received a diagnosis of brain tumors. 

Furthermore, 18,990 individuals succumbed to brain tumors 

in the same year. Brain cancer ranks as the tenth leading cause 

of morbidity among all cancer types [4]. This underscores the 

necessity for timely detection and precise classification of 

brain neoplasms. 

Magnetic Resonance Imaging, commonly referred to as 

MRI, employs powerful magnets in conjunction with 

computer technology to generate images of the internal 

anatomical structures. A magnetic contrast agent is 

administered to the patient to enhance the visualization of 

anomalies within cerebral tissues. MRI represents the most 

valuable tool for diagnosis among imaging methods since it 

shows an exceptional ability to pinpoint tiny brain tumors. 

MRI holds a greater preference than other imaging 

techniques in brain neoplasm diagnosis because its superior 

resolution surpasses CT scan images [5]. MRI scans reveal 

vital information about tumor anatomy in addition to tumor 

dimension measures and important characteristics. The 

process of identifying brain tumors manually in MRI images 

produces multiple possible inaccuracies. Healthcare 

professionals define how well brain tumors are identified 

through their experience and diagnostic skills. Several 

radiologists could probe different findings when working with 

identical MRI images. Utilizing the hands to specify tumor 

regions on MRI images demands prolonged dedication and 

complex work procedures. When medical practitioners 

mistype the size of tiny tumors, it can lead to delayed medical 

treatment. The manual assessment of tumors faces high 

sensitivity to human mistakes due to differences in tumor 

sizes, shapes, and positions. The late diagnosis of brain tumors 

results in problematic treatment arrangements, which leads to 

deteriorated medical outcomes for patients. Automated brain 

tumor detection systems prove essential in such scenarios 

based on the requirement for such methodologies. Computer-

Aided Detection (CAD) systems enable faster and more 

accurate tumor detection through their provided benefits. 

Through its diagnostic powers, CAD successfully detects tiny 

malignant masses that doctors would miss when conducting 

manual assessments. The detection system enables healthcare 

personnel to develop prompt treatment approaches for their 

patients [6, 7]. 

This manuscript advocates for forming an innovative 

computer-assisted automated deep learning framework 

designed to analyse brain MRI scans, facilitating timely 

diagnostic insights to enhance the efficacy of brain tumor 

detection. 

The principal contributions of the presented investigation 

are delineated as follows: 

1. A groundbreaking deep learning-oriented framework is 

introduced that leverages cutting-edge deep learning 

architectures, including ResNet50, EfficientNetB1, 

Xception, MobileNet, VGG19, InceptionResNetV2, and 

ConvNeXtLarge, specifically targeting MRI scans of brain 

neoplasms while implementing transfer learning 

methodologies on the dataset.  

2. An initial four-phase image quality improvement protocol 

is adopted to ameliorate the suboptimal perceptual quality 

of the MRI scans.  

3. A data augmentation methodology is utilized to produce 

superior results on limited datasets, thereby mitigating the 

challenges associated with overfitting.  

4. Three distinct optimization algorithms, namely SGD, 

ADAM, and NADAM, are employed to augment 

classification efficacy.  

5. The proposed framework has been evaluated based on an 

array of key performance evaluators, including F1-score, 

accuracy, recall and precision. 

6. The suggested methodology aims to focus on particular 

regions to facilitate determinations concerning the 

identification of brain tumors by implementing the Grad 

CAM technique. 

 

2. Literature Review 
The proposed method employs a tailored GoogleNet deep 

learning network that evaluates brain tumor MRI images to 

extract vital attributes with deep Convolutional Neural 

Network (CNN) features. This set of attributes serves as a 

critical tool to classify brain tumors into their respective three 

diagnostic groups correctly. Researchers used softmax 
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classifiers as well as Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN) algorithms to assess these features 

because they work with MRI-derived data to increase 

classification precision [8]. The accuracy rate reached 92.3% 

through deep transfer learning in the experiments, yet 

integration of SVM and KNN with deep CNN features 

achieved 97.8% and 98.0% accuracy successively. Small 

training data sizes introduce overfitting problems that lead to 

the incorrect classification of meningioma entities within the 

model. 

Two brain tumor classification tasks operate using the 

proposed neural network system, which handles glioma 

grading and brain tumor broad classification together. The 

designed CNN procedure operates through 16 layers, working 

with augmented images to obtain feature information. The 

network architecture implements convolutional layers for 

pattern recognition through filters and activation functions 

with Rectified Linear Unit (ReLU) to accelerate training 

together with pooling layers that reduce data dimensions [9]. 

During training, the application drops specific neurons while 

implementing dropout layers to reduce the chance of 

overfitting. The fully connected layer as the terminal element 

combines softmax function computation to calculate 

probabilities for different classes. The researchers achieved 

favorable classification results of 96.13% and 98.7% with data 

augmentation techniques implemented to expand the training 

dataset despite using a confined dataset. The suggested CNN 

required training for a different compelling reason because of 

its intended application in various medical domains. The 

advanced variant of Speeded Up Robust Features (SURF) is 

known as DSURF, which enables image processing to detect 

vital points within images. Through HOG methodology, 

image segmentation forms cells that help detect meaningful 

patterns by computing multi-angle edge orientations [10]. 

Researchers are developing a method to categorise cerebral 

neoplasms using support vector machines with multiple image 

processing techniques. 

DWT enables the fusion of MRI T1, T1C, T2, and Flair 

sequences into one unified image, strengthening details by 

collecting various textures and structures from multiple 

sequences [11]. The process of separating images into 

different frequency bands displays an enhanced representation 

of tumor areas better than individual MRI images can show. 

PDDF achieves lesion enhancement via its noise reduction 

features that enhance the diagnostic quality of lesion images. 

The global thresholding method sorts pixels into two separate 

categories: foreground identification representing the lesion 

and background designation that depends on their intensity 

measurement values. The research endeavors to fuse MRI 

images exclusively since it does not explore integrating CT or 

PET scans with either the MRI images or other modalities. 

Researchers developed Caps-VGGNet by integrating 

CapsNet and VGGNet to achieve exceptional performance in 

classifying cerebral tumors into Normal, Pituitary, 

Meningioma, and Glioma groups [12]. A notable limitation 

inherent in this approach pertains to the complexity of the 

model. 

