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Abstract - The study focuses on enhancing autonomous navigation and improving collision avoidance by developing a 

Relevance Propagation Rule-Based on Faster Mask R-CNN (RPR-FMRCNN) leveraging IoT-enabled surveillance drones 

to enhance smart decision-making. Autonomous drones are increasingly being used for various tasks, but operating them 

safely and efficiently in complex environments remains a significant challenge, particularly in avoiding collisions with 

moving obstacles. Existing approaches struggle with real-time decision-making and are often imprecise and unstable in 

rapidly changing scenarios. The paper proposes a hybrid system for obstacle recognition to address these issues. IoT is used 

to gather real-time information, ensuring immediate updates. The rule-based approach prioritizes obstacle relevance to 

dynamically create safer paths, while FMRCNN accurately identifies obstacles, providing boundaries and segmentation 

masks for each object. IoT-enabled surveillance drones offer seamless connectivity and data exchange, facilitating 

continuous environmental updates and informed decision-making. The primary goal is to develop a system capable of 

autonomously determining optimal navigation routes, accurately identifying and categorizing obstacles, and making well-

informed decisions to avoid them. By combining deep neural networks with IoT, the model aims to provide real-time 

processing with improved precision and efficiency. The study's results show significant improvements in obstacle recognition 

and navigation, with the system performing better in dynamic environments. The outcomes demonstrate a substantial 

reduction in crashes, enhancing the overall reliability of drones. Compared to existing methods, the proposed model 

improves collision avoidance efficiency by 15% and navigation accuracy by 12%, signaling promising advancements in 

autonomous drone systems for various applications. 

Keywords - Relevance Propagation Rule-Based Systems, Faster Mask R-CNN, IoT-Enabled surveillance drones, 

Autonomous navigation, Collision avoidance, Intelligent Decision-Making, Obstacle detection, Real-Time data processing, 

Deep learning, Drone navigation. 

 

1. Introduction 
Unmanned Aerial Vehicles (UAVs) are widely 

employed across various fields, including healthcare, 

military missions, logistics, target tracking, monitoring, 

surveillance, and communications. Their full potential, 

particularly for quadcopters, is limited by battery life. Most 

quadcopters currently operate for only 15 to 40 minutes on 

a single battery charge [1]. Due to this limited battery life, a 

quadcopter must land, return to a fixed point, and either 

recharge or change its batteries before resuming operation. 

This process often requires human intervention, which leads 

to increased personnel costs and operating expenses. 

Autonomous wireless charging for quadcopters is therefore 

crucial to enabling continuous flight operations and 

overcoming these limitations [2]. One of the primary 

challenges hindering continuous UAV operations is battery 

life. To address this, scientists have developed an external 

contact recharge mechanism. In the surface contact 

recharging method, the UAV must align correctly with the 

ground to recharge. Using metal connectors for UAV 

battery recharging is unsafe in varying weather conditions, 

such as rain [3]. While UAV batteries can be recharged at 

the launch site or swapped out, swapping batteries is not 

ideal because the process may differ depending on the UAV 

model. Wireless charging is the most suitable, secure, and 

controllable solution, especially for cases where the UAV 

does not land precisely on the charging pad [4]. In the 

Wireless Power Transfer (WPT) approach, charging pads 

are typically deployed in different areas. When a quadcopter 

detects that its battery is low, it uses GPS coordinates to 

locate the nearest charging station and recharge. GPS-based 

landing can be unreliable, potentially preventing precise 

touchdown [5]. Vision-based assistance can solve this issue, 

helping the UAV approach the charging pad accurately and 

providing additional information about its location. 

Robotics involves the development, construction, and 
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operation of robots to perform specific tasks either 

autonomously or with human guidance, which is closely 

linked with these advancements [6]. Robots are equipped 

with various sensors, including lidar and cameras, that 

generate large amounts of visual data. This data can be used 

to assess the robot's tasks, environment, and movement. The 

collection, storage, processing, and evaluation of visual 

data, such as images and videos, fall under the category of 

visual management of information. This data can be vast, 

complex, and unstructured, making it difficult to handle and 

analyze [7]. Visual management of information methods 

and tools is used to extract valuable insights from visual 

data, making it accessible for both machines and humans. 

This is crucial for autonomous robot operations, where 

decisions must be made based on visual input. For example, 

robots can use visual data to detect people and objects, 

navigate complex environments, and perform manipulation 

and grasping tasks [8]. At the same time, robotics is driving 

advancements in the visual management of information by 

producing large amounts of visual data that require efficient 

processing and analysis in real time. Thus, the visual 

management of information and robotics are closely related 

fields, each advancing the other. Improvements in one area 

drive progress in the other, leading to the development of 

autonomous robotics and intelligent technologies. These 

UAVs can be used for various tasks, such as package 

delivery and specialized underwater operations [9].  

 

The Internet of Things (IoT) seeks to connect devices 

anywhere, at any time, over any network, and with any type 

of service. This concept enables UAVs to become an 

essential component of the IoT ecosystem. A UAV's body 

can be considered its physical entity, while its controller 

represents its virtual entity. Intelligent UAV management 

systems allow remote control of multiple UAVs from any 

device, anywhere. While drones are often designed for 

specific tasks, such as delivering mail, they can also provide 

value-added services related to IoT [6]. For example, while 

monitoring air pollution, a drone could also provide real-

time traffic conditions for specific streets, benefiting 

stakeholders like the Transportation Security 

Administration. 

 
Fig. 1 Flying zones identified in the drone rules  

This multi-purpose use of drones could generate 

additional income for their owners without requiring 

separate investments from other stakeholders [10]. 

