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Abstract - The incidence of neuromuscular disorders, including myopathy and Amyotrophic Lateral Sclerosis (ALS), has 

sharply risen in areas such as Arequipa, Peru. However, the lack of access to specialized diagnostic mechanisms has made 

diagnosis perfection impossible, primarily among underdeveloped areas. This study thereby provides the framework for 

developing and testing an EMG signal analysis system based on machine learning and wavelet transform to enhance diagnosis 

in wearables. The dataset is from the Nikolic PhD thesis, undertaking EMG recordings from healthy, myopathy, and ALS 

groups. This offers a strong basis for the discrimination between normal and pathological muscle activity. The EMG signals 

from the brachial biceps and medial vastus muscles were collected, preprocessed for denoising and artifact removal, and were 

analyzed using wavelet transform to decompose the EMG signal into its relevant frequency components. Features extracted 

from wavelet decomposition were then applied to train a Support Vector Machines (SVM) classifier for further differentiation 

between the three groups. The SVM classifier performed with a degree of accuracy, sensitivity, and specificity (92%, 90% and 

94% ) that suggests this approach could help greatly in the early diagnosis and improved healthcare access for those facing 

neuromuscular disorders, especially in regions lacking healthcare access. 
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1. Introduction  
Neuromuscular Disorders (NMDs) designate a number 

of illnesses affecting the peripheral nervous system and their 

consequences, including shortcomings in muscle control and 

movement. Muscular dystrophies, Amyotrophic Lateral 

Sclerosis (ALS), and peripheral neuropathies could very well 

wreak havoc on the quality of life of an individual. Just like 

other countries, NMDs are on the rise in Arequipa, Peru. 

Duchenne’s Muscular Dystrophy (DMD), the most 

aggressive type of muscular dystrophy affecting 

predominantly males of youthful age, shows a prevalence of 

one in 3,500 live male births worldwide, similar to the 

number of newly diagnosed cases in Peru [1]. While there is 

an increasing need for quality care with the evidence of the 

presence of NMDs, diagnostic and monitoring services 

availability is very limited, especially in Arequipa, where 

there is no access to sophisticated health care yet. 

Electromyography (EMG) is the traditional diagnostic 

method for neuromuscular disorders and evaluates electrical 

activities of muscles. EMG is typically performed by 

inserting needle electrodes in muscle tissues [2]. Although 

the information gleaned from this approach can be patent 

diagnosis, it happens to be invasive, costly, and complicated 

to interpret without specialized training. Healthcare services 

are distributed unevenly, with the advanced facilities mostly 

attending in urban areas in Arequipa and many other parts of 

Peru [3]. As a result, rural and underserved communities have 

less access, leading to delays in diagnosis and treatments. 

Wearable health monitoring devices seem to be potential 

instruments for closing this gap. These devices can track 

physiological signals in real-time, for example, muscle 

activity. EMG-equipped wearable devices provide a 

relatively non-invasive and very accessible means for 

neuromuscular function monitoring, which will greatly 

enhance the early identification and management of NMDs 

[4]. These devices are trained to collect physiological data in 

patients’ active and natural environments, allowing for more 

comprehensive assessments of neuromuscular health than 

traditional clinical evaluations. 

In this direction, all the efficient signal processing 

algorithms have to be developed to analyze EMG data in real 

time so that wearable health devices can realize their full 

potential. EMG analysis has utilized traditional signal 

processing techniques such as the Fourier Transform, but 

most have difficulty handling non-stationary signals arising 

http://creativecommons.org/licenses/by-nc-nd/4.0/


Roger Chaupi Arohuillca et al. / IJECE, 12(5), 1-7, 2025 

 

2 

from muscle contractions [5]. In contrast, the Wavelet 

Transform offers joint time-frequency decomposition, thus 

providing a powerful method for analyzing non-stationary 

EMG signals. This renders the wavelet Transform a powerful 

means for the detection and characterization of complex 

patterns found within EMG data [6]. 

Wavelet transform analysis is currently quite popular in 

signal processing besides biomedical signal processing and 

mainly for EMG data. In EMG signal identification, some 

studies revealed that Wavelet transform is helpful in catching 

EMG signal transients, which help characterize normal and 

abnormal muscle activity. The purpose of this study is to set 

up and evaluate an electro-myographic signal analysis system 

in MATLAB through a wavelet transform, which shall then 

be integrated into health monitor wearables, specifically 

intended for application in Arequipa, Peru, for the monitoring 

of neuromuscular disorders in that area. Most importantly, 

this is just an avenue or a step in the direction of improving 

the quality of care available for people suffering from 

neuromuscular disorders in regions that remain 

underprivileged by giving treatments and methods that are 

useful in guiding their care in timely and accurate measures. 

