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Abstract - The 3D-Set Partitioning in Hierarchical Trees (3D-SPIHT) has a moderate coding complexity and average coding 

memory requirement. It provides an embedded compressed bit stream that can be easily decoded at different data rates. These 

characteristics contribute to the algorithm's overall attractiveness. Unfortunately, due to the fact that it uses three linked lists to 

record the significance status of the coefficients, it requires an extremely large amount of computation memory. The random 

access to these lists also results in the 3D-SPIHT having a memory management system that is somewhat complicated. This 

manuscript presents a new compression algorithm called 3D-Single List SPIHT (3D-SLS). The memory requirements for the 

proposed 3D-SLS HSICA are extremely low since it requires around several folds lower memory requirement than the original 

3D-SPIHT required. This is accomplished by using a single list in conjunction with two state mark bitmaps, as opposed to the 

three lists that 3D-SPIHT have. In addition, the proposed 3D-SLS offers a simpler memory management system because 

coefficients are never deleted from the list after they have been added to the list. In addition, the list size can be predetermined, 

which allows one to circumvent the issue of dynamic memory allocation. Because of these memory savings and management 

simplifications, the 3D-SLS compression algorithm is an excellent candidate for implementation in hardware for the onboard 

hyperspectral image sensors. 

Keywords - Lossy hyperspectral image compression, Wavelet transform coding, Zero tree,  Set Partitioned Compression 

Algorithm.

1. Introduction  
Since the late 1990s, researchers have advocated using 

spectroscopy, spectral analysis, and colour photometry to 

characterise the composition of space objects [1, 2]. In recent 

years, hyperspectral (HS) remote sensing has developed into a 

reliable device for Earth studies [3].  Due to the fact that HS 

images are capable of collecting a vast amount of data in the 

spectral and spatial domains, these instruments have found use 

in a wide variety of sectors such as agriculture [4], biomedical 

[5], climate [6], corrosion (nuclear, steel structure) [7, 8], 

mineralogy [9], surgery [10] etc. In the last few decades, HS 

image compression has been one of the most popular research 

fields. It has attracted multitudinous scholars to devote great 

efforts to improving the performance of the HyperSpectral 

Image Compression Algorithm (HSICA) [11-15]. HSICA is 

an important factor used to improve HS image sensor 

performance by reducing coding complexity, lowering power 

consumption and minimising data transmission time [16].  

HSICAs are broadly divided into different categories 

based on two parameters: HS image data loss and coding 

process. The HSICAs are divided into three sub-categories 

named lossless, lossy and near-lossless based on the HS image 

data loss [17]. In the same way, based on the coding process 

is divided into seven sub-categories named Predictive Coding 

(PC) [18], Vector Quantization (VQ) [19], Compressive 

Sensing (CS) [20], Tensor Decomposition (TD) [21], learning 

based coding (LC) [22], Transform Coding (TC) [23] and 

hybrid HSICA [24]. 

The PC-based HSICAs use the predictor to determine the 

spectral correlation that exists between the continuous spectral 

frames of HS images. Entropy coding methods, such as 

Huffman coding or arithmetic coding, are utilized to encode 

the prediction inaccuracy. The techniques that rely on 

prediction are reliant on data (specifically, the compression 

ratio is contingent upon the image). Furthermore, these 

algorithms exclusively operate with lossless compression 

[18]. 

The VQ-based HSICA accepts a 3D HS data cube as its 

input and produces a compressed HS image as its output. The 

process of Vector Quantization (VQ) involves two crucial 

stages: training, which entails the production of a codebook, 
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and coding, which involves matching code vectors. Due to the 

fact that it employs a training method in order to produce an 

ideal codebook, quantization is typically employed in 

conjunction with transform-based or learning-based 

techniques.  

VQ-based HSICAs have high complexity, so the principal 

objective of the method is to develop an efficient algorithm 

with fast execution [19].   

The CS-based HSICA is well-known for its on-board 

compression algorithms because it moves the computational 

complexity from the encoder to the decoder. Real-time 

compression takes advantage of it because it can detect a 

relatively tiny amount of data, compress that data, send the 

compressed data to the receiver, and then take yet another bit 

of data [20].  

TD-based HSICA is one of the most recent techniques for 

image compression, and in comparison to more conventional 

approaches, it offers significantly improved performance. A 

tensor could be considered an n-dimensional matrix, a 

straightforward structure to decompose. One of the TD 

approaches is used in conjunction with this method to store the 

HSI in a three-dimensional tensor (Y) [21]. 

Because it utilizes both machine learning and deep 

learning in the compression process, LC-based HSICA is 

currently one of the most widely used approaches. As another 

methodology that can anticipate pixel values, this method has 

always been investigated in conjunction with the prediction-

based strategy. On the other hand, it possesses features that are 

well known to the public that automatically learn and update 

parameters [22]. 

In recent years, the most widely used method for 

compressing images in two dimensions, known as TC-based 

HSICA, has been expanded to three-dimensional formats, 

known as HSI compression.  

This method is referred to as a transform-based technique 

because it converts the values of the pixels in the image into 

the frequency domain by applying a transformation function 

to each of the image's three dimensions [25, 26]. 

The hybrid compression algorithms are created by 

combining any two of the approaches described in the 

previous paragraphs. The coding efficiency of hybrid 

compression algorithms is significantly higher than that of 

other types of compression algorithms; however, this coding 

gain comes at the expense of an increased level of coding 

complexity [24]. 

A brief overview of the different HSICAs based on the 

coding process is covered in Table 1. 

1.1. Contribution of this Article 

The major contributions of the present article are 

summarised as follows: 

 It lowers down the requirement of the coding memory 

(through the use of a single list instead of three in state of 

art HSICA 3D-SPIHT) used by the compression 

algorithm during the tracking (insignificance or 

significance) of the sets or zerotree or coefficient. 

 The present compression algorithm has higher coding 

efficiency than 3D-SPIHT and 3D-NLS. It has been clear 

from the result of the coding efficiency in the result 

section.  

 It improves the embedding capacity of the HSICA, which 

is required to apply recent HS images.  

 

The rest of this manuscript is structured as follows: 

Section 2 gives an overview of related works that were 

associated with the compression of hyperspectral images. 

Section 3 offers a detailed description of the proposed HSICA 

3D-SLS employed in this study. Section 4 presents an 

extensive investigation through simulation studies and 

empirical analyses of four publicly available HS images. 

Finally, the conclusions are given in Section 5. 

 2. Related Work  
The memory of the HS image sensors (AVIRIS and 

HYDICE) is limited [33]. A single HS image can be 100 MB 

or larger in size [34]. Therefore, between 448 and 640 high-

speed photos can be saved in the onboard HS sensor that has 

a memory capacity of 64 gigabytes (GB) [17].  

