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Abstract - Vehicular communication systems are very important for modern transportation. These systems allow vehicles to 

share data and improve road safety. Optical Camera Communication (OCC) is a new method that helps vehicles communicate 

using visible light. This method has many advantages over traditional Radio Frequency (RF) communication. It offers a larger 

spectrum, lower cost and better security. This paper focuses on optimizing spectral efficiency in vehicular OCC. It proposes a 

new approach using multi-agent Deep Reinforcement Learning (DRL). This method helps vehicles decide their speed and 

modulation to maximize spectral efficiency. The system also ensures a low Bit Error Rate (BER) and ultra-low latency. The main 

goal is to find the best modulation order and vehicle speed to increase spectral efficiency. This needs to be done while 

maintaining reliability and low latency. The problem is difficult to solve with traditional methods. The reason is that it is a 

mixed-integer programming problem with nonlinear constraints. A solution is proposed using Reinforcement Learning (RL). In 

this case, each vehicle acts as an autonomous agent. The vehicles learn the best way to adjust their speed and modulation order. 

This is done using a technique called Q-learning. However, since the problem is large and complex, DRL is used to improve 

learning efficiency. This paper presents a new way to improve spectral efficiency in vehicular OCC. It uses DRL to optimize 

speed and modulation order. The system meets reliability and latency constraints. The results show that this method is more 

effective than existing approaches.  

Keywords - Deep Reinforcement Learning, Optical Camera Communication, Open car control, Markov decision process, Multi-

agent reinforcement learning. 

1. Introduction  
Vehicular communication plays a key role in modern 

Intelligent Transportation Systems (ITS) [1]. It improves road 

safety and traffic management by allowing vehicles to share 

data. RF communication [2] is used in traditional vehicular 

networks. Nevertheless, this increase in vehicles causes the 

network to become congested. [3] The RF spectrum is 

extremely limited and cannot meet the increasing demand for 

data exchange. Now, OCC has taken birth as an alternative 

technology to solve this problem. OCC is a form of Visible 

Light Communication (VLC) where LEDs act as transmitters 

and cameras act as receivers [4]. Benefits of OCC has a few 

benefits. Enhanced Security: The enhanced security it offers 

relative to RF systems, including lower costs and lower energy 

consumption. OCC works in the unlicensed spectrum band, 

which makes it suitable for vehicular communication [5]. 

OCC does have a few challenges despite its benefits. The 

system should provide high spectral efficiency, low BER, and 

ultra-low latency [6]. This problem is difficult to  solve with 

traditional optimization algorithms. Hence, RL is a potential 

technique that can be used to enhance OCC systems' 

efficiency. Reinforcement learning-based methods are 

challenging to use in vehicular OCC due to the complex 

nature of the problem [7]. It is brave to train a centralized RL 

agent. The agent collects vehicle data, processes it, and sends 

optimal policies back. This results in high latency, congestion 

and sub-optimal decision-making. This also adds complexity 

to the state-action space as the vehicle count in the network 

rises. To address these problems, the problem is modeled as a 

Multi-Agent Reinforcement Learning (MARL) framework. 

Vehicles are agents that observe only local information [8]. 

Each vehicle independently discovers its policies without 

requiring a central agent. This approach minimizes 

communication overhead and enhances scalability. 

In this work, a multi-agent DRL framework is introduced 

to maximize spectral efficiency in vehicular OCC. The aims 

of the proposed approach are to optimize spectral efficiency 
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through vehicular speed and maximum modulation order 

adjustment. This guarantees that the system satisfies BER and 

latency constraints [9]. Decrease global communications to 

add efficiency. It employs deep reinforcement learning for 

solving complex decision-making problems [10]. Formulation 

as a POMDP The problem formulation comprises a Partially 

Observable Markov Decision Process (POMDP). The system 

is based on Q-learning, in which each vehicle learns 

independently [11]. 

 

Meanwhile, Q-learning suffers from slow convergence 

and poor performance across large state spaces. DRL is used 

to approximate the state-action value function to address this 

issue. The system also employs a Lagrange relaxation method 

to simplify the constrained optimization problem [12]. This 

study mostly makes contributions to the following: 

➢ Develop a DRL-based approach to optimize spectral 

efficiency in vehicular OCC. 

➢ Modeling the problem as a partially observable MDP and 

designing a reward function to meet system constraints. 

➢ Transforms the constrained problem into an 

unconstrained one using Lagrange relaxation. 

➢ Implements independent learning and solving the 

problem with deep Q-learning. 

➢ Evaluate the proposed method through simulations and 

compare it with traditional RF-based communication. 

