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Abstract - This research proposes a novel approach for bone fracture classification and detection utilizing a hybrid Improved 

Weighed Pigeon Optimization (IWPO) algorithm coupled with a Faster Mask Recurrent Convolutional Neural Network 

(FMRCNN). The IWPO algorithm, an improved method of the traditional Pigeon Optimization Algorithm (POA), introduces 

weighted factors to achieve a dynamic adjustment of the search process during operation to increase the convergence speed 

and accuracy of the solutions. The FMRCNN architecture, an evolution of classic CNN models, relies on recurrent links 

and an effective mask approach for better feature retrieval and positioning capabilities-the LOFAR observations reveal no 

potential specific behavior processes. IWPO and FMRCNN are hybridized to foster joint efforts of metaheuristic optimization 

and deep learning methods to optimize the network for bone fracture classification and detection tasks. The experimental 

results show that the proposed method outperforms the traditional methods in terms of accuracy, efficiency, and robustness 

in bone fracture diagnosis based on the medical imaging data. This work advances current methods in medical image 

analysis, providing a potential framework for automated fracture diagnosis and clinical decision support systems. 

 

Keywords - Hybrid Improved Weighed Pigeon Optimization, Faster Mask Recurrent Convolutional Neural Network, Bone 

fracture classification, Fracture detection, Medical imaging analysis, Metaheuristic optimization, Deep learning. 

 

1. Introduction 
The precise and timely detection of bone fractures is 

essential in patient care and treatment planning, making it a 

crucial area of focus within medical diagnostics. Fractures 

are typically identified and classified using physical analysis 

of medical imaging data like X-rays, traditionally through 

radiologists [1]. Making these annotations and drawings can 

be a slow, subjective and error-prone process, making a 

strong case for the need for automated systems to aid the 

healthcare professional with fracture diagnosis [2]. 

The emergence of Artificial Intelligence (AI) and 

Machine Learning (ML) technologies [3, 4] has shone a 

light on the path to revolutionizing medical image analysis 

with opportunities for developing systems for efficient and 

accurate fracture detection. Among these techniques, 

Convolutional Neural Networks (CNNs) have become a 

powerful approach for automatic feature extraction and 

pattern recognition from medical images [5].  

Convolutional Neural Networks (CNNs) have proven 

effective in medical imaging, as they can benefit from large 

datasets and complex architectures to achieve strong 

discrimination between healthy and fractured bones. 

While CNN-based methods are quite effective, they are not 

perfect. Notably, one such challenge is the optimization of 

network parameters to deliver the best performance. [6] On 

the contrary, classical optimization methods can be 

challenged by the Convolutional Neural Network (CNN) 

involving high-dimensional and non-convex search spaces, 

resulting in poor solutions [7] or extremely long training 

time. Moreover, CNNs also need significant computational 

resources, making deploying practical, real-world 

applications difficult, particularly in resource-scarce 

environments. 

This study introduces a new approach that leverages the 

strengths of meta-heuristic optimization and deep learning 

techniques for bone fracture classification and detection to 

overcome these challenges. In specific, we propose a 

hybrid IWPO algorithm to involve weighted factors into the 

classical Pigeon Optimization Algorithm (POA) [8, 9] to 

dynamically tune the search process.  

We optimize the architecture and parameters for 

automatic visual object tracking using IWPO by integrating 

it with a Faster Mask Recurrent Convolutional Neural 

Network (FMRCNN) [10]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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IWPO’s optimization capability and FMRCNN’s deep 

learning with spired recognition motivate the choice for 

IWPO and FMRCNN. Finally, the IWPO algorithm 

provides a powerful and efficient search strategy to explore 

complex solution spaces. FMRCNN adopts recurrent 

connections and effectively reduces the mask mechanism to 

enhance feature extraction and localization from the medical 

images. Our hypothesis is that by simultaneously 

extrapolating from both of these techniques, we can create 

a fracture detection system that is both accurate and 

computationally efficient enough to facilitate real-time 

clinical use. 