HS image compression has become a vital step as a means 

of reducing drains on memory storage, sensor power, and 

processing time [35]. The fact that TC-based HS image 

compression algorithms are versatile and can be used for any 

kind of compression [36]. 

2.1. Transform Coding Based HS Image Compression 

Algorithm (TC-HSICA) 

The TC-based HS image compression methods use the 

mathematical transform to transfer the HS image to the 

frequency domain [37].  

The wavelet transform is a well-known mathematical 

transform utilized to convert the HS image from the time 

domain to the frequency domain [38]. Curvelet Transform 

[39], Karhunen-Loeve Transform [40], and Shearlet 

Transform [41] also give the promise of performance for the 

compression of HS images.  

Removing spectral and spatial correlation is contingent 

upon the specific domain in which it is implemented [42]. 

Compression using the transform-based method encompasses 

a series of processes exhibiting potential variations across 

distinct compression algorithms [43].  
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Table 1. Short comparative analysis between the types of HSICA based on the coding process 

Type Ref Advantage Limitation Example 

PC based HSICA [18] 
Easy to implement on hardware 

platforms 

HS image will distort if all HS 

image data is not received 

C-DPCM-

RNN [27] 

VQ based HSICA [19] 
Execution time is less for the 

lossless compression process 

Codebook change for each HS 

image, which increases the cost of 

computation 

VQPCA [28] 

TC based HSICA [23] 

It can be implemented for lossy 

and lossless compression 

processes and has an error-

tolerance mechanism 

A lot of computational calculation 

(logical and arithmetical) for the 

encoding and decoding process 

3D-ZM-BCP-

SPECK [17] 

CS-based HSICA [20] 
Coding complexity shifts from 

encoder to decoder end 

Very expensive decompression 

process and identification of sensing 

matrix 

SHSIR 

[29] 

TD based HSICA [21] 
Best compression performance 

with a low run time 

High dependency of the 

compression performance depends 

on HS image data 

PSO-NTD 

[30] 

LC-based HSICA [22] 
Very high coding efficiency than 

other type of HSICAs 

The complexity of these HSICAs is 

very high, with complex 

implementation 

ANN [31] 

Hybrid HSICA [24] 
Best performance at the lossless 

HS image compression 

Implementation of the hardware is 

very complicated 

CNN-LZMA 

[32] 
 

Table 2. A short comparative analysis between different set partitioned HSICAs 

HSICA Ref Year Partition Type List CM Embeddedness 

3D-SPECK [48] 2006 

Zero Block Cube 

List (2) Variable Y 

3D-SPEZBC [49] 2007 List (2) Variable Y 

3D-LSK [50] 2010 Listless Fixed Y 

3D-ZM-SPECK [51] 2022 Listless Zero Y 

3D-BCP-ZM-SPECK [17] 2023 Listless Fixed Y 

3D-M-ZM-SPECK [52] 2023 Listless Zero Y 

FrWF based ZMSPECK [53] 2023 Listless Zero Y 

3D-SPIHT [54] 2004 

Zero Tree 

List (3) Variable Y 

3D-NLS [55] 2013 Listless Fixed Y 

3D-LEZSPC [39] 2023 Listless Fixed Y 

3D-BPEC [56] 2023 Array (6) Variable Y 

3D-MELS [57] 2023 Listless Fixed Y 

3D-WBTC [58] 2019 

Zero Block Cube 

Tree 

List (3) Variable Y 

3D-LMBTC [59] 2019 Listless Fixed Y 

3D-M-WBTC [60] 2019 List (3) Variable Y 

3D-LCBTC [61] 2022 List (2) Fixed Y 

3D-LBCTC [62] 2022 Listless Fixed Y 

 

The forward transform involves the application of a 

transformation function to either the spatial or spectral domain 

or both. This is followed by a decorrelation process, resulting 

in the generation of coefficients [44-47]. 

2.2. Set Partitioned-Based Hyperspectral Image 

Compression Algorithms 

Set partitioned-based HSICAs are the special type of TC 

HSICAs that use the set structure of the transform HS image 

to compress the HS image. It has several advantages over 

other TC HSICA, such as embeddedness, low coding 

complexity, ease of implementation on hardware, moderate 

coding efficiency, and the ability to work with another type of 

HSICA to create hybrid compression algorithms. Further, set 

partition-based HSICAs can be sub-categories based on linked 

lists (list-based, listless and array) or partition methods 

(zerotree, zeroblock cube, zeroblock cube tree). 

3D-SPIHT [54] uses three linked lists to track sets and 

coefficients and has higher coding efficiency than any HSICA. 
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The linked lists increase the coding complexity and coding 

memory demand. 3D-SPECK [48] uses a different partition 

rule (zeroblock cube) but uses two linked lists for the same 

task. To achieve high coding efficiency at low bit rates, 3D-

WBTC [58] is proposed. 3D-WBTC [58] uses the zeroblock 

cube tree partition rule to achieve high coding efficiency, as it 

is known that the high number of coefficients is insignificant 

for the top bit planes. 3D-WBTC [58] can represent eight 

times insignificant coefficients than 3D-SPIHT [54] through a 

single bit for the top bit planes.  

The issue of the coding complexity and coding memory 

is solved by the using of state markers. But this comes with 

the cost of coding efficiency. 3D-LSK [50], 3D-ZM-SPECK 

[51], 3D-BCP-ZM-SPECK [17] and 3D-M-ZM-SPECK [52] 

are the listless HSICA which follow the same partition rule as 

3D-SPECK (zeroblock cube) while 3D-NLS [55], 3D-MELS 

and 3D-LEZSPC [39] follow the same rule as 3D-SPIHT [48] 

(zerotree). 3D-BPEC [56] uses six arrays to track the 

coefficient status and follows the same partition rule as 3D-

SPIHT [48]. In the same way, 3D-LMBTC [59], 3D-LCBTC 

[61] and 3D-LBCTC [62] use the same partition rule as 3D-

WBTC [58].  

The short description between state-of-the-art set 

partition HSICAs is covered in Table 2. The present work is 

motivated by the 2D version of the single list SPIHT [63], 

which reduces the demand for coding memory for calculating 

the output bit steam and has high coding efficiency. The 

extension of the 2D version to the 3D for the HS image is 

performed in the present study. 

3. 3D-Single List Set Partitioning in Hierarchical  
The 3D Single List Set Partitioning in Hierarchical Trees, 

also known as 3D-Single List SPIHT (3D-SLS), used a single 

list instead of three in 3D-SPIHT [54]. Through the use of a 

single list, it reduces the demand for coding memory and 

significantly achieves a higher coding efficiency. The 

reduction of coding memory is due to using the single list as a 

multiple list (three in 3D-SPIHT). The LIP and LSP lists 

comprise the eight children of a root that belongs to a SIG 

SoT, and this fact forms the foundation of the 3D-SLS. 