Using advanced signal processing techniques such as the 

Wavelet Transform would drastically change the picture of 

diagnosis and management of neuromuscular disorders for 

the better, hence availing more efficient healthcare to many 

requiring it. 

2. Related Work 
With the advancing wearable health technology and 

biomedical signal processing, promising advancements in 

developing the diagnostics of neuromuscular disorders have 

occurred. Wearable devices have shown potential, with their 

easily attachable EMG sensors, for non-invasive continuous 

assessment of muscle activity. They could be particularly 

useful for many unable to access specialized healthcare 

services [7]. As a result, these wearable EMG sensors enable 

data collection on neuromuscular health conditions while 

engaging in naturally occurring movements and activities 

under regular, non-laboratory conditions and mobile or static. 

Wavelet Transform’s principal application is especially 

for EMG signal analysis because of its robust handling of 

non-stationary signals. Wavelet Transform presents a rather 

finer resolution in understanding the EMG signals when 

compared to the classical Fourier Transform because it 

decomposes the signal into both time and frequency 

components [8, 9]. The studies have proven the efficacy of 

Wavelet Transform toward capturing transient features in 

EMG data that could often elude conventional analytic 

methods; for instance, Tkach et al. showed Wavelet 

Transform can monitor neuromuscular function due to 

significant highlighted transient features in EMG signals 

[10]. Wavelet Transform was used to analyze myoelectric 

signals acquired during isometric muscle fatigue tests by 

Karlsson and Gerddie. The results clearly stated that Wavelet 

Transform showed the best for identifying muscle activity 

changes during prolonged contractions; therefore, it may 

prove useful for analyzing EMG signals in wearable devices 

[11]. Transient characteristics provided by the Wavelet 

transform contain valuable information that could help in 

discerning normal muscle activity from pathological 

conditions, making it an invaluable method in the detection 

of neuromuscular abnormalities. 

De Luca et al. reviewed the development of 

electromyographic wearable technology and its applications 

in clinical and research settings, showing the potential for 

improving diagnosis and rehabilitation [12]. The 

combination of advanced signal processing techniques with 

wearable devices has demonstrated significant promise in 

improving muscle control and monitoring, particularly for 

rehabilitation purposes. On the other hand, Saponas et al., 

building on using wearable electromyography sensors to 

develop novel human-computer interaction interfaces, have 

shown the usefulness of EMG analysis beyond clinical 

scenarios [13]. Such applications suggest that wearable EMG 

systems could be developed with utility not only in medical 

diagnostics but also to enhance everyday user function. 
However, these studies lack focus on NMD classification. 

This approach combines Wavelet robustness with SVM, 

overcoming Fourier’s limitations in dynamic signals [14]. 

The present body of related work highlights the potential 

of conceiving the development of combining wavelet 

transforms and wearable health technology into an 

intelligible diagnostic tool for neuromuscular disorders. By 

leveraging these advancements, this study aims to develop an 

EMG signal analysis system integrated into wearable 

technology for neuromuscular health surveillance in needy 

areas such as Arequipa, Peru. The main goal is to achieve 

health equity for immediate and accurate diagnosis of 

neuromuscular disorders, as far as the geographical location 

is concerned. 

3. Methodology 
The methodology employed in this research includes 

data acquisition, signal processing using the Wavelet 

Transform, feature extraction, and classification, followed by 

an evaluation. 

The dataset used in this study was obtained from 

Nikolic’s PhD thesis, titled “Detailed Analysis of Clinical 

Electromyography Signals: EMG Decomposition, Findings, 

and Firing Pattern Analysis in Controls and Patients with 

Myopathy and Amyotrophic Lateral Sclerosis [15]. The 

dataset was selected because it includes comprehensive EMG 

data from both healthy individuals and patients with 

neuromuscular disorders, providing a valuable foundation for 

analyzing differences between normal and pathological 
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muscle activity. The dataset includes EMG signals recorded 

from three groups: a control group, a myopathy group, and an 

ALS group. The control group consisted of 10 healthy 

individuals aged 21 and 37 (4 females and 6 males), most of 

whom were in good to excellent physical condition. None of 

these individuals had any history or signs of neuromuscular 

disorders. The myopathy group included 7 patients (2 females 

and 5 males) between the ages of 19 and 63, all showing 

clinical and electrophysiological signs of myopathy. The 

ALS group consisted of 8 patients (4 females and 4 males) 

between the ages of 35 and 67, all presenting clinical and 

electrophysiological signs consistent with ALS. Five of these 

ALS patients died within a few years of symptom onset, 

confirming the severity of the condition. 