According to [13], VSBEAM stands as a specialized deep 

learning model that detects and locates brain tumors in MRI 

images through its Voting Based Semi-Bayesian Ensemble 

Attention Mechanism architecture. The framework contains 

three core modules, which start with a “squeeze and 

excitation” step to control the value of each data feature. The 

second phase selects Bayesian learning because its prediction 

capabilities excel under the condition of sparse datasets and 

outlier data points. Ensemble learning combines multiple 

model predictions into a unified accurate classification using 

a voting system that uses collective prediction results. The 

contourlet transform performs feature extraction by 

combining wavelet transform advantages with directional 

filtering power to detect significant image characteristics. This 

detection method proves excellent at finding small elements 

and spatial orientations to advance the processing of images 

and recognition of objects. The extraction of statistical 

features from different frequency components through the 

contourlet transform produces more precise brain tumor 

detections in MRI imaging [14]. 

SSBTCNet utilizes a framework that enables the solution 

of two separate problems, starting from the data domain and 

proceeding to tumor classification, by integrating supervised 

and unsupervised learning concepts. The classification system 

achieves optimization thanks to a training methodology that 

mixes labeled and unlabeled data while using fuzzy logic and 

image enhancement techniques [15].  

The Discrete Wavelet Transform (DWT) enables the 

conversion of images to preserve vital details while making 

computational operations faster. The four separate data bands 

(LL, LH, HL, HH) produced by DWT allow for feature 

extraction, such as contrast and energy. Applying Gabor filters 

produces texture elements, resulting in a new feature set 

featuring 220 elements that enhance detection precision [16].  

Multiple brain tumor features are computed by the Gray 

Level Co-occurrence Matrix (GLCM) through its pixel 

intensity relationship analysis to enable classification by 

analyzing contrast, correlation and energy metrics. The team 

developed 48 specific features because they applied four 

angular displacements to create these analytical features, 

which advanced their detection performance. An image 

brightness assessment through histograms generates 

quantitative frequency data about pixel brightness spread 

through intensity-based feature extraction. Statistical 

indicators from the histogram analysis include the mean 

brightness measurement, standard deviation, and three 

dimensions: skewness, kurtosis, and entropy. Medical experts 

classify tumor documents based on vital form parameters, 



Sandip Desai & Milind Mushrif / IJECE, 12(4), 235-250, 2025 

238 

including circularity, bending energy, and rectangularity, 

which assist MRI image tumor morphology analysis. The text 

explains calculating particular statistical moments by 

measuring distances between object boundary points and their 

central point. Such moments generate features to analyze 

tumor shape characteristics with roughness attributes. A 

selection of vital features obtained from the CVM method 

serves to train three machine learning models, including KNN 

and, mSVM and NN. 

The author employs IFF-FLICM-based fuzzy 

segmentation combined with an optimized extreme learning 

machine model controlled by the MHS-SCA hybrid algorithm 

for precise tumor identification in MRI images. Proof shows 

that the proposed method achieves exceptional performance in 

detecting brain tumors, which makes it practical for clinical 

medicine used in early medical diagnosis. 

Tumor segmentation in MRI images depends on 

thresholding methods and histogram-based techniques 

according to the approach described in [17]. The framework 

implements the Gray Level Co-occurrence Matrix (GLCM) to 

produce multiple statistical and textural image features 

through contrast evaluation, correlation counting, and energy 

measurements. The adopted features enable precise image 

representation using limited CPU power during the evaluation 

process. 

The MRI image feature extraction process implemented 

GoogLeNet while SVM and KNN operated as pre-classifiers 

before implementing a fully connected layer that included 

softmax as the final decision-making component. The 

scientists redesigned the end portion of GoogLeNet to perform 

brain tumor image identification across three essential 

categories to support MR imaging data handling. Combining 

GoogLeNet with SVM or KNN exhibits superior performance 

[18]. 

The image classification field contains Vision 

Transformer (ViT) models originating from research methods 

originally designed for Natural Language Processing. The 

IVX16 approach unifies predictions obtained from VGG16, 

InceptionV3, and Xception because these networks 

demonstrated exceptional performance during previous 

studies. The Swin Transformer, together with the Compact 

Convolutional Transformer (CCT), strengthens performance 

by using shifted windows along with convolutional operations 

to enhance local image feature extraction. The authors 

established that IVX16 yielded superior performance when 

detecting tumor areas through their analysis using the LIME 

explainable artificial intelligence tool. The feature extraction 

process for MRI images utilized GoogLeNet while SVM, 

together with KNN, served as classifiers before implementing 

a fully connected layer with softmax as the last decision-

making step. The researchers modified GoogLeNet's final 

segment to handle brain tumor image classification into three 

specific categories, thus making it suitable for MRI data 

analysis. Combining GoogLeNet with SVM or KNN exhibits 

superior performance [18]. 

The Vision Transformer (ViT) models derive from 

original Natural Language Processing techniques to classify 

images. The IVX16 model functions by combining prediction 

results from VGG16, InceptionV3 and Xception architectures, 

which proved effective during previous evaluations, according 

to [19]. The Swin Transformer, together with the Compact 

Convolutional Transformer (CCT), optimizes image feature 

detection through shifted window approaches combined with 

convolutional operations, which leads to improved 

performance in identifying objects within the image frame. 

LIME explained that IVX16 achieved better tumor region 

recognition than other established models, which the authors 

confirmed through their research. 

Active contour models serve as a methodology operating 

under the “snake” name to identify objects in processed 

images that include tumors in MRI scans. The snake method 

works by placing flexible curves around target areas before 

optimizing their energy value, enabling these curves to align 

with object edges. Internal energy, together with external 

energy are calculated independently to achieve snake 

smoothness and object edge attraction in the methodology. 

When these regions are located through identification, the 

specialized decision-making framework uses texture analysis 

to determine if tumors exist in these areas [20]. 

This investigation delves into an innovative model 

referred to as a triplet-based variational autoencoder, which is 

designed to discern patterns inherent in healthy brain MRI 

data while simultaneously mitigating noise present in the 

images. The researchers tackle a prevalent error in antecedent 

methodologies that presumed that healthy segments of the 

images would exhibit uniformity post-reconstruction. This 

notion is not invariably accurate in the presence of lesions.  

The anomaly detection protocol delineated involves a 

training stage where exclusively healthy brain images are 

scrutinized to delineate the characteristics of a normal brain. 