Therefore, the offspring can be recalculated in each bit plane 

pass rather than being stored in these lists. Obviously, this will 

make the compression algorithms more difficult with 

increased coding memory. However, the 3D-SLS approach 

significantly reduces the complexity of the memory 

management issue. As a result, this increase in complexity is 

compensated for by a lower amount of overhead associated 

with memory management. 

 

An individual list referred to as the List of Root Sets 

(LRS) is utilised in the proposed HSICA. The HS image 

transforms with ‘L’ level wavelet transform, and ‘n’ is denoted 

as the number of bit planes present in the transform HS image. 

The (i, j, k) coordinates of the roots of the SOTs are stored in 

LRS, just as they are in LIS for 3D-SPIHT [54]. Therefore, the 

dimensions of LRS are identical to those of LIS. On the other 

hand, LRS is distinct in the following two respects: 

 When a set is added to LRS, it will not be withdrawn 

under any circumstances. Therefore, LRS can be 

implemented as a straightforward 1D array that is 

accessed in a sequential fashion using the First In First 

Out (FIFO) method. In contrast, the LIS needs to be built 

as a linked list that can only be accessed in a haphazard 

fashion due to the ongoing process of elements being 

added to and removed from it. 

 The type field (zerotree type) is utilised in various ways. 

A set is considered to be of type A if it has not been tested 

or does not have any SIG SOT, while a set is considered 

of type B if it has one or more SIG SOT. To put it another 

way, a set in LRS begins its life as type A, but it 

transitions to type B when one of its SOTs is converted 

into an SIG. 

In addition, 3D-SLS substitutes state markers for the LIP 

and LSP lists, which are responsible for the majority of the 

total memory use. To be more explicit, each coefficient in the 

LLLL sub-band is provided by a single status bit denoted by 

the number ‘λ’. This bit is set to 0 when the pixel is first 

created and is changed to 1 when it just became SIG. The type 

of coefficients can be determined based on the values of two 

status bits referred to as 'ω'. These values are used to generate 

the coefficients for all other sub-bands. After that, it sets the 

LRS to the coordinates (i, j, k) of the pixels in the LLLL sub-

band with offspring that are type A sets and initializes it. 

 

 ω = 0 New Insignificant Coefficient (NIC): The NIC is 

the coefficient not tested against the current threshold. It 

may be a member of the progeny of type A sets in the LRS 

that have recently become significant in the last bit-plane 

pass. 

 ω = 1 Visited Insignificant Coefficient (VIC): The VIC is 

the coefficient that is tested as an insignificant coefficient 

against the previous bit-plane. It is possible that it is 

related to the sets of type B that were found in LRS. It is 

important to note that the (i, j, k) coordinates of these 

VICs are stored by the 3D-SPIHT [54] in the LIP list, 

which is then coded during the sorting phase. 

 ω = 2 New Significant Coefficient (NSC): The NSC is the 

significant coefficient during the current bit-plane pass. 

 ω = 3 Visited Significant Coefficient (VSC): The VSC is 

the coefficient that nis tested significantly in the previous 

bit-plane pass. It's possible that it's related to the type B 

sets that LRS spawned. Note that the 3D-SPIHT [54] 

saves the (i, j, k) coordinates of these VSC coefficients in 

LSP and that these coordinates are coded in the 

refinement pass.   

Initialization is the first step of the 3D-SLS, which is 

followed by numerous runs of bit-plane coding till the bit 
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budget is available. When 3D-SLS is being initialised, the first 

thing it does is compute and output the top bit-plane followed 

by the lower bit-plane accordingly. Following this, it 

initialises the LRS by assigning it the coordinates (i, j, k) of 

the coefficients in the LLLL sub-band that have offspring that 

are type A sets, and then it sets the LRS to those values.  

 

The coding of a coefficient Гi,j,k in LLLL involves 

determining whether or not it is significant in relation to the 

bit plane ‘n’. If Гi,j,k  is still insignificant, then the ‘0’ bit is 

outputted to the bit stream, while if it becomes significant 

against the current bit, then the ‘1’ bit is outputted to the bit 

stream and the status of the λi,j,k is updated to ‘1’. Following 

this, the sets of LRS, which are sets of type A, are successively 

processed in the following manner: the SOT of the set is 

evaluated to see whether or not it is significant in relation to 

‘n’. If SOT is insignificant to the current threshold, then 0’ bit 

is outputted. On the other hand, if the SOT is significant, then 

the value ‘1’ is outputted, the set's type is changed to a type B 

set, and each of the set's eight children (which is an NIC) is 

examined for significance with regard to n. This happens only 

if the SOT is significant. If it is still insignificant, then the bit 

stream will be identified as a VIC and the value '0' will be 

outputted to the stream.On the other hand, if the coefficient 

becomes significant, and '1' and its sign bit are outputted to the 

bit-stream, it is marked as an NSC. Finally, if the set has 

grandkids, those four descendants are appended to the end of 

LRS as type A sets to be coded in the current bit-plane pass.  

 

If the set does not have grandchildren, the process ends 

here. The coefficients are encoded in LLLL format at the 

beginning of each of the following bit-plane coding passes. 

The values of these coefficients' status bits determine how 

they are encoded according to their sort of coefficient. If λi,j,k 

= ‘0’, the coefficient Гi,j,k is insignificant, it is coded in the 

same way as was done in the first pass, and if λi,j,k = ‘1’ 

(significant coefficient) it is refined by outputting its nth bit to 

the bit-stream. It should be noted that the sorting and refining 

passes have been combined for the pixels in the LLLL sub-

band, which may result in a decrease in the Peak Signal to 

Noise Ratio (PSNR) performance of the 3D-SLS because the 

information ordering has not been preserved. On the other 

hand, because the size of LLLL is relatively small compared to 

the size of the HS image as a whole, the amount of reduction 

is only very slight. The LRS list is then scanned twice after 

this step. Only the sets of type B are processed in the first scan 

by computing its four children; this only applies to those sets. 

There is a possibility that a type B collection will contain the 

pixels and VICs that were discovered to be significant in 

earlier rounds but which are currently labelled as NSC. In 

order to refine an NSC more in the second run through the 

LRS, it is identified as VSC and given that designation. On the 

other hand, if the pixel is a VIC, it is coded exactly in the same 

way as coding a NIC. It is important to take note that this phase 

is comparable to coding the pixels in the list LIP during the 

sorting process in the original 3D-SPIHT [54]. This indicates 

that both encoding algorithms use the same order when coding 

the VICs. As a result, the embedding capabilities of 3D-SLS 

are identical to those of 3D-SPIHT [54].  

