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Abstract - Hyperspectral Image Classification (HIC) is essential for distinguishing surface objects and monitoring materials in 

remote sensing. However, the large number of spectral bands increases computational complexity and classification time. This 

study proposes a HIC system that uses Deep Convolutional Neural Networks (DCNN) with spectral band selection strategies. 

The Indian Pines and Salinas datasets are used for evaluation, employing PCA, LDA, and ILDA for band selection. Performance 

is assessed using accuracy, recall, precision, F1-score, training time, and classification time. The first phase utilizes a three-

layered DCNN with PCA for feature representation, achieving 98.20% accuracy on the Indian Pines dataset with 30 spectral 

bands and a 25×25-pixel window. The second phase introduces a Lightweight Cascaded DCNN (LC-DCNN) with ILDA, 

enhancing classification accuracy. LC-DCNN+ILDA achieves 99.51% accuracy on Indian Pines and 99.71% on Salinas, 

outperforming other methods. ILDA proves more effective in selecting discriminative spectral bands than PCA and LDA. In the 

future, adding bigger datasets with more extensive objects can improve performance for real-time datasets. 

 
Keywords - Hyperspectral Image Classification (HIC), Lightweight Cascaded DCNN, Convolutional Neural Network, Principle 

Component Analysis (PCA), Improved linear discriminant analysis. 
 

1. Introduction  
Ground objects' spectral and spatial representation is 

obtained using hyperspectral remote sensing technology, 

which uses the spectrum produced by the objects' distinct 

composition. The ground items may be recognized and 

detected, and their quality may be analyzed using 

hyperspectral images, which also characterize their layout, 

texture, and shape. The unique physical features and spatial 

information of the ground objects are represented by the 

spectral characteristics of the Hyperspectral Images (HSIs) [1, 

2]. The HIC is particularly accurate since different materials 

have different spectrum properties. HSIs are typically used to 

address issues that natural and multispectral photos are unable 

to resolve. Numerous applications, including crop 

observation, precision farming, plant coverage, gas detection, 

oil spills, land resources, water quality evaluation, and testing 

on human skin, have therefore made use of hyperspectral 

pictures [3, 4]. Many scholars have given HSIs a great deal 

of attention over the last few decades. The three main 

categories of HIC techniques are spectral, spatial, and 

spectral-spatial feature methods. 

 

The hyperspectral pictures' salient characteristics are 

described by the spectral feature approaches using a spectral 

curve or spectral vector. The spatial feature approaches 

improve the model's robustness by utilizing the relationship 

between the core pixel and its context. In the early years, 

researchers mostly concentrated on the healthy spectral 

feature technique, which uses logistical regression [7], K-

Nearest Neighbor (KNN) [5], and Support Vector Machine 

(SVM) [6] to classify pixels. Nevertheless, the algorithm's 

computational complexity is increased by the duplicated 

information present in the raw spectrum images. 

Consequently, feature reduction and the most discriminative 

feature selection techniques, including PCA [8], Independent 

Component Analysis (ICA) [9], LDA [10], etc., are given 

increasing attention.  

 

However, this technique's performance is limited since 

distinct objects may represent the same substance's spectral 

properties, while different objects may represent different 

spectral characteristics. Environmental, lighting, atmospheric, 

and temporal factors all have an impact on the ground objects' 

inconsistent spectral characteristics. The objects' spatial 

characteristics provide a wealth of information on the ground 

objects' layout, shape, and context. Additionally, it gives 

information about nearby pixels that belong to the same class, 

which increases the accuracy of classification.  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The following is a summary of this article's particular 

contributions: 

 PCA, LDA, and ILDA feature reduction reduces 

redundant spectral bands to reduce system computing 

complexity.  

 To improve the classification accuracy, The spectral and 

spatial characteristics of the HSIs are provided by the HIC 

based on Lightweight Cascaded DCNN (LC-DCNN).  

Examining and evaluating suggested approaches using 

the IP and SD using F1-score, accuracy, recall, and precision. 

The proposed LC-DCNN+ILDA gives an accuracy of 

99.51%, precision of 0.999, recall of 0.995 and F1-score 0.997 

for the Indian Pines dataset. It resulted in an accuracy of 

99.71%, recall of 99.71, precision of 1.0 and F1-score 1.0 for 

the Salinas dataset for LC-DCNN+ILDA. It offers a notable 

enhancement over LC-DCNN+PCA and LC-DCNN+LDA-

based spectral band selection. 