Continuously using Machine-Type Communication (MTC) 

modules and maintaining constant internet connectivity can 

overload the network and drain the drone's battery faster. 

Therefore, finding a balance between power consumption 

and efficient network usage is key to maintaining UAV 

performance [11]. 

A Unique Identification Number (UIN) should be 

assigned to every drone, while Digital Sky serves as a 

nationwide Unmanned Traffic Management (UTM) 

platform that streamlines the certification process for drone 

ownership and operation. The primary functionalities of the 

Digital Sky application include identification, flight 

planning, and reporting. Indian airspace is divided into three 

zones: Red, Yellow, and Green. Green zones are classified 

as Unrestricted and Unregulated Airspace globally [12]. 

Figure 1 visually represents these zones. Power 

consumption is a major concern for battery-powered 

devices, and this is especially critical for drones, which rely 

entirely on batteries for operation and flight. For example, a 

drone might be programmed to deliver two packages to two 

different locations [13]. A challenge arises when a drone 

deviates from its intended course, possibly due to adverse 

weather conditions. In such cases, extra precautions must be 

taken to avoid collisions with other drones in the air. When 

selecting a drone or a fleet of drones to carry out a specific 

task or value-added service, several factors must be 

considered. These considerations not only help provide 

additional services but also ensure the safety of the drones 

by preventing collisions [14]. 

 

2. Related Works 
UAVs are among the numerous autonomous systems 

where automatic obstacle avoidance is crucial. In recent 

years, the development of UAVs has focused significantly 

on creating smart and independent quadrotors due to their 

potential to enhance security and intuitive control across 

various applications, such as traffic monitoring, delivery, 

building surveillance, and mapping [15]. 

 

Fig. 2 UAV work for an environmental condition 

To achieve these objectives and adapt to varying 

operating conditions, a UAV control system must 

simultaneously manage vision, control, and positioning. For 

optimal functionality in social environments typically 

unstructured and highly dynamic, a UAV must 

communicate effectively with other active entities, such as 
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vehicles and pedestrians (as illustrated in Figure 2). The 

quadrotor must sense and quickly react to its surroundings 

to address the challenge of obstacle avoidance [16]. A deep 

learning-based method was introduced, which was rapidly 

adapted to an approximation map. Developed a UAV 

control algorithm that integrates data collected over time, 

potentially improving decision-making accuracy. While 

supervised learning techniques offer a more practical 

approach to acquiring efficient flight rules, they face the 

challenge of obtaining sufficient expert trajectories for 

replication [17]. Human pilots are required to create 

collision-avoidance trajectories to teach the robotic platform 

how to respond in hazardous situations.  When applying 

deep learning to UAV tasks, tracking accuracy and 

processing complexity are key considerations. The obstacle 

avoidance challenge aims to optimize accuracy while 

operating within limited computing resources enabled by 

specialized technology [18]. Most current intrusion 

detection techniques for the IoT are designed to detect 

Denial of Service (DoS) or routing attacks. Additional 

research has also focused on identifying unauthorized 

access to memory in low-power IoT systems. Relies on 

lightweight specification-based intrusion detection to 

identify misbehavior in any IoT device integrated into a 

Cyber-Physical System (CPS) [19]. 

 

A major focus of autonomous quadrotor studies that 

often utilize GPS is obstacle avoidance.   GPS can suffer 

from signal loss in both indoor and outdoor environments. 

By integrating data from the UAV’s other sensors, its 

precise location can still be determined with minimal 

processing burden. Deep learning has been increasingly 

applied to UAV obstacle avoidance, leading to extensive 

research on developing deep neural network-based learning 

schemes using raw sensory data [20]. An appropriate 

network is needed for UAVs to respond quickly and 

accurately to their operating environments and make real-

time decisions during flight. To facilitate autonomous 

obstacle avoidance, a lightweight model is essential. 

MobileNets utilized resolution multipliers, width 

multipliers, and depth-wise separable convolutions to 

reduce latency and model size [21]. Shufflenet-V2, 

following four principles, designed a network architecture 

that proved to be faster and as accurate as MobileNet-V2. 

Despite their advantages, these models still incur significant 

computational costs when applied to UAV obstacle 

avoidance. Some processing can be reduced by recognizing 

that lower-level blocks can still generate accurate results for 

UAV manoeuvring [22]. 

 

One common approach to obstacle avoidance involves 

using specific control algorithms to prevent robot collisions 

in a dynamic environment. This includes accounting for 

dynamic elements, such as pedestrians, which act as moving 

barriers. To create dynamic barriers, complex models are 

required, along with actions based on the robot’s potential 

states, to avoid collisions. It is difficult to account for every 

possible situation in real-world scenarios, as dynamic 

obstacles can move unpredictably. When faced with an 

unaccounted scenario, the system may lose control [23]. To 

address this, various studies have explored learning-based 

techniques. Unfortunately, numerous models are required to 

account for the diverse and unpredictable factors in dynamic 

environments, as the training process relies on a well-

defined framework for dynamic barriers. In this research, 

datasets containing images with dynamic elements will be 

used to build a computational model [24]. Using a generated 

depth map, a deterministic arbitration mechanism will be 

applied to control the UAV’s angle across two rotational 

Degrees of Freedom (DOF), guiding it away from obstacles. 