 

In the second run of the LRS scan, each and every set in 

the LRS is subjected to processing. If the set is of type A, then 

it is processed in precisely the same manner as it was in the 

initial pass of the procedure. If the set is of type B, on the other 

hand, only the VSCs of the set's eight offspring are refined by 

sending their nth bit to the bit-stream. This is the case because 

type B sets are less common. At this point, ‘n’ is decreased by 

one in preparation for the beginning of a new bit-plane coding 

pass. It is important to note that the process of coding the 

VSCs of type B sets in the second LRS scan pass is analogous 

to the process of refining the pixels in the list LSP during the 

refinement pass in the initial 3D-SPIHT [54]. This indicates 

that the 3D-SLS algorithm under consideration combines both 

the NICs and the VSCs. It has been demonstrated that the 

VICs have a greater influence on the reduction of distortion 

compared to both the NICs and the VSCs. Therefore, merging 

the VICs and VSCs as done may result in a decrease in PSNR, 

but combining the NICs and the VSCs results in a minor 

improvement in the PSNR of the 3D-SLS algorithm. The flow 

of the 3D-SLS is given by the Figure 1. 

 

 
Fig. 1 Flow of the proposed HSICA 3D-SLS
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4. Simulation Result 
In this section, We evaluate the compression performance 

(coding efficiency, coding memory and coding complexity) of 

our presented 3D-SLS on four commonly used hyperspectral 

datasets (hyperspectral images), including the Washington DC 

Mall HS image dataset (HS Image I), the Botswana HS image 

dataset (HS Image II), the Pavia Centre HS image dataset (HS 

Image III) and the Jasper Ridge HS image dataset (HS Image 

IV). The description about the HS images has been covered in 

Table 3.Our simulation experiments have been conducted on 

a hardware environment composed of an Intel(R) Core (TM) 

i3-4010U CPU with 8 GB RAM with a serial speed of 1.7 

GHz. On the other hand, the software environment is 

composed of Windows 10 as an operating system, and 

simulation was performed using Matlab simulation software. 

The above configuration has been used for all the simulation 

experiments conducted with different HSICAs. 

Table 3. Short description of the HS images used for the simulations 

HS Image HS Image Sensor HS Image Dimension 
Pixel 

Depth 
Wavelength Pixel Resolution 

HS Image I HYDICE 1280 x 307 x 191 14 400 nm to 2400 nm 3 mt to 4 mt 

HS Image II Hyperion 1476 x 256 x 242 16 400 nm to 2500 nm 30 mt 

HS Image III ROSIS 1096 x 1096 x 102 13 430 nm to 860 nm 1.3 mt 

HS Image IV AVIRIS 100 x 100 x 224 13 380 nm to 2500 nm 4 mt to 20 mt 

 

For calculation of the coding efficiency, four different 

performance metrics are used, which are Peak Signal Noise 

Ratio (PSNR), Structural similarity (SSIM) index, Feature 

similarity (FSIM) index and Bjøntegaard delta peak signal-to-

noise rate (BD-PSNR) [52, 64-66].  

 

The coding memory is calculated as in kilobytes (KB), 

and coding complexity is calculated as in time required by the 

HSICA for encoding of the transform coefficients (encoding 

time) and decoding of the received bit stream from the 

transmission channel (decoding time). The coding complexity 

of any HSICA is directly proportional to the speed of the 

HSICA [61]. The performance of 3D-SLS on different 

performance metrics is compared with the 3D-SPECK (CA 1) 

[48], 3-SPIHT (CA 2) [54], 3D-WBTC (CA 3) [58], 3D-LSK 

(CA 4) [50], 3D-NLS (CA 5) [55], 3D-LMBTC (CA 6)  [59], 

3D-ZM-SPECK (CA 7) [51] and 3D-M-ZM-SPECK  (CA 8) 

[52]. 

 

Let the original HS image be defined as A(α,β,γ) while 

the reconstructed HS image after the compression process is 

defined as B(α,β,γ). The ‘α’, ‘β’ and ‘γ’ are defined as the 

location of the pixel/coefficient of the HS image. The PSNR 

of any HSICA is defined in Equation (1), while the associated 

Mean Square Error (MSE) is defined in Equation (2) [67]. The 

SSIM is defined mathematically as Equation (3) [68-72]. 

 

𝑃𝑆𝑁𝑅 =   20 log10 [
𝑀𝑎𝑥{𝐴(𝛼, 𝛽, 𝛾)}

𝑀𝑆𝐸
] (1) 

  

𝑀𝑆𝐸 =  
1

𝑁𝑝𝑖𝑥

∑ [𝐴(𝛼, 𝛽, 𝛾) − 𝐵(𝛼, 𝛽, 𝛾)]2

𝑥,𝑦,𝑧

 
 

(2) 

 

 

SSIM (A, B)

=  [
(2μ𝐴μ𝐵 + 𝐶1)(2σ𝐴𝐵 +  𝐶2)

(μ𝐴
2 + μ𝐵

2 + 𝐶1 )(σ𝐴
2 + σ𝐵

2 +  𝐶2)
] 

(3) 

The total number of coefficients of the HS image under 

test is defined as Npix for Equation (1), while C1 and C2 are the 

constants in Equation (3).   

 

The mean of the original HS image and reconstructed HS 

image is represented as μA and μB. In the same way, the 

variance between the original HS image and the reconstructed 

HS image is represented 𝜎𝐴
2 𝑎𝑛𝑑 𝜎𝐵

2 while covariance is 

defined as 𝜎𝐴𝐵. 

 

4.1. Coding Efficiency 
From Table 4, it is clear that the proposed HSICA 

outperforms the other state of art HSICA. It has been clear that 

the variation of the coding efficiency between the 3D-SLS and 

3D-SPIHT [54] lies between 0.22 dB to 0.6 dB for HS image 

I, 0.1 dB to 0.43 dB for HS image II, 0.26 dB to 0.45 dB for 

HS image III and 0.24 dB to 0.56 dB for HS image IV. In the 

same way, the variation of the coding efficiency between 3D-

SLS and 3D-NLS [55] lies between 0.41 dB to 1.34 dB for HS 

image I, 0.18 dB to 0.68 dB for HS image II, 0.33 dB to 0.63 

dB for HS image III and 0.15 dB to 0.65 dB for HS image IV.  

The coding efficiency improvement is due to the increase in 

the number of significant coefficients. 3D-SLS has a higher 

number of significant coefficients than the other TC-HSICA. 

In the same way, 3D-SLS has slightly higher numeric values 

for the SSIM and FSIM, which are covered in Table 5 and 

Table 6. The calculation of BD-PSNR savings utilizes PSNR 

as the selected objective quality indicator. It has been clear 

from Table 7 that 3D-SLS has better performance than other 

HSICAs under test. 
 