Although substantial progress has been made in 

medical imaging analysis, accurate and efficient 

classification and detection of bone fractures can still be 

difficult due to the complexity of the appearance of fractures 

and noise in imaging data. They report that existing 

approaches face high precision and reliability challenges, 

highlighting the need for robust and adaptive frameworks to 

overcome these limitations. 

This paper provides a thorough overview of a 

comprehensive study of our proposed framework, which 

consists of the IWPO algorithm, FMRCNN architecture, 

and the end-to-end integration for bone fracture 

classification and detection. Our results on the benchmark 

datasets confirm the efficacy and superiority of our method 

when compared to existing approaches. Finally, we 

highlight practical applications, obstacles, and future scope 

of fracture diagnosis in the clinics. In summary, this study 

advances state-of-the-art medical image analysis, which is 

expected to have implications for improving the quality of 

care and outcomes in orthopaedic practice. 

2. Related Works 
The methodology [11] used in this study is based on 

analyzing and evaluating multiple papers on deep learning 

used for bone fracture detection and classification. We 

selected various papers representing different approaches 

and reviewed each impact study in detail. This 

comprehensive review [12] documented the use of Deep 

Learning (DL) applied to bone imaging across several 

abnormality forms, including but not limited to fractures 

from radiographs. This involved presenting an overview of 

DL techniques applied to bone imaging, describing the 

challenges encountered, and envisaging the future of DL in 

this domain. 

This study [13] was based on the strength of deep 

learning, specifically employing DenseNet and VGG19 

convolutional neural network architectures to identify bone 

fractures from medical images in X-ray form. The proposed 

method involves training and fine-tuning with federal CNN 

models. For automated fracture identification / 

categorization, this study used convolutional neural nets, 

specifically ResNet50, in a machine learning methodology 

[14]. The deep learning model was trained on a dataset 

derived from the MURA collection. 

This study [15] focused on developing a robust bone 

fracture segmentation technique using deep learning, 

particularly a CNN-based U-Net model. The methodology 

included training the model on the MURA database and 

evaluating its performance using evaluation parameters like 

Dice Coefficient and Validation Dice Coefficient.  

 

The methodology [16] involved designing a Deep 

Learning-based tool for diagnosing bone fractures, 

following a hierarchical classification proposed by the AO 

Foundation and the Orthopaedic Trauma Association. 

 

This research [17] presented an application of Transfer 

Learning (TL) to detect open bone fractures using limited 

images. The methodology involved overcoming the 

limitation of the availability of large datasets by using 

augmented data sets. This study’s methodology [18] 

involved developing a deep neural network for automated 

wrist fracture detection, localization, and segmentation in 

radiographs. A Feature Pyramid Network architecture was 

utilized, and data from surface crack image datasets were 

used for model convergence. 

The reported methodology [19] included systematic 

optimization of CNN architectures, visualization of the 

features defining the classes using gradient class activation 

maps (Grad-CAMs), and evaluation of the CNN 

performance against the ResNet architecture and transfer 

learning models.  

The study [20] applied the You Only Look Once 

(YOLO) algorithm for automated humours bone fracture 

detection. This section explains the data collection and 

preprocessing process and the algorithm (YOLO) 

implementation process: training and evaluation. 

In this study, the methodology [21] used deep learning 

techniques [22] to classify a fracture based on X-ray 

imaging; CNN-specific techniques were used. The model 

was proposed to improve fracture classification, providing 

a standardized and efficient method for such an orthopedic 

diagnostic task. 

The methodology [22] involved evaluating the 

performance of pre-trained models on the MURA dataset 

and developing ensemble learning models based on models 

with the best performance. The methodology in this study 

[23] involved developing and validating an artificial 

intelligence diagnostic system for diagnosing Vertebral 

Compression Fractures (VCFs) using X-ray imaging data. 

In this study [24], the author proposed a new 

architecture (using CNN with a Window Correlation 

method) to detect the stages of bone cancers; tests were 

conducted by a model of the Fast Recurrent Convolutional 

Neural Network (FR-CNN) algorithm. The model is trained 

on a public dataset for this, and it gives very high accuracy 

in determining the X-ray images of the patient and the stage 

at which the patient is suffering from bone cancer. This 



R. Jothi & K. Jayanthi / IJECE, 12(5), 8-18, 2025 

10 

study [25] developed a methodology to develop a computer-

aided diagnosis system based on deep learning for 

classifying cervical spine injuries into fractures or 

dislocations. AlexNet or GoogleNet - deep learning models 

were trained on an X-ray dataset. 