EMG signals were recorded from the brachial biceps and 

medial vastus muscles, as these were the most frequently 

examined muscles in both patient groups. The data were 

collected using surface electrodes, and the signals were 

digitized at a sampling rate of 23.4 KHz and digitized by an 

A/D converter of 16-bit resolution for further analysis. This 

dataset provides a diverse range of neuromuscular activity, 

making it an ideal resource for developing and testing new 

EMG analysis techniques. 

These EMG signals have been pre-processed to remove 

noise and artifacts, which form part of normal EMG 

recordings. A bandpass filter in the 20-450 Hz range for low-

frequency noise and high-frequency interference was 

applied. A notch filter was also employed to help eliminate 

powerline interference at 50 Hz. By these means, the 

preprocessing steps provided surety of cleaned signals, 

prepped further for analysis by the Wavelet Transform. 

Thus, since the Wavelet Transform provides a handy 

way of analyzing non-stationary data, making it more 

effective in clinical and research applications compared to 

traditional models like the Fourier Transform, it was selected 

as the dominant analyzing tool for the EMG signals [16]. The 

Wavelet Transform decomposes the signal into various 

frequency components, which furnish time and frequency 

information. It is crucial to understand EMG signals, for 

which transience is given great importance. The Daubechies 

wavelet (db4) was used in this study, which has been proven 

effective for EMG signals [17]. The signals were 

decomposed into several levels to extract features, effectively 

distinguishing between a normal and a pathological muscle. 

Feature extraction involved calculating energy distribution 

across decomposition levels (D1-D5). Energy values were 

computed using Equation (1) for each level, providing 

insights into both transient and sustained muscle activity. 

These features were then used to train the SVM classifier, 

enabling differentiation between healthy individuals and 

those with neuromuscular disorders. Several classifiers were 

evaluated, including k-Nearest Neighbors (k-NN) and 

Random Forest. SVM was ultimately selected due to its 

superior performance with high-dimensional biomedical data 

and proven efficiency in EMG signals [18]. Parameter tuning 

was performed using grid search, optimizing the radial basis 

function kernel and regularization parameters to achieve the 

best classification accuracy [19]. The implementation of the 

SVM classifier, feature extraction, and preprocessing steps 

was carried out using MATLAB. The data was split into 

training (70%) and testing sets (30%) to evaluate the 

classifier’s performance. Cross-validation and grid search 

were used to fine-tune the SVM parameters, optimizing the 

kernel function (radial basis function) and regularization 

parameters to achieve the best classification performance. 

Metrics such as accuracy, sensitivity, specificity, and the F1-

score were used to assess the classifier’s ability to correctly 

identify individuals with neuromuscular disorders. 

The flowchart for the system is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Flow chart for the system 

4. Results and Discussion 

The experimental results were obtained using a publicly 

available EMG dataset that includes signals from both 

healthy individuals and patients diagnosed with various 

neuromuscular disorders taken by M. Nikolic. The EMG 

signals were processed, decomposed using Wavelet 

Transform (db4), and classified using a Support Vector 

Machine (SVM). Figure 2 shows an example of a raw EMG 

signal from a healthy individual and the corresponding 

filtered signal after preprocessing. This step is essential to 

highlight the impact of noise reduction and ensure accurate 

wavelet-based feature extraction. 
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Feature Extraction 
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Fig. 2 Raw and filtered EMG signal 

 

 
Fig. 3 Visual representation of decomposition using wavelet transform 
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Table 1. Average wavelet energy por each group of classification 

 

Additionally, Figure 3 illustrates the wavelet 

decomposition of the preprocessed signal into different 

frequency bands. The first detail coefficient (D1) captures the 

high-frequency components typically associated with 

transient muscle activity, while the lower detail coefficients 

(D2–D5) represent the lower-frequency muscle activations. 

This provides a clear visualization of how the Wavelet 

Transform isolates key features in the signal. 