4.2. Coding Memory 
The requirement of the memory by the TC-HSICA for the 

coding process is known as coding memory. For the list-based 

HSICA, such as 3D-SPECK [48], 3D-SPIHT [54], and 3D-

WBTC [58] had high coding memory requirements, and the 

demand for coding memory increased exponentially with the 
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bit rate. At the same time, the listless HSICA has a fixed 

coding memory requirement, which depends only on the 

dimension of the HS image and not on the bit rate. Thus, at the 

low bit rates, list-based HSICA performs better than listless 

HSICA. It has been noticed from Table 8 that 3D-SLS has a 

lower coding memory demand than 3D-SPIHT [54] because it 

has only one list for the tracking of the 

significance/insignificance of the transform coefficients or 

zerotree. It required almost one-fifth of coding memory 

compared to the 3D-SPIHT [54]. 
 

4.3. Coding Complexity 
The proposed HSICA 3D-SLS has higher coding 

complexity than other zerotree HSICA, such as 3D-SPIHT 

[54], 3D-NLS [55] and other listless HSICA, as shown in 

Tables 9 and 10. The higher coding complexity of 3D-SLS is 

due to the more read and write operation during the execution 

of the HSICA, which nis more than 3D-SPIHT [54] and 3D-

NLS [55]. The listless HSICA has low coding complexity and 

have fast execution process. It is quite clear that the high 

complexity of 3D-SLS is due to the use of the list.  

Table  4. Comparison of coding efficiency (PSNR) for 3D-SLS and reported compression algorithms 
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 HS Image I 

0.025 34.56 34.43 34.54 34.47 34.43 34.35 34.44 34.11 34.89 

0.05 36.52 36.27 36.47 36.51 36.28 36.52 36.48 36.34 36.77 

0.1 38.53 38.28 38.5 38.35 38.12 38.29 38.33 38.04 38.62 

0.2 41.54 41.34 41.52 41.49 41.27 41.19 41.42 41.17 41.76 

0.25 42.97 42.89 43.08 43.12 41.92 42.02 42.17 42.87 43.26 

0.5 46.81 46.6 46.81 46.76 46.41 46.09 46.73 46.21 46.82 

0.75 50.54 50.41 50.59 50.61 50.33 50.37 50.51 50.11 51.01 

1 53.52 53.32 53.51 53.49 53.33 53.46 53.47 53.12 53.84 

2 66.09 66.02 66.19 65.97 65.91 65.84 66.01 65.22 66.41 

 HS Image II 

0.025 27.53 27.41 27.52 27.32 27.37 27.31 27.32 26.98 27.84 

0.05 30.22 29.99 30.21 30.2 29.97 30.19 30.2 29.94 30.35 

0.1 32.57 32.48 32.57 32.48 32.18 32.04 32.07 31.89 32.74 

0.2 34.78 34.63 34.75 34.66 34.51 34.64 34.66 34.21 34.96 

0.25 35.62 35.5 35.62 35.63 35.5 35.55 35.56 35.25 35.87 

0.5 39.09 39.03 39.18 38.76 38.63 38.46 38.47 38.02 39.31 

0.75 42.09 41.95 42.08 41.48 41.92 41.28 41.3 40.97 42.28 

1 44.19 44.05 44.18 44.2 44.05 43.89 43.91 43.55 44.39 

2 51.48 51.33 51.47 51.22 51.25 50.85 50.86 50.66 51.43 

 HS Image III 

0.025 28.83 28.68 28.82 28.68 28.62 28.64 28.67 28.44 29.08 

0.05 30.32 30.06 30.3 30.29 30.06 30.28 30.29 30.01 30.45 

0.1 32.43 32.17 32.38 32.23 32.01 32.25 32.29 31.98 32.51 

0.2 34.84 34.62 34.83 34.61 34.51 34.56 34.58 34.38 35.01 

0.25 35.7 35.49 35.69 35.49 35.31 35.42 35.44 35.08 35.92 

0.5 39.06 39.03 39.01 38.97 38.85 38.77 38.78 38.64 39.48 

0.75 42.24 42.04 42.24 42.01 41.97 41.83 41.84 41.69 42.49 

1 45.16 44.93 45.16 45.14 44.82 44.5 44.5 44.34 45.38 

2 55.46 55.31 55.46 55.34 55.24 54.89 54.91 54.31 55.57 

 HS Image IV 

0.025 29.84 29.68 29.82 29.73 29.58 29.71 29.74 29.51 30.08 
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0.05 32.27 31.97 32.25 32.26 31.88 32.3 32.22 31.97 32.41 

0.1 35.08 35.11 35.07 35.29 35.04 35.06 35.03 34.84 35.48 

0.2 39.35 39.13 39.6 39.4 39.01 39.11 39.41 39.02 39.55 

0.25 41.11 41.24 42.01 41.74 41.21 41.45 41.28 40.89 41.68 

0.5 45.98 46.33 46.78 46.26 46.24 45.91 46.14 45.87 46.89 

0.75 50.94 51.01 51.34 51.06 51.31 51.41 51.39 50.76 51.46 

1 54.77 54.72 55.13 54.86 54.62 54.78 54.92 54.55 55.11 

2 61.02 60.85 61.04 60.96 60.84 60.9 60.89 60.77 61.09 

 
Table  5. Comparison of coding efficiency (SSIM) for 3D-SLS and reported compression algorithms 
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 HS Image I 