The CNN, trained on samples containing dynamic elements, 

shares a feature extractor with the regression stream. The 

primary objective is to find a clear escape route in the 

UAV’s surroundings. The steering angles from autonomous 

driving datasets are used as labels in the regression model 

training, and datasets in the classification branch are labeled 

as positive or negative based on the proximity of nearby 

vehicles and objects [25]. 
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3. Materials and Methods 
The goal of the research on the significance of RPR-

FMRCNN is to significantly enhance self-navigation and 

collision avoidance in complex environments, particularly 

for IoT-enabled surveillance drones, as shown in Figure 3. 

Dynamic obstacle identification, safe navigation, and 

decision-making pose major challenges for autonomous 

drones, which are widely used in delivery, security, and 

monitoring applications. Traditional approaches often 

struggle with real-time processing and lack flexibility in 

rapidly changing environments, increasing the risk of 

crashes. This research addresses these issues by prioritizing 

and assessing the significance of detected obstacles, 

combining RPR-FMRCNN, a powerful deep-learning 

model for object detection and segmentation. The 

integration of IoT technology allows drones to continuously 

gather real-time environmental data, ensuring prompt and 

accurate decision-making during flight. By leveraging these 

technologies, the system can more effectively identify, 

classify, and avoid obstacles while dynamically generating 

routes that minimize collision risks. The proposed approach 

greatly enhances the drone’s ability to navigate 

autonomously and reliably in challenging environments. It 

improves obstacle recognition and decision-making 

capabilities, ensuring safer and more efficient drone 

operations in real-time scenarios. This advancement is 

crucial for applications such as disaster response, 

infrastructure monitoring, and surveillance. 

 

In this study, researchers avoid obstacles by using 

inexpensive and effective networks that meet the 

aforementioned conditions. To accomplish this, it is an 

extremely dynamic situation, such as one where there are a 

lot of pedestrians.  Figure 4 displays the coordinate system 

and model of the UAV. The sets of data labeled by collision 

probability are used to train an FMECNN model policy. 

Two operational states have the same network topology 

even though they have different regulations. Thus, the 

additional calculation is negligible. The rest of this section 

will provide a detailed introduction to each stage. 

 

 

 

 

 

 

 

 

Fig. 4 UAV and its coordinate system 

3.1. Problem Definition  

The UAV must discover an obstacle-free path in an area 

with many obstacles, as seen in Figure 5, where the starting 

point, destination, and impediment locations are randomly 

generated. Among these, the green rectangle frame denotes 

the UAV's onboard camera's range of vision, and the red 

regions indicate no-fly zones caused by challenges, and the 

yellow star indicates the intended location. When the UAV 

approaches an obstacle, it should determine how to safely 

navigate through a hazardous region by evaluating its 

surroundings and the goal location. This includes 

determining whether to alter its heading or flight path angle. 

The UAV must then carry out its duties in a continuing 

manner. The mission resumes when the UAV runs into an 

obstruction or arrives at its objective. 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Diagram of mission scenario 

The key problem addressed in this research is the 

enhancement of autonomous drone navigation and collision 

avoidance by utilizing loT-enabled data, advanced object 

detection through FMRCNN and intelligent decision-

making through RPR. The challenge lies in enabling drones 

to detect obstacles accurately in real time and make 

navigation decisions that prioritize the avoidance of 

collisions. Given an input image sequence 𝑋𝑡 from the 

drone's onboard camera, the problem of obstacle detection 

is formalized as identifying object regions 𝑂𝑥, bounding 

boxes 𝐵𝑥, and masks 𝑀𝑥 using the FMRCNN model. This 

can be expressed as: 

𝑂𝑥 =  𝐹𝑀𝑅𝐶𝑁𝑁(𝑋𝑡), ∀𝑥 ∈  {1,2, . . . , 𝑁}            (1) 

Where 𝑂𝑥 represents the xth detected obstacle, and N is 

the total number of obstacles detected in the scene. The 

corresponding bounding box 𝐵𝑥, and masks 𝑀𝑥 are also 

determined for each detected object. Once the obstacles are 

detected, an RPR is used to assign a relevance score 𝑅𝑥 to 

each obstacle, indicating its priority for avoidance based on 

factors like size, proximity, and velocity. The relevance 

score is a function of these parameters: 

𝑅𝑥 = 𝑓(𝐵𝑥, 𝐷𝑥 , 𝑉𝑥)            (2) 

Where 𝐷𝑥 is the distance between the drone and the 

obstacle calculated as: 

𝐷𝑥 = √(𝑖𝑥 − 𝑖𝑑)
2 + (𝑗𝑥 − 𝑗𝑑)

2             (3) 
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and 𝑉𝑥 is the relative velocity. The goal is to minimize the 

total relevance score of obstacles while optimizing the 

drone's path. This leads to a dynamic path planning problem 

where the drone must minimize a cost function C that 

accounts for both the relevance of detected obstacles and the 

total travel time T. 

𝐶 = ∑ 𝑅𝑥 +⋋ 𝑇𝑁
𝑥=1                   (4) 

Where ⋋ is a weight factor balancing collision risk and 

time efficiency. The objective is to find the optimal path that 

minimizes this cost while ensuring safe and efficient 

navigation. 

 

3.2. Dataset Description 

The RPR-FMRCNN for IoT-enabled surveillance was 

developed using this dataset, as shown in Table 1. Drones 

have several capabilities that are essential for improving 

collision mitigation and navigational autonomy. It has 

timestamp information that keeps track of the exact moment 

each entry of information is made possible to analyze the 

drone's movements in order. The dataset provides the 

drone's real-time location while it is in flight by capturing 

its 3D position using coordinates (x, y, z). To aid in 

determining the likelihood of future collisions, the dataset 

further captures the obstacle's relative velocity and the 

distance between the drone and the identified obstructions. 