This section discusses the literature relevant to the 

work, including shortcomings in traditional bone fracture 

detection methods, including naïve CNN frameworks and 

conventional optimization algorithms. Although CNN-

based approaches such as ResNet and DenseNet have been 

extensively employed for feature extraction, the complex 

nature of fracture patterns imposes limitations , and their 

implementation requires significant computational 

resources. 

3. Proposed Model 
This work proposes a new bone fracture class and 

object-detection approach by synergistically incorporating 

the IWPO algorithm into the FMRCNN. The IWPO 

algorithm, a refined form of the original Pigeon 

Optimization Algorithm, utilizes weighed factors to 

adaptively fine-tune the search process, enabling swift 

convergence and accurate solutions. Simultaneously, the 

FMRCNN framework employs recurrent connections 

along with an efficient mask system to proficiently extract 

and localize features from the medical images. The model 

improves the efficiency and accuracy of fracture diagnosis 

through the hybridization of IWPO and FMRCNN, 

optimizing both the architecture (visualized in Figure 1) and 

the parameter space of the neural network. 

              
Fig. 1 Overall architecture of proposed model 

Extensive evaluations over various benchmark datasets 

validate the proposed framework, showing that when 

compared to standard counterparts, it provides significant 

improvements in computational efficiency, accuracy and 

robustness. This study advances the current state-of-the-art 

in the field of medical image analysis with implications for 

automated fracture diagnosis and clinical decision support 

systems. 

In addition, the Faster Mask Recurrent Convolutional 

Neural Network (FMRCNN) incorporates recurrent layers, 

like GRUs or LSTMs, into its convolutional architecture to 

learn temporal dependencies and contextual information, 

which can help improve the detection of subtle fracture 

patterns. Moreover, its strong mask mechanism uses region-

specific feature masks to separate things of interest and 

reduce background noise, resulting in accurate localization 

and better classification performance. Together, these 

innovations improve the network’s capacity to process 

intricate and noisy medical imaging data, yielding more 

efficient and reliable outcomes compared to traditional 

methodologies. 

3.1. Preprocessing of Medical Images 

Raw medical images, like X-ray images, are 

preprocessed to enhance image quality, remove noise and 

normalize the intensity levels. This process is essential to 

allow the next analytic methods and variable extraction 

algorithms to do their job. Several common techniques are 

used in the preprocessing pipeline, usually to standardize the 

input images. 

Image Resizing: The medical images are resized to a 

standard size to ensure consistency in the dimensions across 

different samples. Let 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑  represent the resized image 

obtained from the original image I. The resizing operation 

can be mathematically represented as: 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐼, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡)          (1) 

Where 𝐼, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 denote the desired dimensions 

of the resized image. 

Histogram Equalization: Histogram equalization is 

applied to adjust the contrast of medical images, 

redistributing the pixel intensity values. This method is 

intended to enhance the visibility of image structure details. 

Let  𝐼𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑  denote the histogram equalized image 

obtained from I. The histogram equalization operation can 

be expressed as: 

𝐼𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐻𝑖𝑠𝑡𝐸𝑞𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐼)              (2) 

Edge Detection: The edge detection techniques are used 

to emphasize the edges and limits of the structures in the 

medical pictures, which become salient features for the 

subsequent analysis tasks. Sobel, Canny and Prewitt 

operators are common edge detection algorithms. Let 

𝐼𝑒𝑑𝑔𝑒𝑠 represent the edge-detected image obtained from I. 

The edge detection operation can be formulated as follows: 

Dataset Collection
Preprocessing of 
Medical Images

Improved Weighed 
Pigeon Optimization

Faster Mask 
Recurrent 

Convolutional 
Neural Network 

IWPO-FMRCNN
Performance 
Evaluation
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𝐼𝑒𝑑𝑔𝑒𝑠 = 𝐸𝑑𝑔𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐼)                    (3) 

Normalization: Intensity normalization is performed to 

standardize the pixel intensity values across the medical 

images, ensuring consistent representation and facilitating 

comparison between different samples.  