0.025 0.385 0.386 0.384 0.385 0.386 0.386 0.384 0.377 0.39 

0.05 0.48 0.479 0.48 0.48 0.479 0.48 0.48 0.471 0.475 

0.1 0.587 0.587 0.585 0.584 0.587 0.589 0.59 0.581 0.589 

0.2 0.677 0.675 0.678 0.677 0.678 0.677 0.677 0.664 0.681 

0.25 0.701 0.702 0.702 0.699 0.703 0.702 0.702 0.697 0.709 

0.5 0.79 0.788 0.787 0.789 0.789 0.788 0.787 0.774 0.798 

0.75 0.847 0.846 0.849 0.846 0.846 0.846 0.846 0.845 0.85 

1 0.886 0.886 0.886 0.888 0.887 0.886 0.886 0.884 0.89 

2 0.914 0.912 0.915 0.914 0.912 0.915 0.915 0.911 0.918 

 HS Image II 

0.025 0.477 0.476 0.479 0.481 0.472 0.473 0.475 0.478 0.477 

0.05 0.536 0.535 0.537 0.538 0.532 0.536 0.537 0.53 0.536 

0.1 0.625 0.626 0.623 0.624 0.621 0.625 0.626 0.627 0.625 

0.2 0.696 0.692 0.696 0.698 0.693 0.697 0.697 0.695 0.696 

0.25 0.711 0.709 0.711 0.712 0.708 0.711 0.712 0.71 0.711 

0.5 0.764 0.764 0.762 0.767 0.764 0.764 0.764 0.765 0.764 

0.75 0.791 0.789 0.794 0.795 0.793 0.794 0.794 0.792 0.791 

1 0.807 0.808 0.809 0.81 0.809 0.809 0.809 0.81 0.807 

2 0.831 0.829 0.828 0.831 0.831 0.832 0.832 0.832 0.831 

 HS Image III 

0.025 0.421 0.419 0.421 0.418 0.423 0.412 0.413 0.411 0.421 

0.05 0.566 0.568 0.567 0.568 0.563 0.565 0.565 0.566 0.566 

0.1 0.654 0.652 0.655 0.657 0.653 0.655 0.655 0.654 0.654 

0.2 0.758 0.754 0.755 0.755 0.751 0.756 0.757 0.756 0.758 

0.25 0.771 0.772 0.771 0.77 0.766 0.772 0.772 0.771 0.771 

0.5 0.86 0.859 0.861 0.859 0.858 0.86 0.86 0.861 0.86 

0.75 0.909 0.911 0.911 0.912 0.903 0.91 0.91 0.911 0.909 

1 0.929 0.931 0.929 0.931 0.93 0.928 0.928 0.931 0.929 

2 0.979 0.982 0.982 0.981 0.978 0.977 0.977 0.972 0.979 

 HS Image IV 
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0.025 0.297 0.288 0.299 0.299 0.285 0.3 0.301 0.299 0.302 

0.05 0.346 0.338 0.345 0.346 0.341 0.349 0.349 0.248 0.339 

0.1 0.437 0.431 0.437 0.436 0.43 0.437 0.437 0.437 0.432 

0.2 0.518 0.513 0.518 0.518 0.514 0.518 0.518 0.517 0.511 

0.25 0.545 0.543 0.545 0.552 0.545 0.553 0.553 0.55 0.547 

0.5 0.603 0.601 0.603 0.608 0.606 0.611 0.611 0.604 0.601 

0.75 0.63 0.629 0.63 0.636 0.631 0.636 0.636 0.633 0.632 

1 0.645 0.645 0.645 0.648 0.646 0.647 0.647 0.644 0.649 

2 0.666 0.666 0.666 0.666 0.666 0.668 0.668 0.663 0.666 

Table  6. Comparison of coding efficiency (FSIM) for 3D-SLS and reported compression algorithms 
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 HS Image I 

0.025 0.641 0.642 0.712 0.639 0.643 0.637 0.638 0.633 0.648 

0.05 0.71 0.695 0.787 0.712 0.712 0.716 0.716 0.711 0.709 

0.1 0.774 0.759 0.83 0.78 0.779 0.784 0.784 0.777 0.789 

0.2 0.784 0.776 0.843 0.783 0.79 0.795 0.795 0.791 0.81 

0.25 0.851 0.844 0.909 0.855 0.856 0.863 0.863 0.849 0.864 

0.5 0.891 0.888 0.947 0.91 0.889 0.903 0.903 0.896 0.901 

0.75 0.919 0.917 0.97 0.92 0.918 0.918 0.918 0.912 0.931 

1 0.978 0.978 0.996 0.98 0.98 0.981 0.981 0.978 0.988 

2 66.09 66.02 66.19 65.97 65.91 65.84 66.01 65.22 66.41 

 HS Image II 

0.025 0.588 0.59 0.586 0.591 0.588 0.579 0.579 0.58 0.588 

0.05 0.67 0.672 0.674 0.676 0.675 0.674 0.673 0.671 0.67 

0.1 0.712 0.714 0.711 0.717 0.713 0.697 0.698 0.699 0.712 

0.2 0.761 0.774 0.76 0.779 0.747 0.775 0.775 0.776 0.761 

0.25 0.807 0.806 0.805 0.808 0.793 0.802 0.805 0.809 0.807 

0.5 0.92 0.922 0.921 0.923 0.914 0.91 0.91 0.911 0.92 

0.75 0.961 0.963 0.962 0.963 0.962 0.959 0.959 0.961 0.961 

1 0.975 0.971 0.973 0.976 0.978 0.977 0.977 0.974 0.975 

2 0.997 0.997 0.996 0.997 0.998 0.998 0.998 0.998 0.997 

 HS Image III 

0.025 0.71 0.711 0.702 0.71 0.666 0.699 0.701 0.7 0.71 

0.05 0.713 0.715 0.715 0.714 0.715 0.713 0.714 0.715 0.713 

0.1 0.787 0.781 0.786 0.788 0.788 0.785 0.785 0.786 0.787 

0.2 0.832 0.83 0.831 0.836 0.834 0.835 0.835 0.836 0.832 

0.25 0.851 0.849 0.851 0.852 0.837 0.838 0.838 0.84 0.851 

0.5 0.917 0.915 0.911 0.915 0.915 0.914 0.914 0.912 0.917 

0.75 0.955 0.956 0.954 0.957 0.947 0.95 0.95 0.951 0.955 

1 0.97 0.968 0.964 0.97 0.969 0.97 0.97 0.972 0.97 

2 0.994 0.992 0.993 0.995 0.996 0.996 0.996 0.998 0.994 
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 HS Image IV 

0.025 0.286 0.286 0.282 0.29 0.288 0.295 0.303 0.288 0.29 

0.05 0.293 0.288 0.289 0.294 0.286 0.302 0.302 0.294 0.294 

0.1 0.321 0.319 0.32 0.321 0.32 0.338 0.338 0.337 0.329 

0.2 0.443 0.434 0.443 0.452 0.439 0.488 0.488 0.482 0.441 

0.25 0.518 0.522 0.518 0.53 0.529 0.537 0.537 0.531 0.526 

0.5 0.694 0.692 0.694 0.699 0.696 0.75 0.75 0.745 0.698 

0.75 0.807 0.812 0.808 0.817 0.813 0.835 0.834 0.827 0.828 

1 0.871 0.867 0.872 0.869 0.867 0.873 0.873 0.866 0.889 

2 0.979 0.978 0.979 0.979 0.978 0.979 0.979 0.965 0.985 

Table 7. BD-PSNR calculation for different HSICA with reference to 3D-SLS 

Image 
CA 1 

[48] 

CA 2 

[54] 

CA 3 

[58] 

CA 4 

[50] 

CA 5 

[55] 

CA 6 

[59] 

CA 7 

[51] 

CA 8 

[52] 