 

The subsequent sections of the paper are arranged as 

follows: Information about earlier research conducted on the 

HIC is shown in Section 2. A brief description of the supplies 

and techniques needed to simulate the suggested system is 

given in Section 3. The HIC experiments conducted on the 

Indian Pines dataset are discussed in Section 4. Section 5 

presents the findings and outlines the potential for further 

development of the suggested approach.  
 

2. Related Work 
Deep learning has gained a lot of interest and advanced 

quickly during the last 10 years due to its autonomous feature 

learning capabilities. Because deep learning models can 

provide joint spectral-spatial information of ground objects, 

deep learning-based HICs are highly popular. Chen et al. [10] 

used ensemble-based CNN for HIC in conjunction with 

transfer learning to speed up the learning process. HIC 

accuracy has significantly improved when DCNN and 

ensemble learning are used together.  

The datasets from Indian Pines, Salinas, and Pavia 

University yielded an overall accuracy of 91.20%, 93.35%, 

and 91.23%, respectively. In order to address the issue of over-

smoothing brought on by basic conventional Graph Neural 

Networks (GNNs), Yao et al. [11] looked at a Deep Hybrid 

Multi-Graph neural network (DHMG). It reduces the noise in 

the HSIs and offers improved spectral representation. The 

overall HIC accuracy for the 2013 Houston, Salinas, and Pavia 

University datasets was 93.31%, 98.33%, and 97.81%, 

respectively. 

 

Nevertheless, the spatial and structural information of the 

objects in HSIs is not provided by GNN-based methods. 

Consolidated CNN (C-CNN) consists of 2D-CNN to describe 

abstract spatial features and 3D-CNN to represent spatial 

spectral data, which was investigated by Chang et al. [12]. The 

spectral band redundancy elimination process uses the PCA 

technique, demonstrating a notable increase in classification 

time. The accuracy of the HIC is enhanced by the data 

augmentation. The accuracy of C-CNN and C-CNN-Aug on 

the IP dataset was 73.33% and 83.68%, respectively.  In order 

to reduce computing complexity and increase robustness in the 

presence of noise, Yuan et al. [13] employed a proxy-based 

deep learning model. It provides 98.94% and 99.09% accuracy 

for measures based on similarity and distance, respectively, 

for the Indian Pines dataset. 

 

The capacity of deep CNN-based techniques to offer a 

spatial-spectral representation of HSIs makes them appealing. 

Superpixel Pooling CNN (SP-CNN) [14], Hybrid 2D-3D 

CNN [15], Sandwich CNN (SFE-SCNN) [17], Deep Attention 

Graph CNN (DAGCNN) [18], and other DCNN-based 

techniques are successfully used for the HICs. Unlike PCA, 

LDA requires class labels and considers both intra- and inter-

class variability while reducing dimensions. While PCA gives 

the maximum number of components equal to the number of 

features in the dataset, LDA gives the maximum number of 

components equal to the number of classes minus one.  

 

3. Materials and Methods 
3.1. Materials 

For the experimental evaluation, two hyperspectral 

imaging datasets-Indian pines and Salinas-are considered. 

Due to the limited availability of hyperspectral datasets, 

numerous studies have utilized between 30% and 70% of the 

available pixels for training [9, 11, 14]. For training and 

testing, the hyperspectral patches are divided in a 40:70 ratios. 

 

3.1.1. Indian Pines 

The information collected by IVIRIS sensors at the Indian 

Pines (IP) location in Indiana, USA, is known as the dataset. 

Each 145 by 145 by 220 spectral band in the HSI images was 

captured at a different wavelength between 0.4 and 2.5 

micrometres. A third of the area is used for agriculture, and 

the remaining third is covered with natural vegetation and 

forests. It also has a train line, many low-density housing 

units, two highway lanes, several small roads, and other man-

made structures. Figure 1 shows a number of sample spectral 

bands extracted from the IPs dataset.  