The wavelet energy from each decomposition level (D1 

to D5) was calculated and used as input features for the SVM 

classifier. Table 1 shows the average wavelet energy values 

for healthy individuals and patients with neuromuscular 

disorders using Equation (1). As expected, the energy 

distribution differed significantly between the two groups, 

with patients showing abnormal patterns in the higher-

frequency components (D1 and D2), indicative of 

neuromuscular dysfunction. 

𝐸𝑖 = ∑|𝐷𝑖[𝑛]|2

𝑁

𝑛=1

                  (1) 

Where: 

𝐸𝑖 : Energy on 𝑖 detail level 

𝐷𝑖  : Detail coefficient on 𝑖 level 

N : Number of coefficients in the level 

 

The SVM classifier was trained on 70% of the data, and 

the balance of 30% was used for testing. For the SVM, the 

radial basis function (RBF) kernel was used, and a grid search 

method was used to optimize the hyperparameters. The 

classification results indicated a high degree of accuracy in 

separating the healthy subjects from the ones with 

neuromuscular disorders. A summary of the associated 

performance metrics of the classifier is reported in Table 2. 

The high accuracy and sensitivity indicate that the system 

effectively detects neuromuscular abnormalities. In addition, 

the AUC score of 0.95 supports the model’s strength. Also, 

the model presented an accuracy rate of 92%, higher than 

Fourier-based methods. The D1 energy showed significant 

differences (p<0.01) among the groups (Table 1), thus 

validating high-frequency transients as biomarkers for 

neuromuscular disorders. 

Table 2. Performance metrics for the SVM classifier 

Accuracy 0.92 

Sensitivity 0.90 

Specificity 0.94 

Precision 0.91 

F1 Score 0.905 

AUC 0.95 

The prototype was tested using live EMG data streamed 

to MATLAB from a wearable sensor to evaluate the system’s 

potential for real-time application. The system processed and 

classified the signals in real time, with an average processing 

time of 50 ms per signal window. Figure 4 illustrates the real-

time classification of muscle activity, with a 1 if the activity 

of the signal is representative or a zero if there is no need to 

classify. 

 
Fig. 4 Real-time classification for EMG signals 

 

The experimental results show the capacity of using 

Wavelet Transform on EMG signal to classify neuromuscular 

disorders. The system had very high accuracy and 

demonstrated good real-time behaviour, which indicates that 

it can be integrated into wearable health monitors. Wavelet 

energy features (especially D1 and D2) were the most 

informative in discriminating healthy from diseased ones. 

This is consistent with prior findings that common muscle 

arrhythmias frequently are high-frequency signal artifacts. 

5. Conclusion 
In this study, wavelet transforms combined with 

machine learning were shown to be effective in classifying 

EMG signals of neuromuscular disorders. The proposed 

method developed a classification scheme that distinguished 

between normal and abnormal in a dataset consisting of 

subjects with healthy controls, patients with myopathy, and 

patients with ALS. Wavelet transform allowed for the 

frequency analysis of the EMG signals whereby significant 

features are delineated, features that bear a great deal of 

significance in solving the problem of distinguishing between 

normal vs. diseased muscle activity.  

Group D1 Energy D2 Energy D3 Energy D4 Energy D5 Energy 

Healthy 0.8224 0.56837 0.39334 0.2938 0.19747 

Myopathy or ALS 0.49893 0.35814 0.25219 0.19565 0.1537 
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As a result, this trained SVM classifier is considered 

accurate, sensitive, and specific, therefore pointing out its 

potential as a reliable tool for the early diagnosis of 

neuromuscular disorders.  

On top of that, a wearable health device integrating this 

approach has knocked on an accessible opportunity for 

continuous monitoring and early detection for largely 

underserved regions with few specialized healthcare options. 

5.1. Future Work 

This work has established the potential for combining 

advanced signal processing and machine learning to enable 

or ease the diagnosis of neuromuscular disorders. The sample 

size (n=25) may limit generalizability. 

Future studies should include broader NMD subtypes 

and uncontrolled environments. Areas of research would 

require collecting large data sets based on many different 

neuromuscular disorders themselves and dedicated real-time 

processing improvements well-suited for integration into 

wearable technologies, with the long-term goal of improving 

accessibility to health care through timely and effective 

diagnostic capabilities for patient treatment. 

These findings suggest practical applications in remote 

patient monitoring, particularly in resource-limited settings 

where traditional diagnostic tools are unavailable. Integrating 

wavelet transform with wearable health monitors could 

significantly enhance early detection and management of 

neuromuscular disorders, improving healthcare accessibility 

for underserved populations. 
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