HS Image I 0.2404 0.4171 0.2296 0.2753 0.6108 0.5815 0.4283 0.6486 

HS Image II 0.1783 0.3129 0.1779 0.3377 0.4315 0.5261 0.51 0.8263 

HS Image III 0.1961 0.3940 0.2151 0.3435 0.5016 0.4904 0.4716 0.7426 

HS Image IV 0.3761 0.4154 0.08 0.2240 0.4583 0.3488 0.3098 0.6218 

 
Table 8. Comparison of coding memory for 3D-SLS and reported compression algorithms 
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 HS Image I 

0.025 54.87 54.42 55.21 512 1024 12 0 32 8.95 

0.05 136.1 145.3 137.9 512 1024 12 0 32 23.78 

0.1 243.8 263.3 250.1 512 1024 12 0 32 41.08 

0.2 416.3 438 416 512 1024 12 0 32 68.33 

0.25 586.67 605.78 630.49 512 1024 12 0 32 96.92 

0.5 1048.8 1060.5 1049 512 1024 12 0 32 167.54 

0.75 1287.31 1333.19 1329.77 512 1024 12 0 32 296.26 

1 1802.5 1826.7 1724.6 512 1024 12 0 32 411.42 

2 2865.17 2897 3052.09 512 1024 12 0 32 652.48 

 HS Image II 

0.025 60.22 63.41 60.69 512 1024 12 0 32 10.54 

0.05 114.86 120.09 115.57 512 1024 12 0 32 20.39 

0.1 245.34 247.27 246.04 512 1024 12 0 32 46.74 

0.2 463.49 495.61 473.86 512 1024 12 0 32 105.7 

0.25 628.84 651.89 630.49 512 1024 12 0 32 123.4 

0.5 1148.6 1164.8 1149.5 512 1024 12 0 32 267.8 

0.75 1305.8 1299.3 1306 512 1024 12 0 32 288.7 

1 2056 2090.4 2057.4 512 1024 12 0 32 470.8 

2 3051 3081.8 3052.1 512 1024 12 0 32 708.3 

 HS Image III 
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0.025 54.84 61.36 55.03 512 1024 12 0 32 10.09 

0.05 136.4 150.95 138.5 512 1024 12 0 32 24.83 

0.1 246.14 260.59 251.71 512 1024 12 0 32 41.3 

0.2 418.18 462.06 418.28 512 1024 12 0 32 79.07 

0.25 602.43 630.18 610.53 512 1024 12 0 32 117.9 

0.5 1042.3 1086.6 1041.9 512 1024 12 0 32 196.2 

0.75 1453.5 1488 1453.2 512 1024 12 0 32 335.2 

1 1937.9 1919.7 1936.8 512 1024 12 0 32 426.6 

2 2713.4 2665.7 2714.3 512 1024 12 0 32 633.1 

 HS Image IV 

0.025 55.23 55.52 55.61 512 1024 12 0 32 8.8 

0.05 143.02 145.9 143.3 512 1024 12 0 32 26.11 

0.1 241.4 245.9 245.8 512 1024 12 0 32 46.31 

0.2 440 445.7 443.7 512 1024 12 0 32 87.22 

0.25 480.11 462.3 489.73 512 1024 12 0 32 90.29 

0.5 821.6 808.9 827.9 512 1024 12 0 32 168.5 

0.75 1150.17 1152.97 1155.23 512 1024 12 0 32 271.3 

1 1492.71 1503.8 1532.6 512 1024 12 0 32 346.5 

2 2592.52 2626.3 2503.1 512 1024 12 0 32 643.7 

 
Table  9. Comparison of computational complexity (encoding time) for 3D-SLS and reported compression algorithms 
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 HS Image I 

0.025 3.09 1.44 1.71 0.43 0.51 1.33 0.83 0.49 1.59 

0.05 6.23 2.71 2.78 0.55 0.65 1.9 1.11 0.61 2.91 

0.1 25.1 7.5 6.5 0.8 0.91 3.9 1.78 0.88 8.11 

0.2 57.9 25.8 24.8 1.1 1.21 5.1 2.81 1.17 28.09 

0.25 104.58 31.19 29.92 1.71 1.79 10.61 5.05 1.77 33.24 

0.5 414.8 140.1 211.2 2.5 2.64 11.3 7.41 2.61 149.02 

0.75 950.77 370.29 713.02 3.57 3.88 17.22 10.47 3.71 381.35 

1 1497.5 575 804 4.41 4.57 21.12 13.21 4.49 594.2 

2 3822.03 1426.61 4409.82 11.55 14.58 40.09 23.39 12.91 1484.21 

 HS Image II 

0.025 5.19 1.08 2.05 0.51 1.99 2.33 1.55 0.91 1.24 

0.05 8.01 2.19 3.68 0.94 9.43 3.08 2.08 1.74 2.59 

0.1 42.11 5.47 7.26 2.01 12.38 4.79 3.49 3.12 7.02 

0.2 68.31 17.14 20.14 4.27 14.01 8.64 5.26 4.98 19.22 

0.25 91.77 23.38 67.74 7.24 17.56 10.44 9.09 8.17 28.95 

0.5 402.48 100.15 179.99 9.95 18.22 19.91 11.76 10.92 109.71 

0.75 1066.62 581.78 682.4 12.17 20.19 29.03 17.1 16.68 602.37 
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1 1320.53 641.34 875.01 14.96 22.96 35.17 19.04 18.07 688.21 

2          

 HS Image III 

0.025 5.34 1.96 2.15 0.57 3.34 2.42 1.1 1.03 2.08 

0.05 10.17 8.34 3.31 2.03 7.72 4.62 3.69 3.12 8.91 

0.1 24.02 17.65 6.54 3.65 10.32 7.78 4.34 4.03 19.29 

0.2 69.81 22.2 14.58 5.15 11.26 9.16 6.02 5.87 26.35 

0.25 91.62 38.56 37.3 7.7 14.92 12.26 8.16 7.91 40.6 

0.5 371.82 187.18 198.26 9.14 17.71 17.57 11.38 10.57 198.21 

0.75 955.11 440.87 597.21 11.01 21.48 24.43 14.32 12.86 478.77 

1 1553.24 715.1 1011.4 13.69 24.92 27.96 18.64 16.28 731.02 

2 4770.03 2338.89 3882.91 27.52 39.89 55.15 36.57 32.14 2501.16 

 HS Image IV 

0.025 3.01 1.34 1.66 0.49 0.53 1.38 0.86 0.51 1.51 

0.05 6.01 2.55 2.36 0.56 0.67 2.06 1.14 0.63 2.94 

0.1 21.1 7.6 6.4 0.9 1.09 3 1.77 1.03 9.03 

0.2 54.2 20.6 17.7 1.2 1.34 5.2 2.84 1.27 22.31 

0.25 97.1 37.92 21.35 1.84 1.99 8.72 4.73 1.91 54.29 

0.5 315.3 101.6 182.4 2.6 2.74 10.9 6.24 2.72 121.38 

0.75 705.45 267.31 530.54 3.3 3.77 17.79 10.63 3.51 299.74 

1 757.3 425.4 942.8 5.1 5.34 22.7 15.84 5.24 438.21 

2 3255.3 1213.1 2380.4 9.55 14.2 59.26 56.42 13.67 1249.8 

 
Table  10. Comparison of computational complexity (decoding time) for 3D-SLS and reported compression algorithms 
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 HS Image I 