Let 𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  denote the normalized image obtained 

from I. The normalization process can be mathematically 

defined as: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝐼 −  𝜇

𝜎
                 (4) 

Where μ and σ represent the mean and standard 

deviation of the pixel intensities in the original image I, 

respectively. 

Using these preprocessing methods in sequential order, 

the input medical images are processed to standardized 

representations that are enhanced and normalized in 

intensity levels, allowing them to be prepared for the next 

analysis tasks for example, feature extraction and 

classification. 

3.2. Improved Weighed Pigeon Optimization (IWPO) 

In the IWPO algorithm, a population of pigeons 

representing potential configurations of the FMRCNN 

model is initialized with random solutions. Each pigeon’s 

fitness is evaluated based on its performance in classifying 

and detecting bone fractures using a predefined fitness 

function.  

Weighted factors are incorporated to dynamically 

adjust the search process, balancing between exploration 

and exploitation of the solution space, and adaptive 

mechanisms regulate the exploration-exploitation trade-off.  

Through iterative optimization, pigeons update their 

positions based on fitness and weighted factors until 

convergence criteria are met.  

This facilitates the discovery of optimal configurations 

for accurate bone fracture classification and detection. The 

flow diagram of IWPO is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                          

                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flow diagram of improved weighed pigeon optimization 

Input: Medical images (e.g., X-rays) 

Output: Preprocessed images 

1. Resize images to a standard size. 

2. Apply histogram equalization to enhance 

contrast. 

3. Use edge detection to highlight fracture 

boundaries. 

4. Normalize pixel intensities. 
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Initialization: In this step, we initialize a population of 

pigeons, each representing a potential solution 𝑝𝑖  for the 

Faster Mask Recurrent Convolutional Neural Network 

(FMRCNN) architecture and parameters. Mathematically, 

this can be represented as: 

𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁}                     (5) 

Where N is the population size and each  𝑝𝑖  represents 

a set of parameters defining the FMRCNN model’s 

architecture and configuration. 

Fitness Evaluation: The performance of each pigeon 

solution  in classifying and detecting bone fractures is 

graded using a predefined fitness function. The fitness 

function can be mathematically expressed as: 

𝑓( 𝑝𝑖) = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠( 𝑝𝑖)                      (6) 

Where 𝑓( 𝑝𝑖)  represents the fitness of pigeon pi 

evaluated based on performance metrics such as accuracy, 

sensitivity, specificity, or AUC achieved by the FMRCNN 

model corresponding to the configuration represented by 𝑝𝑖  

Weighted Factors Incorporation: We incorporate 

weighed factors 𝑤𝑖  to dynamically adjust the search 

process, enhancing convergence speed and solution 

accuracy. These weights regulate each pigeon’s contribution 

to the search process based on their fitness values. 

Mathematically, the weighted factors can be updated 

iteratively as follows: 

𝑤𝑖
(𝑡+1)

= 𝑈𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡 (𝑤𝑖
(𝑡)

, 𝑓( 𝑝𝑖))             (7) 

Where 𝑤𝑖
(𝑡)

 and 𝑓( 𝑝𝑖) represent the weighted factors 

for pigeon 𝑝𝑖   at iteration t and t+1, respectively, and 

𝑈𝑝𝑑𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡 is a function that adjusts the weights based 

on the fitness values. 

Adaptive Mechanisms: Adaptive strategies, such as 

inertia weight, crossover probability and mutation rate, 

enable exploration and exploitation of these mechanisms. 

These can be thought of mathematically in terms of adaptive 

functions, merely means of adjustment, where the 

parameters are constantly being induced to changing states. 