During this training phase, noise is intentionally introduced 

into these images to simulate anomalies, thereby aiding the 

network in recognizing and reconstructing healthy brain slices 

even amidst the noise. In the subsequent testing phase, the 

network conducts a comparative analysis between the original 

images and their reconstructed counterparts to identify 

discrepancies, which may signify potential anomalies. It 

subsequently employs filtering techniques to enhance the 

results and eliminate any minor inaccuracies [21]. 

The authors introduce an innovative methodology termed 

the Two-Stage Generative Model (TSGM) to augment the 

detection and segmentation of cerebral neoplasms within 

magnetic resonance imaging (MRI) scans. This approach 
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integrates two sophisticated techniques: the Cycle Generative 

Adversarial Network (CycleGAN), which facilitates the 

generation of pathological images from normative 

counterparts, and a Variance Exploding stochastic differential 

equation (VE-JP) that assists in the reconstruction of healthy 

images while accentuating tumor regions[22]. Stage 1 of the 

framework entails the employment of a CycleGAN, a variant 

of artificial intelligence architecture, to produce paired images 

representing both normal (healthy) and abnormal (unhealthy) 

specimens.  

This is accomplished through an educational process that 

enables the model to transmute images between categories via 

two distinct mapping functions: one that alters normal images 

into abnormal ones and another that performs the inverse 

transformation. Through the optimization of specific loss 

functions, the CycleGAN guarantees that the generated 

images exhibit visual similarities to authentic images within 

their respective classifications while preserving salient 

features. Stage 2 of the framework is concentrated on the 

generation of healthy cerebral images employing a conditional 

diffusion model.  

This phase commences with data derived from Stage 1, 

wherein the model discerns the interrelationship between 

healthy images and their corresponding abnormal 

counterparts. By introducing stochastic noise to the healthy 

images and progressively transforming them into a Gaussian 

distribution, the model is subsequently capable of reversing 

this process to retrieve healthy images from the noisy data 

while being guided by the abnormal images.  

The Multi-Modality MRI Ensemble process amalgamates 

images obtained from various MRI modalities to enhance the 

detection of brain tumors. It employs a computational formula 

to derive a new image by calculating the weighted differences 

between the original and reconstructed images for each 

modality, ensuring that the cumulative weights total one. This 

methodology facilitates the creation of an anomaly heatmap, 

which delineates areas of significance and is subsequently 

utilized to produce a segmentation mask that identifies tumor 

regions within the cerebral structure. 

The author of [28] developed a specialized CNN model 

for brain tumor identification. The authors applied three 

explainable AI approaches to reveal the basis for CNN's 

decision-making. The system performs brain tumor 

classification between tumors and non-tumorous conditions. 

The proposed system uses pre-trained models combined with 

four-class glioma, pituitary, and meningioma and no tumor 

classification, which eliminates the need for extensive 

computation resources to train an entire model from scratch.  

The study in [35] applied both DenseNet121 and 

InceptionNetV3 networks for performing feature extraction 

operations. Through voting procedures, the tumor gets 

categorized into three categories known as glioma, 

meningioma or pituitary. The proposed model demonstrates 

improved results in terms of accuracy, recall, precision, and 

F1 score.  

Our analysis included the selection of the most suitable 

optimizer and pre-trained model combination for brain tumor 

classification.    

3. Methodology 
3.1. Dataset 

Table 1. Dataset details 

Total MRI 

scan 

Brain Tumor 

Type 

Number of MRI 

Scan 

3285 Glioma 931 

 Meningioma 942 

 Pituitary 906 

 No tumor No tumor 

Total MRI scan 3285 

 

 
Fig. 1 Sample MR images of Brain tumor 

The dataset utilized in this study has been procured from 

the Github repository. This dataset incorporates a total of 3285 

MRI images. Each image within the dataset is categorized into 

one of four tumor classifications, specifically meningioma, 

glioma, pituitary, and the absence of a tumor. The proportional 

distribution of images across these four categories is presented 

in Table 1.  

An examination of Table 1 clearly indicates that the first 

three tumor classifications possess approximately an equal 

number of images. Conversely, the no tumor category exhibits 

a comparatively lower number of samples relative to the other 

classifications, resulting in an imbalance within the dataset. 

Such class imbalance leads to the potential neglect of the no 

tumor category. Figure 1 illustrates magnetic resonance 

imaging samples across all four classifications present within 

the dataset. Figure 2 illustrates the schematic representation of 

the brain tumor detection system which is proposed in this 

research. Algorithm 1 presents a detailed explanation of the 

proposed model. The subsequent block delineates each 

process with meticulous detail.  
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Fig. 2 Block diagram of brain tumor detection 

Algorithm 1. Brain Tumor Classification with Optimized Transfer Learning 

Input:  Brain Tumor Dataset, Epoch - 50, Batch size - 32, Learning rate - 0.001 

Step 1: Apply pre-processing to reduce noise and improve image quality. 

Step 2: Apply data augmentation like rotation, flipping, Gaussian noise addition, etc. 

For the model in pre-trained models(ResNet50, EfficientNetB1, MobileNet small, VGG19, ConvNeXtLarge, Xception and 

InceptionResNetV2)  

Step 3: Load the pre-trained model with imagenet weights. 

Step 4: Remove the classification layer. 

Step 5: Add a new classification layer to classify Brain tumor in four classes. 

For the optimizer (Adam, Nadam and SGD) 

 Step 6: For epoch 1 to 50, do 

 Step 7: Train the customised classification layer on the Brain Tumor dataset. 

 Step 8: Evaluate the model accuracy  

 If there have been no improvements in the past 5 iterations, do  

  Step 9: Reduce the learning rate by 0.3 

  End if 

 

End for 

 

End for 

Step 10: Compare all trained models based on performance metrics and choose the best prediction model.  

3.2. Image Pre-Processing 

A classification model loses its performance capability 

substantially when MRI images contain noise. The presence 

of noise within the image generates erroneous information, 

thereby hindering the processes of feature extraction and 

generalization. A substantial decline in classification accuracy 

is observed when such noisy MRI images are introduced as 

input to the classification system. The adverse effects of noise 

can be alleviated by implementing noise-reduction techniques 

specifically tailored for MRI images. To achieve noise 

reduction, the Gaussian Blur method is utilized on the RI 

images, which facilitates the smoothing of the image and the 

reduction of noise. This technique employs a Gaussian bell-

shaped curve function on the image, which allocates greater 

weight to pixels that are in proximity to the center while 

assigning lesser weight to those that are more distant. 