0.025 3.09 1.44 1.71 0.43 0.51 1.33 0.83 0.49 1.59 

0.05 6.23 2.71 2.78 0.55 0.65 1.9 1.11 0.61 2.91 

0.1 25.1 7.5 6.5 0.8 0.91 3.9 1.78 0.88 8.11 

0.2 57.9 25.8 24.8 1.1 1.21 5.1 2.81 1.17 28.09 

0.25 104.58 31.19 29.92 1.71 1.79 10.61 5.05 1.77 33.24 

0.5 414.8 140.1 211.2 2.5 2.64 11.3 7.41 2.61 149.02 

0.75 950.77 370.29 713.02 3.57 3.88 17.22 10.47 3.71 381.35 

1 1497.5 575 804 4.41 4.57 21.12 13.21 4.49 594.2 

2 3822.03 1426.61 4409.82 11.55 14.58 40.09 23.39 12.91 1484.21 

 HS Image II 

0.025 5.19 1.08 2.05 0.51 1.99 2.33 1.55 0.91 1.24 

0.05 8.01 2.19 3.68 0.94 9.43 3.08 2.08 1.74 2.59 

0.1 42.11 5.47 7.26 2.01 12.38 4.79 3.49 3.12 7.02 

0.2 68.31 17.14 20.14 4.27 14.01 8.64 5.26 4.98 19.22 
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0.25 91.77 23.38 67.74 7.24 17.56 10.44 9.09 8.17 28.95 

0.5 402.48 100.15 179.99 9.95 18.22 19.91 11.76 10.92 109.71 

0.75 1066.62 581.78 682.4 12.17 20.19 29.03 17.1 16.68 602.37 

1 1320.53 641.34 875.01 14.96 22.96 35.17 19.04 18.07 688.21 

2          

 HS Image III 

0.025 5.34 1.96 2.15 0.57 3.34 2.42 1.1 1.03 2.08 

0.05 10.17 8.34 3.31 2.03 7.72 4.62 3.69 3.12 8.91 

0.1 24.02 17.65 6.54 3.65 10.32 7.78 4.34 4.03 19.29 

0.2 69.81 22.2 14.58 5.15 11.26 9.16 6.02 5.87 26.35 

0.25 91.62 38.56 37.3 7.7 14.92 12.26 8.16 7.91 40.6 

0.5 371.82 187.18 198.26 9.14 17.71 17.57 11.38 10.57 198.21 

0.75 955.11 440.87 597.21 11.01 21.48 24.43 14.32 12.86 478.77 

1 1553.24 715.1 1011.4 13.69 24.92 27.96 18.64 16.28 731.02 

2 4770.03 2338.89 3882.91 27.52 39.89 55.15 36.57 32.14 2501.16 

 HS Image IV 

0.025 3.01 1.34 1.66 0.49 0.53 1.38 0.86 0.51 1.51 

0.05 6.01 2.55 2.36 0.56 0.67 2.06 1.14 0.63 2.94 

0.1 21.1 7.6 6.4 0.9 1.09 3 1.77 1.03 9.03 

0.2 54.2 20.6 17.7 1.2 1.34 5.2 2.84 1.27 22.31 

0.25 97.1 37.92 21.35 1.84 1.99 8.72 4.73 1.91 54.29 

0.5 315.3 101.6 182.4 2.6 2.74 10.9 6.24 2.72 121.38 

0.75 705.45 267.31 530.54 3.3 3.77 17.79 10.63 3.51 299.74 

1 757.3 425.4 942.8 5.1 5.34 22.7 15.84 5.24 438.21 

2 3255.3 1213.1 2380.4 9.55 14.2 59.26 56.42 13.67 1249.8 

 

 

 

 

 

 

 

 
(a)  (b)  (c)  (d) 

 

 

 
 

 

 
 

 

 (e)  (f)  (g)  (h) 

Fig. 2 Washington DC MALL HS image before compression, (a) Frame 29, (b) Frame 59, (c) Frame 89, (d) Frame 149 

Washington  DC MALL HS image after compression with CR 16, (e) Frame 29, (f) Frame 59, (g) Frame 89, and (h) Frame 149. 

Due to the multiple access (read or write operation) of the 

HSICA. It has been clear that a lot of computations (logical, 

algebraic and arithmetic) during the coding process make the 

compression algorithm slow. In order to investigate the impact 

of the compression on the compressed HS image, we present 

Figure 2, which provides both quantitative and qualitative 

evidence for 4 frequency frames of the WDC Mall HS image 

during the compression process. 
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5. Comparison with state-of-the-art HSICA 
Table 11 throws a short comparative analysis between the 

different state-of-the-art HSICAs with the proposed 

compression algorithm 3D-SLS. From the result, it is clear 

that 3D-SLS perform better than the state-of-the-art link list 

compression algorithm. 

Table 11. Comparison between the different compression algorithms 

Reference HSICA Major Outcome 

[54] 3D-SPIHT Uses the linked list and has improved coding efficiency compared to 

other transform coding 

[48] 3D-SPECK Slightly higher performance than 3D-SPIHT but still has high 

complexity at a high bit rate. 

[58] 3D-WBTC Perform better at low bit rates, but complexity increases rapidly with an 

increase in the bit rate. 

[56] 3D-BPEC Moderate coding efficiency with the high coding memory requirement 

due to the use of six fixed-length array 

[72] 3D-LMZC Coding efficiency is higher due to the use of curvelet transform 

Proposed 

Research 

3D-SLS High coding efficiency with low coding memory and coding efficiency 

6. Conclusion 
In this manuscript, we present a low-memory variant of 

the 3D-SPIHT [54] method that we created. The 3D-SLS uses 

a single list to maintain track of the significance of the 

coefficients or sets. The theoretical analysis and experimental 

findings both revealed very clearly that the suggested 3D-SLS 

has a superior PSNR than the 3D-SPIHT and 3D-NLS, and it 

has almost the same coding time as the 3D-SPIHT.  

 

This was demonstrated by the fact that the two sets of 

results were in complete agreement. This indicates that we 

could improve the performance of 3D-SPIHT without 

compromising its ease of use or incurring any additional 

overhead costs while simultaneously decreasing the amount of 

coding memory that was required by almost six times. 

Because of its low memory requirements and simplified 

management, the 3D-SLS is ideally suited for memory-limited 

portable HS image sensors. 
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