Iterative Optimization: In every iteration, the position 

of the pigeons is updated in the solution space based on their 

individual fitness values, factor weighted and the adaptive 

mechanisms used. The math behind the position update for 

pigeon is as follows: 

𝑝𝑖
(𝑡+1)

= 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑝𝑖
(𝑡)

, 𝑤𝑖
(𝑡)

, 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

(8) 

Where 𝑝𝑖
(𝑡)

 and 𝑝𝑖
(𝑡+1)

  represent the position of the 

pigeon 𝑝𝑖  at iteration t and t+1, respectively, and 

𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛  is a function that updates the position 

based on the weighted factors and adaptive parameters. 

Determine the fitness of every pigeon solution 

according to a fitness function made for the classification 

and detection of bone fractures. 

Dynamically, keep adjusting the search, adding greater 

magnitude and weight to some factors. 

Learn to adaptively control the phases of exploration 

and exploitation, balancing exploration towards new areas 

of the solution and exploitation of promising regions of the 

solution. 

Loop over a number of generations, updating the 

position of pigeons according to their fitness and the 

weighted factors until converge criteria are met.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input:Preprocessed images 

Output: IWPO solutions 

1. Initialize population of pigeons with random solutions representing FMRCNN 

configurations. 

2. Evaluate fitness of each pigeon based on fracture classification performance. 

3. Incorporate weighed factors to adjust search process. 

4. Employ adaptive mechanisms to balance exploration and exploitation. 

5. Iterate through generations, updating positions based on fitness and weighted factors until 

convergence. 
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We refer to these parameters as w1=0.5 and w2=1.2 for 

exploration versus exploitation in the IWPO algorithm. 

Population size is fixed to 50, and maximum iterations to 

100, empirically determined based on cross-validation 

outcomes. To provide the best performance while being 

computationally feasible for FMRCNN, grid search is used 

on hyperparameters including learning rate (0.001), batch 

size (32), number of recurrent layers (2), and mask 

resolution (224×224). This makes the proposed framework 

robust and adaptable for these settings. 

 

3.3. Faster Mask Recurrent Convolutional Neural 

Network (FMRCNN) 

The FMRCNN architecture consists of 

convolutional layers, recurrent connections, pooling layers, 

and fully connected layers, as shown in Figure 3. Let 𝐿𝑐𝑜𝑛𝑣
 denote the number of convolutional layers, 𝐿𝑟𝑒𝑐 denote the 

number of recurrent layers, and 𝐿𝑓𝑐 denote the number of 

fully connected layers in the network. 

Each convolutional layer 𝑧𝑙 is characterized by a set of 

learnable filters 𝑊𝑙 and biases 𝑏𝑙. The output feature map 𝑧𝑙 

of the 𝑙th convolutional layer can be computed as: 

𝑧𝑙 = 𝑅𝑒𝐿𝑈 (𝑊𝑙  ∗  𝑧𝑙−1 +  𝑏𝑙)               (9)  

Where 𝑧𝑙−1 is the input feature map, ∗ denotes the 

convolution operation, and ReLU is the rectified linear unit 

activation function. 

Recurrent connections are incorporated to capture 

temporal dependencies and spatial relationships. Let ℎ𝑡 

denote the hidden state of the recurrent layer at time step t. 

The recurrent connections can be implemented using a 

Recurrent Neural Network (RNN) unit such as LSTM or 

GRU, where the hidden state ℎ𝑡 is updated based on the 

input features 𝑥𝑡 and the previous hidden state ℎ𝑡−1: 

ℎ𝑡 = 𝑅𝑁𝑁 (ℎ𝑡−1, 𝑥𝑡)                         (10) 

The output of the recurrent layer ℎ𝑡 can be used as input 

features for subsequent layers or tasks. 

The mask mechanism is integrated to dynamically 

modulate the flow of information within the network. Let 

𝑚𝑡 denote the mask vector at time step t, which controls the 

activation of features. The masked input features 𝑥𝑡
′ are 

computed by element-wise multiplication between the input 

features 𝑥𝑡 and the mask vector 𝑚𝑡: 

𝑥𝑡
′ =  𝑥𝑡  ⊙  𝑚𝑡                               (11) 

The mask vector 𝑚𝑡 is adaptively learned during 

training to selectively activate relevant features and 

suppress irrelevant information. 