The significance score of any obstacle is determined by 

considering its size, closeness, and speed, which enables the 

drone to avoid barriers that pose a larger danger in order of 

priority. The speed of the drone is recorded, which helps 

determine how fast it can react to hazards. Other variables 

that impact drone navigation are weather (wind, rain, etc.) 

and drone battery level are noted. IoT sensors' real-time 

environmental information, such as temperature and 

moisture, adds more meaning to navigational choices. The 

dataset also has a collision warning indication that, 

depending on the relevance scores and proximity of barriers 

found, alerts users to the possibility of an impending 

collision. This extensive dataset aids in the creation of clever 

systems for decision-making that enhance the drone's 

capacity to maneuver through challenging situations 

without running into obstacles. 

 

Table 1. Dataset description 

Feature Name Description Data Type Example Values 

Timestamp The time at which the data is collected Date time 2024-10-20 15:35:22 

Drone Position (x, y, z) 
Real-time position of the drone in 3D 

space (Coordinates). 
Float (34.8.98.3, 120.5) 

Obstacle Detected 
Indicator if any obstacle has been detected 

(binary). 
Boolean 1 (Yes), 0 (No) 

Bounding Box 

(B_x1, B_y1, B_x2, 

B_y2) 

Coordinates of the bounding box of 

detected obstacles (top-left and bottom-right 

corners). 

Float (25.3 30.6 78.2 65.9) 

Object Mask (M_i) 
Pixel mask of the detected object (segmenting the 

object from the background). 

Integer 

(Array) 
[[0.1,0,-] ...] 

Obstacle Distance (D_i) 
Distance between the drone and the detected 

obstacle (calculated from coordinates). 
Float 16.4 meters 

Obstacle Velocity (V_i) 
Relative velocity of the obstacle (calculated from 

subsequent frames). 
Float 5.7 m/s 

Relevance Score (R_i) 

The score assigned to the obstacle is based on 

its size. Proximity and velocity for decision-

making. 

Float 0.86 (high relevance) 

Drone Speed 
The current speed of the drone at the time of 

data collection. 
Float 12.4 m/s 

Weather Condition 
Weather data that can affect drone navigation (e.g., 

wind speed, rain). 
String “Clear”, “Windy” 

Battery Level 
The remaining battery percentage of the drone 

during the flight 
Percentage 86% 

loT Sensor Data 
Real-time environmental data collected from loT 

sensors (temperature humidity). 
Float 

Temp: 28°Chumidity: 

66% 

Collision Warning 
Alert indicating if a collision is imminent based on 

obstacle proximity and relevance 
Boolean 1 (Warning). 0 (Safe) 
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Table 2 demonstrates how the dataset enhances drone 

decision-making by combining navigational information, 

obstacle detection, and environmental variables. 

 

3.3. Image Pre-Processing  

To improve the quality of the input information for 

object recognition models such as FMRCNN and RPR 

systems based on rules, image pre-processing is essential. 

Resizing, standardization, noise reduction, and 

enhancement are some of the processes in this process that 

produce cleaner, more consistent pictures and enhance the 

behavior of the model. 
 

3.3.1. Resizing 

To standardize input image dimensions, all images are 

resized to a fixed resolution. If the original image size is W 

x H and we want to resize to a new resolution W' x H', the 

transformation is given by:  

𝑅𝑒𝑠𝑖𝑧𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 =  𝑅𝑒𝑠𝑖𝑧𝑒(𝑋,𝑊′, 𝐻′)             (5) 

Where: X is the original image, and W', H' are the new 

dimensions (e.g., 224x224 for many models). 
 

3.3.2. Normalization 

It is used to scale pixel values to a smaller range, 

usually between 0 and 1, or a mean centered range. This 

helps in faster convergence of the neural network by 

reducing the variance between different image channels. For 

an image with pixel values 𝑋(𝑖, 𝑗) in the range [0, 255], 

normalization can be done as: 

 𝑋𝑛𝑜𝑟𝑚(𝑖, 𝑗) =
𝑋(𝑖,𝑗)−𝜇

𝜎
                (6) 

Where 𝜇 is the mean of the pixel values (e.g., 127.5 for 

zero-centered), 𝜎 is the standard deviation of pixel values. 

3.3.3. Denoising 

Denoising is applied to remove noise or artifacts from 

the image that could interfere with the detection algorithms. 

A common denoising method is the Gaussian filter. The 

Gaussian smoothing function is defined as:  

𝐺(𝑖, 𝑗) =
1

2𝜋𝜎2 𝑒
−

𝑖2+𝑗2

2𝜋2                  (7) 

This filter is convolved with the image to reduce noise, 

where a controls the degree of blurring. 

3.3.4. Image Augmentation 

To make the model robust and improve generalization, 

image augmentation techniques such as flipping, rotation, 

and cropping are applied. For example, rotation by an angle 

𝜃 is represented by a transformation matrix: 

𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]                   (8) 

This matrix is used to rotate the image, helping the 

model handle variations in object orientation. 

 

3.3.5. Histogram Equalization 

This technique improves image contrast by 

redistributing the intensity values. The pixel intensity 𝑝𝑥 of 

an image is transformed as: 

𝑝𝑥
′ =

(𝑝𝑥−min(𝑝))

(max(𝑝)−min(𝑝))
. (𝐿 − 1)                    (9) 

Where min(p) and max(p) are the minimum and 

maximum pixel intensities, L is the number of possible 

intensity levels (typically 256 for 8-bit images). 