Consequently, this leads to a phenomenon known as 

“blurring,” wherein the sharp intensity transitions of the image 

Accuracy 
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Recall 

F1 Score 
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Testing Set 

Validation Set 
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Thresholding 
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are smoothed without compromising the underlying structural 

integrity.  

According to the Gaussian principle, pixels receive their 

calculated values through a weighted average computation of 

adjacent pixels. The determination of weights via the Gaussian 

function is contingent upon the distance of each pixel from its 

center. The Gaussian function yields weights in a matrix 

format, which is referred to as the Gaussian kernel. The 

Gaussian function is mathematically expressed as 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  

Where,  

𝐺(𝑥, 𝑦): Assigned weight to a pixel at a distance (𝑥, 𝑦). 

𝑥, 𝑦: Distance of pixel from the centre of the kernel. 

σ: Standard deviation of the Gaussian distribution. 

The detection algorithm must prioritize the object over 

the background for optimal identification of brain tumours. 

Thresholding techniques are employed to isolate the 

background from the object within an image effectively. The 

gray scale image undergoes conversion into a binary format 

by applying thresholding.  

Various thresholding methodologies are at one's disposal, 

including binary thresholding, global thresholding, Otsu 

thresholding, adaptive thresholding, and inverse thresholding. 

Due to the inherent simplicity of binary thresholding, the 

present study advocates for its utilization.  

Binary thresholding categorizes pixels into two distinct 

classifications based on pixel intensity. If the pixel intensity 

exceeds the designated threshold T, then a value of 255 is 

assigned; conversely, a value of 0 is allocated to pixels that do 

not meet this criterion. The determination of the threshold 

value is left to the programmer's discretion. This relationship 

can be mathematically articulated as  

𝑂𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) = {
255; 𝐼(𝑥, 𝑦) > 𝑇
0; 𝐼(𝑥, 𝑦) ≤ 𝑇

 

3.2.1. Erosion and Dilation 

The extraneous pixel located at the periphery of the image 

diminishes the dimensions of the object; consequently, 

erosion eliminates these pixels. It constitutes a morphological 

operation wherein a kernel is convolved with the image to 

yield a refined image representation.  

Another prevalent morphological operation that 

complements erosion is dilation. Dilation introduces 

additional pixels to the foreground's boundary to augment an 

object's dimensions within an image. The outcome of dilation 

manifests as an expansion in the foreground pixels. 

3.2.2. Contours 

In the context of object shape analysis, the identification 

of object contours proves to be highly beneficial. The curve 

that connects all successive points along the boundary 

exhibiting uniform intensity is referred to as a contour. This 

process entails the recognition and organization of boundary 

pixels in accordance with the object's shape. Contour 

computation yields optimal results when applied to a binary 

image, which is typically generated during the thresholding 

phase. 

3.2.3. Image Augmentation 

Images can exhibit variations in numerous aspects, such 

as pose, occlusion, scale, and lighting. Because of these 

differences, computer vision models face extraction 

challenges when determining generalized image features. 

When the amount of data available for training a deep learning 

model is limited, the model often focuses on learning 

particular characteristics instead of broader patterns. This 

issue is known as overfitting in machine learning. In the case 

of overfitting, the model demonstrates satisfactory 

performance during the training phase, yet its performance 

deteriorates during the testing phase. 

Augmentation introduces variability into the dataset, 

compelling the deep learning model to acquire a more robust 

representation. It produces modified versions of the existing 

images. This technique is particularly advantageous when the 

dataset is limited in size. 

Rotation 

The application of rotational transformation to training 

images generates new test images. A random rotation of a 

specific angle applies to images during the process, which 

generates variant images. The executed Figure 3 shows that a 

30-degree rotation took place after implementing rotation 

augmentation on the sample MRI image. 

 

Fig. 3 Effect of augmentation on brain MRI image 
 

Flipping  

Flipping is an important augmentation practice that 

focuses on image flipping. Mirroring operations on images 

occur after selecting vertical or horizontal axis directions. A 

horizontal flipping operation affects this MRI image to move 
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the tumor from its original right position to the opposing left 

hemisphere of the brain. 

Brightness 

The training of computer vision machine learning models 

uses brightness brightness augmentation as a widely 

recognized technique. Adjusting image brightness through 

this method improves the operational strength of the model. 

The procedure performs multiplication on pixel values using 

specified range limiting factors. The displayed sample MRI 

image's data matches the brightness modifications caused by 

brightness augmentation versus the original image. 

Noisy 

In real-world scenarios, it is feasible for the pre-

processing techniques to introduce noise into MRI scans. To 

replicate this scenario, noise augmentation is utilized. This 

augmentation method involves adding a specific type of noise 

to an image, including Gaussian noise, salt and pepper noise, 

or speckle noise, among others. Figure 3 depicts the resultant 

MRI image following applying Gaussian noise augmentation. 

Translation 

Translation constitutes one of the various augmentation 

methods computer vision uses for model generalization 

enhancement. The content of an image under this 

augmentation technique is relocated vertically and 

horizontally while preserving all other elements of the image. 

The desire to pad or crop image pixels comes into effect when 

they surpass original boundary limits. During pixel 

displacement according to chosen locations. The ramifications 

of translation augmentation are observable in Figure 3, where 

the MRI image has been shifted to the right, with the pixels 

moving outside the boundary being cropped. 

Scaling  

Scaling augmentation is a preferred strategy among 

practitioners to foster diversity within the dataset. This 

augmentation pertains to the process of resizing an image by 

applying scaling transformations, which may either reduce or 

expand its dimensions. Figure 3 demonstrates the results of 

implementing scaling augmentation on a sample MRI image. 

Cropping 

Cropping augmentation is employed to artificially enlarge 

the dataset size. This technique involves extracting a smaller 

image segment and designating it as a new constituent of the 

expanded dataset. The various cropping options available 

encompass random cropping, scale-aware cropping, center 

cropping, and region-specific cropping, among others. Figure 

3 illustrates the effects of random cropping applied to a sample 

MRI image.  

Figure 3 illustrates the impact of diverse augmentation 

methodologies on the brain MRI dataset. 