 

3.1.2. Salinas Dataset 

The SD consists of high school photos taken in the Salinas 

Valley in California. These pictures feature 224 bands and 512 

by 217 pixels of resolution. It includes vineyard and vegetable 

fields and is divided into sixteen categories of uncultivated 

land. 

 

Figure 1 shows the original IPs and Salinas HSIs, as well 

as their ground truth band, consisting of information regarding 

different objects in the HIS.
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(a) (b) 

  
(c) (d) 

Fig. 1 Dataset details a) IPs image, b) IPs ground truth, c) Salinas image, and d) Salinas ground truth. 

 

The details about the test and training sample of IPs and SD considered for evaluating the proposed methodology are 

mentioned in the corresponding Tables 1 and 2. 
 

Table 1. Detail about IPs dataset 

Sr. No Hyperspectral Class Total Samples 
Training 

samples 

Testing 

Samples 

1 Alfalfa 46 32 14 

2 Corn-notill 1428 1000 428 

3 Corn-mintill 830 581 249 

4 Corn 237 166 71 

5 Grass-pasture 483 338 145 

6 Grass-trees 730 511 219 

7 Grass-pasture-mowed 28 20 8 

8 Hay-windrowed 478 335 143 

9 Oats 20 14 6 

10 Soybean-notill 972 680 292 

11 Soybean-mintill 2455 1719 736 

12 Soybean-clean 593 415 178 

13 Wheat 205 144 61 

14 Woods 1265 886 379 

15 Buildings-Grass-Trees-Drives 386 270 116 

16 Stone-Steel-Towers 93 65 28 

 Total Samples 10249 7176 3073 
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Table 2. Detail about SD 

Sr. No Hyperspectral Class 
Total 

Samples 

Training 

samples 

Testing 

Samples 

1 Brocoli_green_weeds_1 2009 1406 603 

2 Brocoli_green_weeds_2 3726 2608 1118 

3 Fallow 1976 1383 593 

4 Fallow_rough_plow 1394 976 418 

5 Fallow_smooth 2678 1875 803 

6 Stubble 3959 2771 1188 

7 Celery 3579 2505 1074 

8 Grapes_untrained 11271 7890 3381 

9 Soil_vinyard_develop 6203 4342 1861 

10 Corn_senesced_green_weeds 3278 2295 983 

11 Lettuce_romaine_4wk 1068 748 320 

12 Lettuce_romaine_5wk 1927 1349 578 

13 Lettuce_romaine_6wk 916 641 275 

14 Lettuce_romaine_7wk 1070 749 321 

15 Vinyard_untrained 7268 5088 2180 

16 Vinyard_vertical_trellis 1807 1265 542 

 Total samples 54129 37891 16238 

3.2. Data Preprocessing 

Many redundant spectral bands and spectral bands with 

unnecessary information can be found in the original Indian 

Pines and Salinas dataset. ILDA aids in analysing the 

correlation between the HIS's various spectral bands. ILDA's 

new subspace for multidimensional data exhibits features with 

substantial variance.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 Flow diagram of LC-DCNN-based HIC 
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3.3. Proposed Methodology 

Figure 2 mentions the suggested HIC's flow diagram. The 

hyperspectral image with dimensions of 145 x 145 x 220 can 

be used with the suggested method. Only prominent spectral 

bands containing significant information are provided by the 

feature reduction algorithm (PCA/LDA).  

 

The image is separated into a local patch of S×S pixels, 

and the class of the patch is determined by the class of the 

center pixel of the local window. In order to prevent confusion 

in the local window's center pixel, the S is typically taken as 

an odd integer. 

 

Additionally, the lightweight cascaded CNN is given the 

patches to learn its spectral and spatial properties. The 

suggested lightweight cascaded CNN consists of five CNN 

layers, with the Rectified Linear Unit (ReLU) and 

Convolution (ConvLayer) layers included in each layer.  

 

Five convolutions, five ReLU, two fully linked, and a 

classifier layer make up the suggested LC-DCNN 

architecture. Better local and global feature connectivity of the 

hyperspectral pictures is made possible by the cascaded 

structure of the CNN layers. 

 

The filter kernel F is convolved with each Hyperspectral 

Patch (HSP) to offer the hyperspectral image's local and global 

information and connectivity. This convolution procedure is 

provided by Equations 1 and 2. To preserve the original size, 

the original patch is padded by one pixel around the edge, and 

the convolution filter is strided by one pixel.  