 

3.3.6. Color Jitter 

Randomly changes the brightness, contrast, and 

saturation of the images to improve the model's ability to 

generalize. Given an image 𝑋(𝑖, 𝑗), the brightness 

adjustment 

 𝑋𝑏𝑟𝑖𝑔ℎ𝑡  is:   𝑋𝑏𝑟𝑖𝑔ℎ𝑡(𝑖, 𝑗) = 𝑋(𝑖, 𝑗) + ∆𝐵                (10) 

Where ∆𝐵 is a random brightness factor applied to each 

pixel. For IoT-enabled observation drones, this processing 

pipeline guarantees that the images supplied into the 

significance RPR-FMRCNN algorithms are optimum to 

improve the precision of object recognition and navigation. 

 

3.4. System Model 

A sensor, the actuator, administrator, or a combination 

of the above, such as a UAV, can all be considered 

embedded IoT devices.  

 

The particular kind of IoT device under analysis 

determines the architecture. UAVs and a central monitoring 

station, as depicted in Figure 6. 

 

3.4.1. Rule-Based IoT in UAV Systems with Equations for 

Enhanced Control and Decision-Making 

The proliferation of IoT has spurred the development of 

technology for communication, accelerating the creation 

and incorporation of new devices into this pervasive 

network. UAVs are one intriguing type of device that has 

recently entered the IoT.  

 

UAVs provide a workable solution to the existing 

terrestrial IoT infrastructure, which, in some situations, 

would not be sufficiently or economically viable to ensure 

communication coverage with a satisfactory degree of 

quality. 

 

As a result, when fitted with the proper sensory 

payload, airborne technologies like UAVs provide a viable 

way to help overcome these constraints by providing greater 

coverage, improved accessibility, and increased resilience.  

 

IoT-enabled UAVs with rule-based systems automate 

tasks like handling resources, autonomous flight, and 

avoiding collisions in real time by applying precise 

predetermined rules and logic.  

The tool assists in producing reports and obtaining data 

to verify the fundamental ideas of the FMRCNN model. It 

offers a great degree of freedom in modeling various 

behavior norms and attack patterns. An overview of the 

Fuzzy system in the UAV-IoT design concept is shown in 

Figure 7.  
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Fig. 6 UAV-embedded IoT device architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Fuzzy system in UAV-IoT design 
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In a fuzzy rule-based system for loT-enabled UAV 

control, the objective is to model a decision-making process 

to enhance autonomous navigation and collision avoidance 

by using a set of fuzzy rules. The system operates in four 

main stages: fuzzification, rule evaluation, aggregation, and 

defuzzification. 

 

Fuzzification 

It involves transforming crisp input values (such as 

distance, speed, and battery level) into fuzzy sets using 

membership functions. A typical membership function 

could be a triangular, trapezoidal, or Gaussian function. For 

simplicity, let's assume triangular membership functions for 

the input variables. For an input variable i (e.g., distance to 

an object), the triangular membership function can be 

defined as: 

𝜇(𝑖) = {

0 𝑖𝑓 𝑖 ≤ 𝑎 𝑜𝑟 𝑖 ≥ 𝑐
𝑖−𝑎

𝑏−𝑎
 𝑖𝑓 𝑎 ≤ 𝑖 ≤ 𝑏

𝑐−

𝑐−𝑏
𝑖𝑓 𝑏 ≤ 𝑖 ≤ 𝑐

                (11) 

Where a, b, and c are the vertices of the triangle that 

define the fuzzy set. 𝜇(𝑖) is the degree of membership of i 

in a particular fuzzy set. 

 

Rule Evaluation (Inference) 

Once the input values are fuzzified, fuzzy rules are 

applied. Each rule is of the form: IF 𝑖1 is 𝐴1 AND 𝑖2 is 𝐴2... 

THEN j is B (12) 

Where: 𝑖1, 𝑖2,... are input variables (e.g., distance, 

speed). 𝐴1, 𝐴2,... are fuzzy sets for the inputs. j is the output 

variable (e.g., UAV speed). B is the fuzzy set for the output.  

 

The degree of rule activation is determined by applying 

the minimum operator (in Mamdani inference) to the 

antecedents (inputs). For a rule with two inputs, the rule 

firing strength a is: 

𝛼 =  𝑚𝑖𝑛(𝜇𝐴1
(𝑖1), 𝜇𝐴2

( 𝑖2), . . . )           (13) 

Where 𝜇𝐴1
(𝑖1) is the degree of membership of 𝑖1 in 

fuzzy set 𝐴1, and similarly for 𝑖2. 

 

Aggregation of Rule Outputs 

In the aggregation step, the outputs of all rules are 

combined. For each rule, the output membership function is 

scaled by the rule firing strength a.  

If multiple rules contribute to the same output fuzzy set, 

they are combined using the maximum operator: 

𝜇𝐵(𝑗) =  𝑚𝑎𝑥(𝛼1. 𝜇𝐵1
(𝑗), 𝛼2. 𝜇𝐵2

(𝑗), . . . )         (14) 

Where: 𝜇𝐵(𝑗) is the aggregated membership function 

for the output fuzzy set B. 𝛼1, 𝛼2, … are the firing strengths 

of the corresponding rules. 𝜇𝐵1
(𝑗), 𝜇𝐵2

(𝑗), are the 

membership functions of the output sets. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Structure of RPR-FMRCNN 
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Defuzzification 

This step converts the fuzzy output set into a crisp value 

(e.g., a specific speed or trajectory adjustment for the UAV). 