3.3. EfficientNet 

The conventional deep learning paradigm is impeded by 

the significant burden of resource consumption necessary for 

optimal model efficacy. The innovative aspect of EfficientNet 

lies in its implementation of compound scaling, which 

facilitates an enhanced equilibrium between model efficacy 

and resource allocation. In this methodology, the dimensions 

of height, width, and depth of the model are scaled uniformly. 

The number of channels existing in each network layer 

defines the width within neural networks. An increased 

number of channels across every layer enables the capture of 

intricate patterns and features within an image, thereby 

enhancing classification accuracy. Conversely, depth within a 

neural network pertains to the network's total layers. A deeper 

architecture can capture more advanced representations, albeit 

at the cost of increased computational demands. Resolution 

pertains to the scaling of image dimensions. For optimal 

model performance, higher-resolution images are critical as 

they encapsulate detailed information, thus necessitating 

substantial memory and computational resources. The 

principal contribution of the EfficientNet architecture resides 

in its capacity to determine these three dimensions through a 

principled approach. The optimal depth, width, and resolution 

synthesis is ascertained using a grid search algorithm. The 

uniform scaling of these parameters is executed through a grid 

search guided by a user-defined compound coefficient “φ”. 

This compound coefficient uniformly scales all three 

dimensions. To optimize computational efficiency, the 

baseline model is employed as an initial reference. This 

baseline model constitutes a moderately sized neural network 

that exhibits satisfactory performance for the specified task yet 

requires considerable computational power. This situation 

engenders the necessity for a computationally efficient model 

architecture. 

The user-defined parameter, the compound coefficient, is 

introduced to determine the scaling across each network 

dimension, aimed at enhancing computational efficiency. The 

scaling decisions pertaining to the model's height, width, and 

depth are made based on a suitable value of a singular scalar, 

identified as the compound coefficient. The overall 

complexity of the model and its corresponding computational 

resource requirements are modulated through adjustments to 

the compound coefficient. 

In EfficientNet, depth signifies the scaling factor for the 

network's depth, governed by a constant α. Width denotes the 

proportional scaling factor for the network's width, governed 

by a constant β. Resolution is scaled by multiplying the 

original image size by a constant γ. The optimal scaling 

configuration is contingent upon the optimal values of the 

constants α, β, and γ. These optimal values are derived through 

the grid search optimization process, which ensures the most 

favorable trade-off between model efficiency and 

computational resource requirements [24]. 
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3.4. Transfer Learning 

Transfer learning represents a methodology within 

Convolutional Neural Networks (CNNs) that leverages the 

knowledge acquired from a pre-trained network on an 

extensive dataset to address a new but related task. This 

approach retains the pre-trained network in its original form 

while the fully connected layer is replaced by the new fully 

connected layer specifically designed for the target task [25]. 

Essentially, CNNs are employed to extract features from an 

image, with the earlier layers capturing lower-level features 

and the subsequent layers capturing more complex features. 

Transfer learning affords the opportunity to unfreeze several 

of the terminal layers for retraining, thereby enabling the 

network to learn task-specific features [25]. 

3.5. Optimizers 

The training process of Convolutional Neural Networks 

(CNNs) requires optimizers to accomplish their essential task 

of delivering complete training capabilities to these 

specialized artificial neural networks dedicated to image 

analysis. Extreme parametric adjustments through optimizers 

serve to minimize loss functions while boosting complete 

model performance metrics. Furthermore, optimizers are 

instrumental in regulating the manner in which the weights of 

the convolutional neural network are systematically updated 

throughout the training phases. Optimizers achieve effective 

learning capability by making proper weight and bias 

modifications according to data patterns. The model becomes 

unable to enhance its predictive skills when there is no 

optimizer; thus, its performance remains stagnant. The model 

learns images efficiently through optimal weight updates 

performed by optimizers to achieve a methodologically sound 

adjustment of weights and biases. 

The selection of optimizers is a critical factor that 

significantly impacts various aspects of the performance, 

convergence speed, and generalization capability of 

convolutional neural networks, thereby underscoring the 

importance of careful consideration in their selection process. 

3.5.1. ADAM Optimizer 

The Adaptive Moment Estimation approach, known as 

ADAM, represents one of the most frequently selected 

optimizers within deep learning research because it shows 

strong robustness and implements effective optimizations 

across multiple applications together with its high processing 

performance. Each ADAM parameter learning rate 

modification occurs independently based on the gradient 

magnitude and historical value calculations that enhance 

gradient sparsity and improve convergence speed. ADAM 

combines fundamental features of momentum acceleration 

with RMSProp adaptive learning rate adjustment that uses 

recent gradient averages. ADAM enhances its performance by 

implementing a bias correction system that maintains 

unbiased first and second-moment estimates for the first 

stages of training. ADAM has achieved widespread popularity 

in deep learning because it reaches high convergence speeds 

compared to alternative optimization methods. 

 

3.5.2. SGD Optimizer 

SGD is one of the basic yet frequently used optimization 

algorithms for training Convolutional Neural Networks 

(CNNs). The optimizer achieves decreasing loss through 

stepwise parameter adjustments that stem from computed 

gradients in an automated fashion. At each iteration, SGD 

calculates the model parameters' gradient from individual data 

points or small batches before performing computations to 

achieve a better training response. 

 

3.5.3. NADAM Optimizer 

Nesterov-accelerated Adaptive Moment Estimation, 

commonly abbreviated as Nadam, represents an advanced 

optimization approach that builds upon the foundational 

principles established by the Adam optimizer while 

incorporating innovative ideas derived from Nesterov 

Accelerated Gradient (NAG). Nadam effectively merges the 

adaptive learning rate mechanism characteristic of Adam with 

the forward-looking gradient update strategy associated with 

NAG, which, in many instances, leads to a more rapid and 

stable convergence during the training process. By predicting 

the forthcoming position of the parameters and subsequently 

computing the gradient at that anticipated location, Nadam 

facilitates more informed and strategic updates to the 

parameters. Additional capabilities of Nadam involve an 

automatic parameter learning rate adjustment based on 

gradient magnitude, which consequently improves the 

optimization method's effectiveness [26]. 

3.6. Explainable AI 

Prior to the advancement of explainable AI, deep learning 

models were commonly perceived as “black boxes.” 