 

The 3x3 convolution filter F is taken into consideration. 

It takes into account 8, 16, 32, 64, and 128 filters in each of 

the five LC-DCNN layers. 

 
𝐻𝑆𝑃𝑐𝑜𝑛𝑣(𝑚, 𝑛) = H𝑆𝑃(𝑚, 𝑛) ∗ 𝐹(𝑚, 𝑛)                 (1) 

𝐻𝑆𝑃𝑐𝑜𝑛𝑣(𝑚, 𝑛) = ∑ ∑ 𝐻𝑆𝑃(𝑖, 𝑗)𝐹(𝑖 − 𝑚, 𝑗

𝐶

𝑗=1

𝑅

𝑖=1

− 𝑛) 

 

(2) 

 

Where, 𝐻𝑆𝑃𝑐𝑜𝑛𝑣(𝑚, 𝑛) represent the hyperspectral 

image's convolutional map, and F stands for the convolution 

filter. By substituting 0 for the negative values in equation 3, 

the ReLU layer reduces linearity and enhances non-linearity. 

The ReLU layer aids in improving classification and 

expediting the training process.  
 

𝐻𝑆𝑃𝑅𝑒𝐿𝑈(𝑖, 𝑗) = max
𝑖=1:𝑅,𝑗=1:𝐶

{0, HSPconv(𝑖, 𝑗)}          (3) 

 

Here, 𝐻𝑆𝑃𝑅𝑒𝐿𝑈 shows the ReLU layer output. The 

completely linked layer connects every neuron to every other 

neuron to increase the deep features' connection and 

correlation. The classification layer called Softmax is 

employed to determine a sample's class. The output class is 

chosen based on the class label with the highest likelihood 

after the probabilities for each class are provided.  

 
The DCNN algorithm is trained using the Adam 

optimization method since it has simple computational 

requirements and requires minimal memory. When an error 

occurs during the training phase, Adam optimization can 

automatically modify the learning rate.  

 

The algorithm is trained for 500 epochs, and the learning 

is done in batches of 64. It took into account decay rates of 0.9 

and 0.999, learning rate of 0.001 and positive parameter 

Ɛ = 10−8  prevent division by zero 

 

4. Experimental Results and Discussion 
The proposed LC-DCNN-based HIC system, 

incorporating PCA, LDA and ILDA for IP and SD, is 

implemented using MATLAB R2019b on a system equipped 

with an Nvidia GPU featuring 512 Tensor Cores, 32 GB of 

RAM, and 16 GB of GPU memory.  

 

Figure 3 shows the ground truth and classification map. 

The results of the proposed HIC are validated using accuracy, 

precision, recall, and F1-score, as shown in equations 4 to 7, 

respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                (6) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (7) 

Tables 3 and 4, for the relevant IPs and SDs, indicate the 

performance of the suggested approach for the PCA, LDA and 

ILDA feature reduction techniques. Compared to LC-DCNN 

PCA and LDA, the suggested LC-DCNN and spectral band 

selection based on ILDA provide superior results.  

 
For the dataset of IPs it offers average accuracy of 

98.05%, 99.00% and 99.51% for the LC-DCNN-based HIC 

for PCA, LDA and ILDA-based spectral band selection, 

respectively.  

 
For the PCA, LDA and ILDA-based spectral band 

selection using the LC-DCNN-based HIC, respectively, it 

provides an average accuracy of 98.62%, 99.63% and 99.71% 

regarding the SD. Figure 3 shows experimental result 

visualization. Figure 4-7 shows the result of the accuracy, 

recall, precision, and F1 score for the IP data set, respectively. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

 

 

(g)  (h) 

Fig. 3 Experimental results visualization a) & d) the actual situation in IPs and SD b) & e) Classification results using LC-DCNN+PCA for IPs and 

Salinas c) & f) Classification output using LC-DCNN+LDA for IPs and Salinas g) & h) classification results using LC-DCNN+ILDA for IPs and 

Salinas 
 

 
Fig. 4 Accuracy for HIC for IPs dataset 
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Table 3. Execution of suggested LC-DCNN for various spectral band reduction techniques on IPs dataset 