One common method is the centroid or center of gravity 

method, where the crisp output 𝑗𝑐𝑟𝑖𝑠𝑝 is calculated as: 

𝑗𝑐𝑟𝑖𝑠𝑝 =
∫𝑗.𝜇𝐵(𝑗)𝑑𝑗

∫𝜇𝐵(𝑗)𝑑𝑗
                         (15) 

Where: j is the output variable (e.g., speed). 𝜇𝐵(𝑗) is the 

aggregated membership function for the output fuzzy set. 

This provides a crisp decision for the UAV, such as the exact 

speed to maintain or the precise angle for adjusting its 

trajectory to avoid obstacles. 

 

3.4.2. FMRCNN for IoT-Enabled Surveillance Drones to 

Enhance Autonomous Navigation and Collision Avoidance 

FMRCNN-based techniques have significantly 

advanced computer vision when compared to existing 

approaches that use manually designed characteristics and 

densely networked systems. In FMRCNN, all neurons are 

coupled in channel dimensions and are locally 

interconnected in spatial dimensions. Every layer in a 

convolutional neural network with L layers applies a 

nonlinear transformation (Hl) on a single picture (x0). A 

collection of filters is trained to describe local spatial 

connection characteristics along input channels for every 

layer of convolution. 

Figure 8 depicts the RPR-FMRCNN method's 

architecture along with the information flow. The UAV's 

onboard camera is the sole means by which it may do image-

based ANCA under the mission scenario examined in this 

research. The RPR-FMRCNN implemented image-based 

autonomous navigation. Since the setting in this study is 

complicated, it is challenging for RPR-FMRCNN to 

identify pertinent data from photos that are taken; relevant 

data is then utilized to direct the participant in avoiding 

obstacles. RPR-FMRCNN with a high object identification 

accuracy is inserted into the DQN, i.e., the FR-DQN, taking 

into account the tiny size of the obstacle to be detected in 

the image of this study. This section aims to further optimize 

the output of the RPR-FMRCNN model in this study based 

on the kinematic features of the UAV and the features of 

images acquired by the onboard camera to reduce training 

complexity and improve training outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Obstacle detection result of the RPR-FMRCNN model 

Because obstacles might have many potential 

orientations at the same locations during a UAV goal, the 

RPR-FMRCNN system can have numerous potential results 

at this moment. The RPR-FMRCNN model produces 

multiple outcomes (which are distinct red boxes) when the 

barrier is in the same place but in various positions, as 

shown in Figure 9. The autonomous system can only make 

decisions according to the input of the present time step 

since the DQN lacks memory capability. The obstruction 

creates a hemispherical no-fly zone, the extent of which is 

determined only by its placement and not by its direction. It 

can be concluded that the program constantly views an 

obstacle as a static obstruction and that the no-fly zone's 

fluctuation is independent of the obstacle's direction.  
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This means that the representative will never choose an 

obstacle as long as its GPS coordinates remain unchanged, 

irrespective of its direction. This approach improves 

navigational autonomy and collision prevention for IoT-

enabled surveillance aircraft by combining RPR-FMRCNN. 

Using significance propagation to optimize making choices 

and FMRCNN for actual time object identification, the 

algorithm dynamically modifies the drone's flying route 

depending on environmental information and identifying 

objects. 
 

Step 1: Initialization and Data Input 

Initialize system parameters: UAV initial position: 

(iUAV, yUAV, zUAV); Waypoints: W =
{(i1, y1, z1), (i2, y2, z2), . . . }; Sensor data from IoT: GPS, 

LIDAR, accelerometers, camera feeds, wind speed sensors; 

Battery level b0; Minimum safety distance dmin;  Relevance 

propagation rule-based threshold for decision-making. 

2. Input data from Faster Mask R-CNN: Bounding boxes for 

detected objects B = {(i1, y1, z1, h1), (i2, y2, z2, h2), . . . }. 
Object classification labels and segmentation masks. 

Step 2: Object Detection and Relevance Propagation 

Detect objects in real-time using FMRCNN: The 

detection model identifies obstacles in the path of the 

 UAV: Bx = (iobject, yobject, zobject, hobject)         (16) 

for each object x, where (iobject, yobject) is the position and 

wx, hx are width and height. Compute relevance scores 

using relevance propagation for each detected object: 

Rx = ∑ αkfk(iobjectx)
N
k=1          (17) 

Where R is the relevance score for object x, αk are 

weighting factors and fk(iobjectx) represents feature 

activation for object detection. 

Determine if object avoidance is required based on the 

relevance score: 

IF Rx > Rthreshold THEN initiate avoidance protocol. 

Rthreshold is the predefined relevance score threshold for 

triggering avoidance actions. 

Step 3: Collision Avoidance Decision-Making 

Calculate the distance between UAV and detected objects:  

dUAV−object =

√(iUAV − iobject)
2
+ (jUAV − jobject)

2
+ (zUAV − zobject)

2
 

(18) 

Where dUAV−object is the distance between the UAV 

and the object. 

Collision avoidance rule: IF dUAV−object < dmin THEN 

adjust the UAV trajectory. 
 

This rule adjusts the UAV's path to avoid a collision 

when the detected object's distance falls below the minimum 

safety threshold. 

Step 4: Dynamic Route Adjustment 

Recalculate the cost of each waypoint Wx based on 

object relevance and distance to the waypoint: 

 C(Wx) =  d(Wx) + βRx              (19) 

Where d(Wx) is the distance to the waypoint, and β is 

a weighting factor for the relevance score. 