Convolutional neural network models lack clarity in 

elucidating the rationale behind the generated outputs. In the 

domain of healthcare, the predominant concern is “trust,” 

which encompasses the necessity for decisions to be accurate, 

equitable, and dependable. When the decision-making process 

is rendered transparent, artificial intelligence can cultivate 

trust across various sectors. 

Gradient-weighted Class Activation Mapping, or Grad-

CAM, is an analytical technique employed to discern the 

regions a convolutional neural network emphasizes when 

predicting a specific class. Utilizing a class discriminative 

localization strategy, Grad-CAM produces visual 

explanations without altering the model architecture, thereby 

emphasizing critical segments of the input image that are 

pivotal for the class prediction.  

A limitation of the class activation map is its requirement 

to incorporate a Global Average Pooling (GAP) layer before 

the final fully connected classification layer. This imposes 

additional structural demands on a convolutional network 
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aimed at enhancing explainability. Such modifications to the 

original architecture necessitate the retraining of the model to 

accommodate the newly integrated layers. The Grad-CAM 

method combines CAM methodology with gradients extracted 

from the final convolutional layer to enhance the target class 

interpretation process. During the training process, an image 

traverses through a CNN incrementally extracts semantic 

information pertinent to a designated object. Within a CNN 

framework, the final convolutional layer invariably contains 

the most significant semantic information while preserving 

spatial details, which is effectively utilized in Grad-CAM.  

The gradient serves as a critical element in interpreting 

the output generated by the CNN model. Analysing the 

gradient yields insights into the most influential features 

present within the input image, which are used to predict a 

specific class. The calculation of the predicted class gradient 

aims to determine the relationship between the last 

convolutional layer feature map and the predicted output. The 

relationship facilitating this gradient computation is expressed 

as follows. 

∂yT

∂A<K>
 

 

Where ycrepresents the output class and A<K> is the kth 

feature map. The last convolutional layer in any CNN 

architecture is responsible for extracting high-level features 

and encompasses information regarding the key components 

of the input image. This allows for understanding the 

weightage assigned to each feature map in relation to the 

predicted outcome.  

The gradient consistently conveys information pertaining 

to the variation in the output class in relation to each feature 

map. It has been observed that certain feature maps exert a 

more substantial influence on the output class compared to 

others. To ascertain the influence of a feature map, a score 

must be calculated utilizing the global average pooling of the 

feature map [27]. 

αk
T =

1

Z
∑ ∑

∂yT

∂Ai,j
<K>

ji

 

 

Z = W × H 
 

Where αk
T is the score calculated from the kth feature map. 

A higher positive score implies a greater effect on the 

output class. These scores are referred to as weights. Through 

the utilization of these scores, a Grad-CAM heatmap is 

generated. 

The weighted sum of the k feature map in A is computed 

using.  

I = ∑ αk
TA<k>

K

k=1

 

 

The final heatmap is generated by applying element-wise 

ReLU.  

LGradCAM
T = RELU(I) 

3.7. Experimental Setup 

 This scholarly investigation meticulously employed a 

diverse array of sophisticated and highly regarded libraries, 

including but not limited to Pandas, TensorFlow, Numpy, and 

Keras, in order to carry out a comprehensive analysis that is 

both rigorous and methodologically sound. The proposed 

innovative methodology utilized sophisticated features of 

Google Colab to develop an effective system. The evaluation 

of system effectiveness and overall performance was carried 

out through simulations that utilized devices with high 

processing power that contained a Core i5 Central Processing 

Unit to verify result accuracy. 

Table 2. Optimal environmental conditions incorporated in the model  

 
Table 2 serves as a detailed presentation of the specific 

platform that was utilized in the intricate process of detecting 

brain tumors, highlighting the technological foundation upon 

which the research is built. The aforementioned libraries and 

computational platforms collectively provided a resilient and 

high-performing structure, which was essential for deploying 

the proposed model and carrying out various experiments to 

thoroughly assess its performance in the complex tasks of 

detecting and classifying brain tumors with high accuracy. 

The Adam optimizer, which is well-regarded in the field 

of machine learning for its adaptability and efficiency, was 

employed to significantly improve the performance of the 

proposed approach, initiating the optimization process with a 

carefully selected learning rate set at 1e-4 to ensure optimal 

convergence. As the performance metrics of the model 

reached a state plateau, a learning rate reduction function was 

subsequently applied to facilitate better convergence 

Configuration Value Hardware Software 

Training Set 80% 

Memory 

Capacity – 

51GB 

Python - 

3.10.12 

Testing Set 20% 

GPU – T4 

Keras – 3.5.0 

Batch Size 32 
Tensor Flow 

– 2.17.1 

Activation Adam 
Matplotlib - 

3.8 

Epochs 50 

Numpy – 

1.26.4 

Learning Rate 0.0001 

Steps per 

epoch 
82 
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outcomes, thereby improving the model's effectiveness in 

gaining knowledge from data. The training of the models was 

conducted over a total of 50 epochs, utilizing a batch size of 

32, while incorporating L2-regularization techniques and an 

early stopping mechanism that would activate in the event that 

the model's performance showed no signs of improvement.  

The model's hyperparameter optimization process that 

determines its performance quality is displayed in Table 3 

through detailed insights about parameter adjustments 

throughout training. The experimental procedure incorporates 

an early stopping criterion, which halts the training of the 

Convolutional Neural Network (CNN) model in the event that 

the validation accuracy does not exhibit a substantial 

improvement. 

The technique applies to transfer learning by replacing the 

terminal fully connected layer of a pre-trained model with our 

custom fully connected layer, succeeded by a Global Average 

Pooling (GAP) layer and concluding with a fully connected 

layer utilizing a softmax activation function comprising four 

neurons. To facilitate the extraction of task-specific features, 

we have unfrozen the final twenty layers of the pre-trained 

architecture. 

3.8. Performance Evaluation Metric 

3.8.1. Accuracy 

This particular measurement can be defined as the 

proportion or ratio of the number of accurate predictions made 

by the predictive model in question to the total number of 

predictions that the model has generated overall, thereby 

providing an in-depth evaluation of the model's overall 

predictive capabilities. 

Accuracy =  
Number of correct predictions 

Total number of predictions
 

3.8.2. Precision 

This specific evaluative metric places a significant 

emphasis on the correct identification of positive predictions 

and is mathematically represented as the ratio of the number 

of rightfully identified positive instances to the total number 

of positive predictions made by the model, serving as an 

essential measure of the model’s capability to minimize false 

positives. 