Sr. No Hyperspectral Class 

LC-DCNN+PCA LC-DCNN+LDA LC-DCNN+ILDA 

A
cc

u
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cy
 

R
ec

a
ll

 

P
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ci
si

o
n

 

F
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-S
co

re
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F
1

-S
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A
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u
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cy
 

R
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a
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P
re

ci
si

o
n

 

F
1

-S
co

re
 

1 Alfalfa 85.71 0.86 1 0.923 85.7 0.857 1 0.923 92.86 0.929 1 0.963 

2 Corn-notill 99.77 1 1 0.998 99.8 0.998 1 0.999 99.77 0.998 1 0.999 

3 Corn-mintill 99.20 0.99 1 0.996 99.6 0.996 1 0.998 99.6 0.996 1 0.998 

4 Corn 98.59 0.99 1 0.993 100 1 1 1 100 1 1 1 

5 Grass-pasture 99.31 0.99 0.99 0.993 100 1 1 1 100 1 1 1 

6 Grass-trees 99.54 1 1 0.995 99.5 0.995 1 0.998 100 1 1 1 

7 Grass-pasture-mowed 87.50 0.88 1 0.933 100 1 1 1 100 1 1 1 

8 Hay-windrowed 100.00 1 0.99 0.997 100 1 0.993 0.997 100 1 0.993 0.997 

9 Oats 100.00 1 1 1 100 1 1 1 100 1 1 1 

10 Soybean-notill 100.00 1 0.99 0.997 100 1 0.993 0.997 100 1 0.997 0.998 

11 Soybean-mintill 100.00 1 1 0.999 100 1 0.999 0.999 100 1 1 1 

12 Soybean-clean 100.00 1 1 1 100 1 1 1 100 1 1 1 

13 Wheat 100.00 1 0.98 0.992 100 1 0.984 0.992 100 1 1 1 

14 Woods 100.00 1 0.99 0.997 100 1 0.997 0.999 100 1 0.997 0.999 

15 
Buildings-Grass-

Trees-Drives 
99.14 0.99 1 0.996 99.1 0.991 1 0.996 100 1 1 1 

16 Stone-Steel-Towers 100.00 1 1 1 100 1 1 1 100 1 1 1 

Average 98.05 0.98 1 0.989 99 0.99 0.998 0.994 99.51 0.995 0.999 0.997 

 
Fig. 5 Recall for HIC for IPs dataset 
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Fig. 6 Precision for HIC for IPs dataset 

 
Fig. 7 F1-score for HIC for IPs dataset 
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Table 4. Performance of suggested LC-DCNN for various spectral band reduction techniques on SD 

 

The graphical representation of the various performance 

metrics for the HIC for Table 5 shows the SD, respectively. It 

is noted that the suggested LC-DCNN+ILDA provides better 

overall accuracy compared with LC-DCNN+LDA and LC-

DCNN+PCA for SD. The HIC's qualitative and quantitative 

findings are superior for LC-DCNN+ILDA compared with 

LC-DCNN+LDA and LC-DCNN+PCA. The lower intra-class 

variance and maximum interclass variance considerations 

during the selection of spectral bands in the ILDA algorithm 

provide superiority over the LDA and PCA-based spectral 

band selections. The outcomes of the HIC based on LC-

DCNN are examined across varying patch sizes and spectral 

bands. The effects of the different number of spectral bands 

created using PCA, LDA and ILDA on the performance of the 

HIC for a patch size of 25*25 pixels are shown in Figure 8 and 

9. It has been found that for 30 spectral bands, the suggested 

approach performs better. It gives 98.05%, 99.00% and 

99.51% accuracy for HIC using proposed LC-DCNN using 

PCA, LDA and ILDA with 30 spectral bands, respectively, for 

the IPs dataset. It results in 98.62%, 99.63% and 99.71% 

accuracy for HIC using proposed LC-DCNN using PCA LDA, 

and ILDA correspondingly for 30 SD spectral bands. Reduced 

spectral band count results in insufficient spectral 

representation, whereas a bigger number of spectral bands 

increases the disparity of spectral characteristics within and 

across classes. 