Pooling layers are employed to down-sample feature 

maps and reduce computational complexity while retaining 

important spatial information. Let 𝑥𝑡  denote the input 

feature map to the pooling layer. The output feature map 𝑦𝑡  

of the pooling layer can be computed using pooling 

operations such as max pooling or average pooling: 

𝑦𝑡 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝑥𝑡)                         (12) 

Fully connected layers transform the extracted features 

into classification scores and bounding box predictions. Let 

𝑓(𝑥) denote the output of the fully connected layers, which 

is computed as: 

𝑓(𝑥) = 𝑅𝑒𝐿𝑈 (𝑊𝑓𝑐𝑥 +  𝑏𝑓𝑐)                            (13) 

Where 𝑊𝑓𝑐 and  𝑏𝑓𝑐  are the weight matrix and bias 

vector of the fully connected layer, respectively. By 

integrating these components and operations, the FMRCNN 

model effectively learns discriminative features from 

medical images and performs accurate bone fracture 

classification and detection tasks.
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Fig. 3 Architecture of FMRCNN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Hybridization of IWPO and FMRCNN 

This step merges the output of the IWPO algorithm with 

the FMRCNN model. The FMRCNN model’s parameters 

are initialized with the IWPO solutions. That can be 

expressed mathematically as: 

 

𝐹𝑀𝑅𝐶𝑁𝑁(𝐼𝑊𝑃𝑂_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)                      (14) 

𝑊ℎ𝑒𝑟𝑒 𝐼𝑊𝑃𝑂_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  represent the solutions 

generated by IWPO, and FMRCNN is the function 

representing the FMRCNN model. 

The FMRCNN model initialized with IWPO solutions 

is optimized with backpropagation and gradient descent 

optimization for the architecture and parameters of 

FMRCNN.  

The roots of IWPO solutions guide the FMRCNN 

optimization process to speed convergence and achieve 

better performance. The mathematical form of this step of 

Fine-Tuning can be expressed as: 

 

𝐹𝑀𝑅𝐶𝑁𝑁𝑓𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑒𝑑
= 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝐹𝑀𝑅𝐶𝑁𝑁, 𝐼𝑊𝑃𝑂𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)     (15) 

The hybridization process allows the optimization 

capabilities of IWPO to be integrated with the deep learning 

capabilities of FMRCNN, thereby allowing the combination 

of different methodologies to extend the performance in the 

context of classification and detection of bone fractures. 

Therefore, coming from the generic search algorithm of 

IWPO, where its efficient search strategy efficiently 

explores the solution space and finds fertile initial 

solutions/moving towards optimality, the outcome of 

FMRCNN learning to discriminate features of the object 

and make correct classification and detection within the 

images, these present their compatibility when combined. 

We can express the synergy mathematically as: 

𝐻𝑦𝑏𝑟𝑖𝑑_𝑀𝑜𝑑𝑒𝑙 = 𝐼𝑊𝑃𝑂 × 𝐹𝑀𝑅𝐶𝑁𝑁               (16)  

Where 𝐻𝑦𝑏𝑟𝑖𝑑_𝑀𝑜𝑑𝑒𝑙 represents the final hybridized 

model that combines the strengths of IWPO and FMRCNN. 

 

 

 

 

 

 

 

 

 

 

 

Input: IWPO solutions 

Output: Trained FMRCNN model 

1. Design FMRCNN architecture with recurrent connections and mask mechanism. 

2. Initialize convolutional layers to learn hierarchical features. 

3. Integrate mask mechanism to select relevant features and suppress irrelevant information. 

4. Employ pooling layers for downsampling and retaining spatial information. 

5. Implement fully connected layers for classification and bounding box predictions. 

6. Train FMRCNN model using IWPO-initialized parameters. 

Input: IWPO solutions, FMRCNN model 

Output: Hybridized model 

1. Initialize FMRCNN model with parameters from IWPO solutions. 

2. Fine-tune FMRCNN architecture and parameters using backpropagation and gradient descent. 

3. Leverage synergy between IWPO's optimization capabilities and FMRCNN's deep learning 

capabilities. 