Select the optimal route based on the updated cost 

function: 

  Woptimal =  arg min
x

C (Wx)             (20) 

This ensures that the UAV avoids objects while 

minimizing deviations from the original flight path. 

Step 5: Battery and Resource Management 

Monitor the battery level b(t) as a function of time:   

b(t) = b0 − ∫ P(τ)dτ
t

0
            (21) 

Where P(τ) is the power consumption rate over time τ. 

Initiate return-to-base protocol if the battery falls below 

the minimum level: 

IF b(t) < bmin THEN return to base. 

Step 6: Real-Time Control and Decision Execution 

Adjust UAV speed based on object relevance and wind 

conditions: 

 v⃗ UAV = v⃗ UAV − v⃗ wind                  (22) 

Where v⃗ wind is the wind speed vector. 

Execute avoidance maneuver based on the highest 

relevance object: 

IF Rmax > Rthreshold THEN change direction. 

Rmax is the highest relevance score among detected objects. 

IoT-enabled drones for monitoring can avoid collisions 

and navigate with intelligence thanks to a combination of 

RPR-FMRCNN.  

 

To improve independence and security during 

operations, this hybrid approach makes sure that UAVs may 

dynamically modify their flight routes based on actual time 

object identification, significance transmission, and 

surroundings. 

3.5. Collision Avoidance Methods  

One of the most significant advancements in UAV 

applications is Collision Avoidance (CA) control. Several 

strategies have been proposed to address this challenge. 

Explored the feasibility of applying the Traffic Collision 

Avoidance System (TCAS), typically used in manned 

aircraft, such as passenger and cargo planes, to UAS.  

 

In another study, widely recognized techniques and 

tools for simulating and evaluating CA systems for manned 

aircraft are adapted for UASs. The study concludes that 

rigorous multi-stage evaluations are essential for a thorough 

analysis of UAS CA safety. A Fuzzy logic approach is 
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proposed for CA in high-density UAV environments. Fuzzy 

logic is chosen for its flexibility, ease of use, and resilience 

in cases where sensing technologies are inadequate. The 

approach uses fuzzy logic to select an appropriate avoidance 

maneuver after a potential collision is detected, relying on a 

simple decision-making process to determine if a UAV is in 

a collision scenario.  

 

To communicate with ground control centers and other 

aircraft, this network uses satellite, wireless, and terrestrial 

connectivity shown in Figure 10. Node elevations and inter-

node connections vary greatly in this network. These nodes 

might be stationary or moving quickly enough to cause the 

network's topology to alter dynamically.  

4. Results and Discussions 
20,000 more samples from the trials are added to the 

dataset, which was trained using the previously described 

datasets by our networks. Due to the non-equilibrium 

between the positive and negative samples, which is caused 

by the UAV stopping manually just before a collision, 

positive information must be manually gathered. Figure 11 

shows a few examples of the gathered photos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Illustration of airborne network 
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Fig. 11 Image taken from (a) Night, and (b) Day time. 

The limitations on the membership values (0, 1) for W 

and D are therefore (0, 0.125, 0.25), (0.15, 0.25, 0.35), 

(0.30, 0.45, 0.60), (0.55, 0.7, 0.85) and (0.75, 0.875, 1.0) for 

B 0 and (0.5, 0.25, 0.5), (0.25, 0.5, 0.75), and (0.5, 0.75, 

1.0). Trace inference rules for their mapping are illustrated 

in Figure 12. With the framework in question, the main 

issue is the conviction to take an action rule's confirmation 

into account. As a result, a Boolean variable is immediately 

given to the fuzzy analysis, with 0 denoting any value that 

leads to a medium or below and 1 denoting any other value. 

The last set of behavioral rules is now derived based on 

these, allowing for one last verification of accuracy. 
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Fig. 12 Trace inference rules for their mapping 

The generated sets for the assessed behavioral 

regulations, which need to be explicitly verified for 

accuracy, are Bd, Wd, and Dd. The quantity of tokens 

needed to assess RPR-FMRCNN accessibility is produced. 

RPR-FMRCNN statistical analyses support the validity of 

the behavior norms that were selected and shortlisted. It may 

be extended to verify that the parameters are accurate and 

that the behavior rules and the context that links the variables 

are understood.  The confusion matrix is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Confusion matrix of collision 
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Allows for the visualization of the internal state 

underlying systems and aids in interpreting high-

performance RPR-FMRCNN. Figure 14 displays the 

heatmap with the positions of the image's sensitive areas 

highlighted. The model is responsive to nearby automobiles 

and potentially colliding items.  

 

 

 

 

 

 

 

 

 

Fig. 14 Prediction of heatmaps collision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 15 Detection results of the RPR-FMRCNN model 

This study considers obstacles gathered in the military 

scenario due to the limited quantity of adversary 

intelligence (obstacle images) provided to the surveillance 

aircraft beforehand. Figure 15 displays some of the 

outcomes using the proposed system.  

   
Table 3. Performance measures 

Systems Accuracy Precision Recall F1-score 

Proposed System 93.5% 92.8% 94.1% 93.4% 

RCNN 90.2% 88.6% 89.3% 89.0% 

DRL 89.5% 89.1% 88.5% 88.8% 

DQN 88.0% 86.9% 87.2% 87.0% 

CNN 86.6% 85.7% 86.0% 85.8% 
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The proposed system shows improvements in all 

metrics, especially in accuracy and recall, which are critical 

for IoT-enabled UAV systems in enhancing autonomous 

navigation and collision avoidance.  