Sr. No Hyperspectral Class 

LC-DCNN+PCA LC-DCNN+LDA LC-DCNN+ILDA 
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F
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1 Brocoli_green_weeds_1 98.67 0.99 0.99 0.987 99.3 0.993 0.993 0.993 99.67 1.00 0.99 1.00 

2 Brocoli_green_weeds_2 99.82 1 1 0.997 100 1 0.996 0.998 100.00 1.00 1.00 1.00 

3 Fallow 99.33 0.99 0.98 0.988 99.3 0.993 0.997 0.995 99.33 0.99 1.00 0.99 

4 Fallow_rough_plow 98.56 0.99 0.99 0.988 99.8 0.998 0.998 0.998 99.76 1.00 1.00 1.00 

5 Fallow_smooth 99.00 0.99 1 0.994 99.8 0.998 0.998 0.998 99.75 1.00 1.00 1.00 

6 Stubble 99.24 0.99 0.99 0.992 99.2 0.992 0.999 0.996 99.24 0.99 1.00 1.00 

7 Celery 99.23 0.99 1 0.994 99.2 0.992 1 0.996 99.49 0.99 1.00 1.00 

8 Grapes_untrained 99.38 0.99 1 0.996 100 1 0.999 1 100.00 1.00 1.00 1.00 

9 Soil_vinyard_develop 99.19 0.99 1 0.995 99.2 0.992 0.999 0.996 99.57 1.00 1.00 1.00 

10 Corn_senesced_green_weeds 99.69 1 0.98 0.99 99.7 0.997 0.998 0.997 99.69 1.00 1.00 1.00 

11 Lettuce_romaine_4wk 99.38 0.99 0.96 0.978 100 1 0.985 0.992 100.00 1.00 0.99 1.00 

12 Lettuce_romaine_5wk 99.13 0.99 0.98 0.985 99.1 0.991 0.998 0.995 99.48 0.99 1.00 1.00 

13 Lettuce_romaine_6wk 90.18 0.9 0.97 0.936 99.6 0.996 0.986 0.991 99.64 1.00 0.99 0.99 

14 Lettuce_romaine_7wk 98.13 0.98 0.96 0.971 100 1 0.979 0.989 100.00 1.00 0.98 0.99 

15 Vinyard_untrained 99.77 1 1 0.997 100 1 0.996 0.998 100.00 1.00 1.00 1.00 

16 Vinyard_vertical_trellis 99.26 0.99 0.99 0.989 99.8 0.998 0.985 0.992 99.82 1.00 0.99 0.99 

Average 98.62 0.99 0.99 0.986 99.6 0.996 0.994 0.995 99.71 99.71 1.00 1.00 
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Fig. 8 Performance of the suggested system for various spectral band counts 

For 30 spectral bands chosen using PCA, LDA and ILDA, 

Figure 12 shows the impact of patch size variation on the 

proposed HIC scheme's performance. It provided 99.51% and 

99.71% accuracy for LC-DCNN+ILDA for Indian Pines and  

Salinas dataset. In comparison to patches of larger and 

smaller sizes, a patch size of 25*25 shows a stronger 

connectedness of the local area and particular class of the HIS. 

As shown in Table 5, the effectiveness of the suggested 

strategy is contrasted with earlier methods used for the HIC on 

the IPs and SD. It has been noted that the LDA's class-wise 

discrimination aids in the discriminative spectral bands' 

selection. 

The average recognition time per sample is 36 sec, 38 sec 

and 38 sec for LC-DCNN+PCA, LC-DCNN+LDA and LC-

DCNN+ILDA based HIC, respectively, for the IPs dataset. 

The average recognition time per sample is 55 sec, 62 sec and 

60 sec for LC-DCNN+PCA, LC-DCNN+LDA and LC-

DCNN+ILDA-based HIC, respectively, for the SP dataset. 