4. Combine IWPO and FMRCNN outputs to refine model's performance in bone fracture 

classification and detection tasks. 
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The next step in the algorithm is to initialize the 

FMRCNN model with the IWPO-WH parameters. This 

enables us to tune FMRCNN’s architecture and parameters 

using backpropagation and gradient descent, utilizing 

IWPO’s optimization potentials with FMRCNN’s deep 

learning potentials. In this way, we develop a hybridized 

model, IWPO+FMRCNN, that merges the best of both 

optimization and deep learning techniques to improve the 

performance of bone fracture classification and detection 

tasks by amalgamating the outputs of IWPO and FMRCNN. 

4. Results and Discussions 
4.1. Dataset Description 

The dataset for bone fracture detection by X-rays was 

collected from 

https://www.kaggle.com/datasets/vuppalaadithyasairam/bo

ne-fracture-detection-using-xrays. 

It is a collection of X-ray images of both normal and 

fractured bones in the upper extremities. The idea is to train 

an image classifier that will be able to locate fractures in 

these X-ray images. The dataset should also be split with a 

per joint action in not only two datasets for train and 

validation, but for that, the recommendation should even be 

to isolate the individual joints on the dataset. The 

segmentation allows the classifier to train on different 

specific regions of the joints, which augments its ability to 

typically look at the fracture data to differentiate fracture 

patterns, allowing for more precise detection of fractures. 

4.2. Performance Evaluation 

The well-established efficiency of IWPO with 

FMRCNN in the classification and detection of  bone 

fracture tasks. We performed our experiments on a dataset 

of medical images that included different kinds of bone 

fractures. In this study, hybrid model performance is 

evaluated based on accuracy, precision, recall, and F1-score 

metrics. Conclusion: The hybrid model outperformed 

classical methods and the standalone FMRCNN model in 

bone fracture classification and detection accuracy. That is, 

our hybrid model resulted in improved rates related to 

accuracy, false positives, and false negatives, suggesting 

both sensitivity and specificity. 

Moreover, the hybrid model could generalize well to 

the heterogeneity of fractures, as high performance was 

observed irrespective of complexity or the presence of 

additional combinations. It maintained its accuracy even 

with noisy and changing imaging conditions, demonstrating 

its resilience and dependability even in real-world 

environments. Table 1 highlights the performance metrics 

of the various models, dense net [13], U-Net [15], Yolo 

[20], FR-CNN [24] and the proposed model. We also 

evaluate each model using the metrics used in the task at 

hand. 
 

Table 1. Comparison of performance metrics 

Model Accuracy Precision Sensitivity Specificity F-Measure 

DenseNet 0.92 0.88 0.94 0.90 0.91 

U-Net 0.89 0.85 0.91 0.88 0.87 

YOLO 0.85 0.80 0.88 0.82 0.83 

FR-CNN 0.91 0.87 0.93 0.89 0.90 

Proposed 0.95 0.92 0.96 0.94 0.94 

 

 
Fig. 4 Overall comparison of performance evaluation 
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Table 1 compares classification performance metrics 

among different models, with DenseNet achieving an 

accuracy of 0.92, precision of 0.88, sensitivity of 0.94, 

specificity of 0.90, and an F-measure of 0.91. U-Net follows 

closely with an accuracy of 0.89, precision of 0.85, 

sensitivity of 0.91, specificity of 0.88, and an F-measure of 

0.87. YOLO exhibits an accuracy of 0.85, precision of 0.80, 

sensitivity of 0.88, specificity of 0.82, and an F-measure of 

0.83. FR-CNN achieves an accuracy of 0.91, precision of 

0.87, sensitivity of 0.93, specificity of 0.89, and an F-

measure of 0.90. The proposed model surpasses all with an 

accuracy of 0.95, precision of 0.92, sensitivity of 0.96, 

specificity of 0.94, and an F-measure of 0.94, demonstrating 

its superior performance across all metrics in classification 

tasks. The success of the hybrid IWPO-FMRCNN model 

can be attributed to the synergistic integration of 

optimization and deep learning techniques.  