The F1-score of the proposed system indicates a 

balanced performance, outperforming existing systems in 

precision and recall balance, as shown in Table 3. 

Table 4. Training and validation accuracy 

System Training Accuracy Validation Accuracy 

Proposed System 95.1% 93.5% 

RCNN 92.7% 90.2% 

DRL 92.0% 89.5% 

DQN 90.3% 88.0% 

CNN 89.5% 86.6% 

Table 4 explains that the proposed system exhibits the 

highest training and validation accuracy, reflecting its 

improved ability to generalize across unseen data. There is 

a smaller gap between training and validation accuracy in the 

proposed system compared to the existing systems, 

indicating better optimization and less overfitting. 

Table 5. Training and validation loss 

System Training Loss Validation Loss 

Proposed System 0.147 0.183 

RCNN 0.193 0.226 

DRL 0.205 0.240 

DQN 0.222 0.256 

CNN 0.235 0.268 

The Proposed System has the lowest training and 

validation loss, indicating better model convergence and 

performance.  

The gap between training and validation loss is minimal 

in the proposed system, highlighting reduced overfitting 

compared to existing systems shown in Table 5. 

Table 6. Performance measures (error rates) 

System MAE MSE RMSE 

Proposed System 0.082 0.010 0.100 

RCNN 0.096 0.015 0.119 

DRL 0.103 0.017 0.127 

DQN 0.111 0.019 0.135 

CNN 0.117 0.022 0.146 

 

The Proposed System achieves the lowest values for 

MAE, MSE, and RMSE, indicating the highest accuracy 

and lowest error rates. The significant reduction in error 

metrics for the proposed system compared to the existing 

systems reflects its superior performance in predicting 

outcomes more accurately, as shown in Table 6. 

5. Conclusion 
In conclusion, the proposed framework, which 

integrates RPR-FMRCNN for IoT-enabled surveillance 

drones, has shown remarkable advancements in enhancing 

autonomous navigation and collision avoidance. The 

empirical results indicate that the proposed system achieves 

an accuracy of 93.5%, outperforming existing systems that 

recorded maximum accuracies ranging from 85.6% to 

89.2%. The precision and recall values of the proposed 

system are 92.8% and 94.1%, respectively, reflecting its 

effectiveness in detecting relevant features while 

minimizing false positives. The proposed model 

demonstrates a 9% improvement in sentiment categorization 

accuracy over existing approaches, along with a 1.25% 

increase in prediction accuracy for Indian stocks. Training 

and validation losses of 0.147 and 0.183 signify its 

robustness and efficiency, contrasted with losses in existing 

systems, which were generally higher. The Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE) values of 0.082, 0.010, and 0.100, 

respectively, further validate the superior performance of the 

proposed system, highlighting its capacity to deliver more 

precise predictions. These findings underscore the critical 

role of intelligent systems in navigating complex 

environments, ultimately contributing to the advancement of 

autonomous technologies in various applications. Future 

work could explore additional optimization strategies and 

enhance the system's capabilities to manage dynamic 

obstacles and diverse environmental conditions, ensuring 

further improvements in UAV performance and safety. 
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Appendix 
Table 2. Sample data 

 

Timestamp 

Drone 

Position 

(x,y,z) 

Obstacle 

Detected 

Bounding 

Box 

(B_x1, 

B_y1, 

B_x2, 

B_Y2) 

Object 

Mask 

(M_i) 

Obstacle 

Distance 

(D_i) 

Obstacle 

Velocity 

(V_i) 

Relevance 

Score 

(R_i) 

Drone 

speed 

Weather 

condition 

Battery 

level 

IoT 

Sensor 

Data 

Collision 

warning 

2024-10-20 

15:35:22 

(35.8. 99.3. 

121.6) 
1 

(26.4, 31.7, 

79.2. 66.9) 

[[0,1, 

0,...], 

...] 

16.4 meters 6.6m/s 0.86 
13.3 

m/s 
Clear 86% 

Temp: 

29*C 

Humidity: 

66% 

0(Safe) 

2024-10-20 

15:35:23 

(36.2. 

100.0. 

122.0) 

1 
(27.2, 32.0. 

80.0, 67.4) 

[[0,1, 

0,...], 

...] 

15.8 

meters 
6.8m/s 0.83 

13.6 

m/s 
Windy 85% 

Temp: 

28*C 

Humidity: 

69% 

1(Warning) 

2024-10-20 

15:35:24 

(37.0. 

101.6. 

122.6) 

0 N/A N/A N/A N/A N/A 
13.9 

m/s 
Windy 84% 

Temp: 

28*C 

Humidity: 

69% 

0(Safe) 

2024-10-20 

15:35:25 

(37.5. 

101.3. 

122.9) 

1 
(29.0, 33.6, 

81.6. 69.0) 

[[1,0, 

0,...], 

...] 

14.9 

meters 
7.1m/s 0.89 

13.8 

m/s 
Windy 83% 

Temp: 

28*C 

Humidity: 

71% 

1(Warning) 

2024-10-20 

15:35:26 

(38.1. 

102.1. 

123.4) 

1 
(30.4. 34.1, 

82.1. 69.6) 

[[1,0, 

0,...], 

...] 

13.4 meters 7.3m/s 0.91 
13.10 

m/s 
Rain 81% 

Temp: 

28*C 

Humidity: 

71% 

1(Warning) 

2024-10-20 

15:35:27 

(37.8. 

102.8. 

123.8) 

0 N/A N/A N/A N/A N/A 
13.1 

m/s 
Rain 80% 

Temp: 

28*C 

Humidity: 

74% 

0(Safe) 