 
Fig. 9 Accuracy percentages of the suggested methods for various spectral patch sizes 
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Table 5. Performance evaluation in relation to earlier artistic states 

Author and Year Method 

Indian Pines Salinas 

Accuracy 

(%) 

Recognition Time 

(s) 

Accuracy 

(%) 

Recognition Time 

(s) 

Chen et al. (2019) 
Deep CNN-

Ensemble 
91.20 38s 96.88 183s 

Chang et al. (2022) C-CNN 83.68 39s 99.43 111s 

Xie et al. (2021) SP-CNN-8 93.57 880s 96.12 - 

Gao et al. (2021) SFE-SCNN 98.72 - 99.56 - 

Bai et al. (2022) DAGCNN 98.61 - - - 

Shinde and Patidar 

(2022) 
DCNN 98.20% 36s - - 

Proposed Method 

LC-DCNN+PCA 98.05 36s 98.62 55s 

LC-DCNN+LDA 99.00 38s 99.63 62s 

LC-DCNN+ILDA 99.51 38s 99.71 60s 

Figures 10 and 11 illustrate the agreement between the 

suggested scheme's accuracy and the prior state of the art. The 

Deep CNN ensemble [10], C-CNN [19], SP-CNN-8 [14], 

SPE-CNN [17], DAGCNN [18], and DCNN provided an 

accuracy of 91.20%, 83.68%, 93.57%, 98.72%, 98.61%, and 

98.20% respectively for IPs dataset. However, proposed LC-

DCNN provides 98.05%, 99%, and 99.51% accuracy for the 

IPs dataset's PCA, LDA and ILDA-based spectral band 

reduction. The Deep CNN ensemble, C-CNN, SP-CNN-8, and 

SPE-CNN have given accuracy of 96.88%, 99.43%, 96.12%, 

and 99.56%, respectively, for SD. However, the proposed LC-

DCNN provides 98.62%, 99.63% and 99.71% accuracy for 

PCA, LDA and ILDA-based spectral band reduction for SD. 

 

 
Fig. 10 Accuracy comparison with the previous state of arts (IPs Dataset)
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Fig. 11 Accuracy comparison with the previous state of arts (SD) 

 

 
Fig. 12 Recognition time comparison with the previous state of arts (IPs Dataset) 

 

When the performance of the recognition time of the LC-

DCNN is compared with the previous state of arts, it shows 

36sec, 38sec and 38sec sec recognition time for the LC-

DCNN+PCA, LC-DCNN+LDA and LC-DCNN+ILDA, 

respectively, for IPs dataset showed in figure 12. However, the 

previous methods, such as deep CNN ensemble and C-CNN, 

provide the recognition time of 110 sec and 188 sec, 

respectively. The presented LC-DCNN provides lower 

trainable parameters compared with previous schemes and 

reduces the system's recognition time as much as possible. 
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Fig. 13 Recognition time comparison with the previous state of arts (SD) 

 

When the performance of the recognition time of the 

LCDCNN is compared with the previous state of arts, it shows 

55 sec, 62 sec and 60 sec recognition time for the LC-

DCNN+PCA, LC-DCNN+LDA and LC-DCNN+ILDA 

respectively, for SD in Figure 13. However, the previous 

methods, such as deep CNN ensemble and C-CNN, provide a 

recognition time of 110 sec and 188 sec, respectively. The 

presented LC-DCNN provides lower trainable parameters 

compared with previous schemes that reduce the system's 

recognition time as much as possible. 

5. Conclusion 
Thus, this chapter introduces the lightweight HIC based 

on Cascaded Convolutional Neural Networks. It facilitates the 

characterization of the HS images' spectral and spatial 

properties. The lightweight design reduces the complexity and 

time required for calculations. The evaluation outcome of the 

proposed LC-DCNN is investigated using a number of feature 

selection techniques, such as PCA, LDA, and ILDA. It 

evaluates the performance of the suggested approach for 16 

distinct class classifications using the IPs dataset. Overall 

accuracy in the IPs dataset is 99.51% for LC-DCNN-ILDA, 

99% for LC-DCNN+LDA, and 98.05% for LC-DCNN+PCA.  

However, the overall accuracy of LC-DCNN-ILDA, LC-

DCNN+LDA, and LC-DCNN+PCA in the SD is 99.71%, 

99.63%, and 98.62%, respectively. It is clear that the 

suggested LC-DCNN+ILDA system provides higher 

classification accuracy when compared to the traditional state-

of-the-art methods used by the HIC. The suggested approach 

may be applied in the future to a number of tasks, including 

the analysis of agricultural production, the identification of 

plant leaf diseases, the detection of marine objects, and wild 

monitoring. 
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