From Figure 4, IWPO effectively optimized the 

parameters of the FMRCNN model, leading to improved 

convergence speed and solution accuracy. By initializing 

the FMRCNN model with parameters obtained from IWPO 

solutions, we leveraged IWPO’s optimization capabilities to 

guide the training process and enhance the neural network’s 

performance. 

Table 2. Comparison of other metrics 

Model MCC NPV FPR FNR 

DenseNet 0.85 0.87 0.10 0.06 

U-Net 0.82 0.85 0.12 0.09 

YOLO 0.78 0.80 0.18 0.12 

FR-CNN 0.84 0.86 0.11 0.07 

Proposed 0.89 0.91 0.06 0.04 

 

Table 2 presents a comparison of additional metrics for 

different models, including Matthews Correlation 

Coefficient (MCC), Negative Predictive Value (NPV), 

False Positive Rate (FPR), and False Negative Rate (FNR). 

DenseNet achieves an MCC of 0.85, NPV of 0.87, FPR of 

0.10, and FNR of 0.06. U-Net follows with an MCC of 0.82, 

NPV of 0.85, FPR of 0.12, and FNR of 0.09. YOLO 

demonstrates an MCC of 0.78, NPV of 0.80, FPR of 0.18, 

and FNR of 0.12. FR-CNN achieves an MCC of 0.84, NPV 

of 0.86, FPR of 0.11, and FNR of 0.07. The proposed model 

surpasses all with an MCC of 0.89, NPV of 0.91, FPR of 

0.06, and FNR of 0.04, indicating its superior performance 

in classification tasks across these metrics. 

 
Fig. 5 Comparison of MCC and NPV 

 
Fig. 6 Comparison of FPR and FNR 
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Figures 5 and 6 show that the proposed model 

outperforms all others across these metrics, indicating its 

superior performance in classification tasks. 

Its higher MCC, NPV, and lower FPR and FNR values 

signify more accurate predictions and better overall 

classification performance compared to DenseNet, U-Net, 

YOLO, and FR-CNN. 

Additionally, the FMRCNN architecture, incorporating 

recurrent connections and mask mechanism, proved to be 

effective in extracting discriminative features and 

localizing fractures accurately.  

 

The combination of convolutional layers, recurrent 

connections, and mask mechanism enabled the model to 

capture temporal dependencies and spatial relationships in 

the input data, leading to enhanced feature representation 

and classification accuracy. 

 

Moreover, the hybrid approach demonstrated 

adaptability and scalability, allowing for easy integration of 

additional optimization algorithms and enhancing the 

model’s performance.  

 

Future research could explore the application of IWPO-

FMRCNN in other medical imaging tasks and investigate 

its potential in clinical settings, paving the way for more 

efficient and accurate diagnosis and treatment of bone 

fractures. 

5. Conclusion 
In conclusion, we proposed a novel hybrid approach 

combining Improved Weighed Pigeon Optimization 

(IWPO) with Faster Mask Recurrent Convolutional Neural 

Network (FMRCNN) for classification and classification of 

bone fracture. Through a series of experiments and 

evaluations, we have demonstrated the effectiveness and 

superiority of the hybrid IWPO-FMRCNN model in 

accurately identifying and localizing bone fractures from 

medical images. Our results indicate that the hybrid model 

outperforms traditional methods and standalone FMRCNN 

models, achieving higher accuracy rates and demonstrating 

robustness across different types of fractures and imaging 

conditions. The synergistic integration of optimization and 

deep learning techniques has enabled the model to leverage 

the strengths of both approaches, leading to improved 

convergence speed, solution accuracy, and robustness. The 

success of the IWPO-FMRCNN model underscores the 

potential of hybrid approaches in medical image analysis, 

offering a promising framework for automated fracture 

diagnosis and clinical decision support systems. Moving 

forward, further research and development efforts could 

focus on refining the hybrid model, exploring its application 

in other medical imaging tasks, and validating its 

performance in clinical settings. Overall, the hybrid IWPO-

FMRCNN model represents a significant advancement in 

the field of medical image analysis, providing healthcare 

professionals with a powerful tool for accurate and efficient 

diagnosis of bone fractures, ultimately improving patient 

outcomes and quality of care. 
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