 

Precision =  
Number of Correct positive predictions

Total number of positive predictions
 

It is widely regarded as a crucial metric, particularly in 

scenarios involving the potential for incorrect positive 

predictions, which holds paramount importance and relevance 

in the context of the medical field, where the implications of 

such errors can have significant consequences for patient 

outcomes and treatment efficacy.  

3.8.3. Recall 

The ratio between accurate positive predictions made by 

the model and actual positive samples shows the model's 

ability to recognize all important examples of the positive 

class. 

 

Recall =  
Correct positive predictions

Actual positive
 

3.8.4. F1-Score 

The evaluation method combines both precision and 

recall through harmonic means to achieve balanced results that 

perform well under skewed class distribution situations. 

 

F1 − Score = 2 × 
Precision ×  Recall

Precision + Recall
 

 

4. Results  

The findings of this investigation elucidate that the 

utilization of transfer learning-based deep learning 

architectures for the diagnosis of brain tumor patients via MRI 

has demonstrated efficacy in accurately categorizing 

individuals into four discrete classifications: glioma tumor, 

meningioma tumor, pituitary tumor, and absence of tumor. 

The employment of a variety of pre-trained neural networks, 

encompassing ResNet50, EfficientNetB1, Xception, 

MobileNet, VGG19, InceptionResNetV2, and 

ConvNeXtLarge, has been pivotal in attaining optimal 

accuracy metrics for the classification endeavour. 

Through extensive training cycles with these pre-trained 

networks, in conjunction with a diverse array of esteemed 

optimization algorithms such as ADAM, SGD, and NADAM, 

the research adeptly discerned the most performing 

amalgamation of model architecture and optimizer for the 

classification of brain tumor. This rigorous methodology not 

only augments the precision of classification outcomes but 

also guarantees the dependability of the predictions proffered 

by the system. The dataset utilized for the present research is 

acquired from Kaggle. For the training procedure, the dataset 

is partitioned into three distinct segments: training (70%), 

testing (20%), and validation (10%). Data pre-processing 

improves the quality of images by mitigating noise and 

selectively eliminating certain background elements.The table 

delineates the hyperparameters employed to train the proposed 

architectural framework. Moreover, integrating an explainable 

artificial intelligence framework has introduced an additional 

dimension of credibility to the model's predictions by 

elucidating the specific areas of the MRI scans that the model 

prioritizes in its decision-making process. This level of 

transparency is imperative for clinical applications, as it 

empowers healthcare practitioners to comprehend and 

substantiate the rationale behind the model’s conclusions, 

ultimately enhancing the decision-making framework in 

identifying brain neoplasm. 
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The research endeavor presented in this document is 

primarily centered on the objective of identifying the most 

effective combination of Transfer Learning (TL) based pre-

trained models alongside the most suitable optimization 

algorithms to enhance performance. The accompanying Table 

3 meticulously delineates the performance metrics associated 

with various pre-trained models when subjected to three 

distinct optimization techniques, specifically Stochastic 

Gradient Descent (SGD), Adaptive Moment Estimation 

(ADAM), and Nesterov-accelerated Adaptive Moment 

Estimation (NADAM). In the context of the ResNet50 

architectural framework, it becomes evident that the SGD 

optimization method consistently surpasses the other 

techniques across all performance metrics, achieving a 

remarkable score of 100% as delineated in section 3.8 of this 

study.  

Conversely, the EfficientNetB1 architecture emerges as 

the superior model, demonstrating exceptional performance 

by exceeding the benchmarks established by all three 

optimization algorithms, thereby attaining a flawless 100% 

accuracy, precision, F1 score, and recall. Furthermore, the 

InceptionResNetV2 model exhibits commendable 

performance when optimized using the NADAM algorithm, 

achieving an impressive 100% across all relevant metrics, 

while the ConvNeXtLarge model is optimally enhanced by 

either the ADAM or NADAM optimizers, also achieving a 

perfect accuracy rate of 100%. From the comprehensive 

analysis outlined in the preceding discussion, it is conclusively 

determined that the EfficientNetB1 architecture, when paired 

with any one of the optimization algorithms explored in this 

research, stands out as the most effective model available. 

 
Fig. 4 Accuracy and loss performance of EfficientNet + ADAM and 

EfficientNet + SGD 

 

In the specific context of medical applications, it is 

imperative to note that precision serves as a critical parameter, 

which is notably maximized to an exceptional 100% in the 

case of the EfficientNetB1 architecture. Consequently, this 

research underscores the significance of selecting the 

appropriate model and optimizer combination, particularly in 

fields where accuracy and precision hold paramount 

importance. The results of this investigation provide essential 

knowledge to enhance pre-trained model optimization in 

different applications.   

Table 3. Performance evaluation of trained model based on 

performance metric 

Pre-Trained 

CNN model  

with TL 

Optimizer Accuracy Precision Recall 
F1-

Score 

ResNet50 

SGD 1 1 1 1 

ADAM 0.9 0.93 0.9 0.9 

NADAM 0.95 0.96 0.95 0.94 

Efficient 

NetB1 

SGD 1 1 1 1 

ADAM 1 1 1 1 

NADAM 1 1 1 1 

MobileNet  

small 

SGD 0.25 0.13 0.25 0.16 

ADAM 0.25 0.06 0.25 0.1 

NADAM 0.3 0.19 0.3 0.18 

VGG19 

SGD 0.25 0.06 0.25 0.1 

ADAM 0.85 0.87 0.85 0.83 

NADAM 0.95 0.96 0.95 0.95 

ConvNeXt 

Large 

SGD 0.95 0.96 0.95 0.95 

ADAM 1 1 1 1 

NADAM 1 1 1 1 

Xception 

SGD     

ADAM 0.95 0.96 0.95 0.95 

NADAM 0.95 0.96 0.95 0.95 

Inception 

ResNetV2 

SGD 0.95 0.96 0.95 0.95 

ADAM 0.95 0.96 0.95 0.95 

NADAM 1 1 1 1 

 

Upon careful examination of the data presented in Table 

4, along with a thorough analysis of the accuracy and loss plots 

associated with both training and validation processes, it 

becomes remarkably evident that theResNet50 architecture, 

when paired with the NADAM optimization algorithm, as 

well as the EfficientNetB1 model utilizing various optimizers 

such as SGD, ADAM, or NADAM, alongside the VGG19 

framework also employing the NADAM optimizer, 

collectively demonstrate a considerable reduction in loss 

metrics and a significant enhancement in accuracy levels, all 

while effectively mitigating the risk of overfitting.  

Conversely, it has been observed that certain models, 

particularly the MobileNetSmall variant, exhibit a tendency to 

overfit regardless of the optimization techniques applied, 

thereby compromising the generalizability of the model's 

ability across previously unobservable data. This phenomenon 

underscores the critical importance of selecting appropriate 

model architectures and optimization to overfit regardless of 

the optimization techniques applied, thereby compromising 

the generalizability of the model's ability across previously 

unobservable data. The correct model selection combined 
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with optimal optimization strategies enables achieving an 

ideal balance between loss reduction and accuracy 

improvement without causing unreliable predictive 

capabilities from model overfitting.  

The EfficientNet model trained with ADAM optimized 

the accuracy of predicting different tumor classifications 

through visualization in Figure 5, which presents the 

confusion matrix results. During diagnosis, it becomes 

necessary to identify all patients who have active cancer 

because they are cancerous. The inability of deep learning 

model detection to identify brain tumors results in deadly 

health problems for patients. The proposed model achieves 

excellent brain tumor detection capability through its strong 

curve bending towards the top left corner that minimizes both 

false classifications and diagnoses. A plot representing the 

ROC curve of the optimal pre-trained CNN model 

combination with optimizers is presented in Figure 6.  

Table 4. Performance of the model based on accuracy and loss 

 
Fig. 5 Confusion matrix for EfficientNet + ADAM 

 

 
Fig. 6 ROC curve of trained models using the proposed approach 

The Grad CAM model significantly enhances the 

interpretability of the predictions made by the models, as it 

effectively emphasizes the specific regions within the MRI 

scans that are instrumental in informing the Convolutional 

Neural Network (CNN) decision-making process. The Figure 

6 presented illustrates the Heat Map that has been generated 

through the application of the EfficientNetB1 architecture, 

utilizing the ADAM optimization algorithm, while also 

depicting the superimposition of this heatmap onto the MRI 

scan, thereby concentrating on the particular areas that are 

critically evaluated by the proposed model in its endeavor to 

accurately detect the presence of tumor regions. By 

elucidating these pertinent areas of focus, the Grad CAM 

model not only bolsters the confidence in the predictions made 

by the CNN but also provides invaluable insights into the 

underlying mechanisms that govern the model's decision-

making process in the context of medical imaging. This 

systematic approach to visualizing model predictions not only 

fosters a deeper understanding of CNN's operational dynamics 

but also aids in validating the trust ability and efficacy of such 

advanced diagnostic techniques in clinical settings.
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ResNet  

50 

SGD 98.43 90.64 0.062 0.897 

ADAM 93.90 85.27 0.24 0.46 

NADAM 98.34 91.56 0.0093 0.41 

Efficient 

Net B1 

SGD 96.42 90.64 0.1178 0.4222 

ADAM 95.17 89.26 0.1404 0.3751 

NADAM 98.30 91.26 0.0645 0.4221 

Mobile 

Net small 

SGD 64.78 27.91 0.8565 1.5051 

ADAM 52.19 16.14 1.0597 1.7234 

NADAM 73.33 38.65 1.9540 0.6598 

VGG19 

SGD 26.82 NaN 27.81 NaN 

ADAM 98.22 88.50 0.0650 0.5318 

NADAM 99.77 93.56 0.0072 0.5611 

ConvNe 

Xt 

Large 

 

SGD 97.26 89.42 0.0676 0.4018 

ADAM 98.37 88.96 0.0654 0.3610 

NADAM 99.47 90.34 0.0176 0.4371 

Xception 

SGD 97.05 89.26 0.0925 0.3803 

ADAM 98.82 89.26 0.0558 0.3901 

NADAM 99.29 90.80 0.0237 0.4163 

Inception 

ResNet 

V2 

 

SGD 97.60 90.95 0.0755 0.3948 

ADAM 99.26 90.49 0.0329 0.4131 

NADAM 99.80 90.95 0.111 0.4867 
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Table 5. Comparison of previous research utilizing same dataset 

Author Model Accuracy Precision Recall 

Kumar RL, Kakarla J, Isunuri BV, Singh M  

(2021) [29] 
ResNet-50 and GAP layer 98 97.82 98.06 

Verma and Singh  

(2022) [30] 

DenseNet201 and Transfer 

Learning 
98.22 97.69 98.01 

Athisayamani S, Antonyswamy RS, et al. 

(2023) [31] 
ResNet-152 98.85 97 95 

Alhassan AM, Zainon WMNW (2021) [32] CNN with Swish based Relu 98.6 99.6 98.6 

Rasheed Z, Ma Y-K, Ullah I et al. (2023) [33] Convolutional neural network 98.04 98 98 

Malla PP, Sahu S, Alutaibi AI (2023) [34] Pre trained VGG16 and GAP 98.93 99.11 98.63 

Khalid M. Hosny1, Mahmoud A. Mohammed et al. 

(2024) [35] 

DenseNet121 and 

InceptionNetV3 
99.02 98.75 98.98 

Proposed Approach EfficientNet B1 +any optimizer 100 100 100 

 

 
Fig. 7 Explainability indicated by Grad CAM model for EfficientNet 

5. Conclusion 
This research confirmed the effectiveness of deep 

learning techniques using transfer learning for brain neoplasm 

classification from MRI scans. Pre-trained neural networks 

ResNet50 and EfficientNetB1, along with other models, show 

successful results in accurate tumor classification according to 

distinct classes. Research showed that EfficientNetB1 

partnered with any optimizer and provided exceptional 

performance metrics, so the evaluation reached perfect values 

for all accuracy and precision and F1-score and recall 

categories. The implementation of Grad CAM and other 

explainable artificial intelligence methods helps medical 

professionals better understand the operational logic of their 

models at a time when they need more clarity about decisions 

made by AI systems for clinical applications. The research 

demonstrates how correct model architecture combined with 

optimal optimization methods allows medical imaging 

diagnostic systems to achieve superior performance outcomes. 

The findings from this study simultaneously advance our 

understanding of brain tumor classification and establish 

guidelines for future projects that optimize deep learning 

models within medicine.
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