In this paper, a DRL-Based vehicular OCC scheme was 

proposed to maximize spectral efficiency. The proposed 

method allows for high-speed vehicle modulation and 

minimises the delayed BER required to be ultra-low. The 

system addresses the issue of centralized RL through 

independent learning [13]. The experimental evaluation 

demonstrates the superiority of DRL-based solutions over 

conventional RF systems as well as other vehicular OCC 

approaches. In the future, Further attention can be given to 

enhancing learning efficiency for this system and 

implementing its simulation in real-time environments. 

 

2. Background Works  
The vehicular OCC has been extensively researched 

because of its potential for both high spectral efficiency and 

security. A multitude of researchers have resorted to various 

techniques to improve the efficiency of OCC and vehicular 

networks. This section presents the relevant work in the fields 

of multi-agent DRL, reinforcement learning in vehicular 

networks, and OCC. Data is also studied for transmission, 

such as OCC systems, as high-speed data devices have the 

potential for an LED light source to an image sensor receiver. 

Owing to the rising demands, different methods have been 

suggested to enhance the data rate and reliability of OCC 

systems. For example, an automotive VLC system is designed 

in [14]. It employed an optical communication image sensor. 

The system will produce Results: A data rate of 55 Mbps for 

an average BER of less than. As for the automotive 

application, work in [15] also analyzed image sensor-based 

visible light communication. The study demonstrated that 

VLC is an alternative to RF communication. These systems 

showed good performance, but they did not take into account 

the mobility limitations of real-time systems or the need to 

derive spectral efficiency. The present study addresses this 

challenge by enhancing these efforts with DRL to optimize the 

performance of OCC in changing vehicular environments. 
 

Vehicular networks have been actively studied by 

researchers to optimize resource allocation using DRL [16]. 

These approaches adapt RL techniques to improve the 

performance of spectrum sharing and power allocation. An 

RF-based system with vehicles communicating over V2V 

links was proposed, in which each V2V link acted as an agent 

in a deep reinforcement learning framework for spectral 

sharing. They applied the concept of MARL to decide how to 

allocate spectrum and power. While RF-based networks were 

examined in the study, OCC systems were not covered. In 

[16], channel allocation in vehicular networks was studied via 

a multi-agent DRL framework. Both methods outperform the 

traditional resource allocation methods. However, they were 

not designed to consider the challenges specific to OCC, such 

as visible light noise and limited field-of-view constraints 

[20].  
 

Recently, given its effectiveness in optimizing 

communication performance, Multi-Agent Reinforcement 

Learning has recently been investigated for OCC and may 

potentially alleviate some of the difficulties in OCC. This 

work focuses on single-agent RL methods, while in [17], 

independent-learning approaches are considered for vehicular 

OCC systems. Spectral crowding leads to a high level of 

interference, which is one of the main issues for the existing 

RF-based MARL approaches. OCC can spatially separate 

multiple transmitter sources (as opposed to RF-based 

systems) to minimize interference. An RL-based method was 

proposed in [18] for network selection in VLC/RF 

heterogeneous networks. However, these studies focused 

solely on photodiode-based optical wireless communications 

over Visible Light Channels (VLC) since they did not consider 

the intrinsic characteristics of OCC.  
 

The work proposed here expands on this previous 

research by utilizing an independent learning multi-agent 

reinforcement learning framework for optimizing spectral 

efficiency in vehicular OCC. The independent Q-learning 

method has lower communication overhead and is more 

scalable [19]. In this section, the related works in vehicular 

OCC and DRL-based resource optimization were surveyed. 

Although the potential for OCC for vehicular communication 

was indicated by previous works, the mobility constraints and 

latency requirements were not addressed sufficiently. 

Likewise, though DRL has been used in vehicular networks, 

current approaches do not address the specific challenges of 

OCC. To overcome this, the proposed research proposes a 

framework based on MARL to optimize the spectral efficiency 

for vehicular OCC. 
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3. Proposed Vehicular OCC Modelling  
OCC is an advanced communication technique that 

utilizes visible light for data transmission. This technology is 

highly spectrally efficient with interference-free performance, 

making it a good candidate for vehicular networks. One of the 

first examples of this can be seen in the Open Car Control 

(OCC), where vehicle lights such as headlights, brake lights, 

and LEDs are used for communication. Next, the signals are 

recorded by a receiver in the shape of a high-speed camera, 

which helps pull out the data sent. In this section, we 

introduce the proposed vehicular OCC model. The model's 

performance is evaluated in terms of spectral efficiency, 

reliability, and latency trade-off. The OCC system needs to 

work properly in different environments and vehicular 

mobility conditions. This dynamic optimization of the 

transmission parameters is enabled using a DRL framework. 

In our sourvection OCC model, every vehicle serves as a 

communication node. A camera-based receiver and an LED 

transmitter are integrated into each vehicle. The transmitter 

encodes the information with fluctuations in LED light 

intensity. The receiver then picks up the transmitted signal and 

decodes the data using advanced signal processing techniques. 

The received signal at the camera is given by: 

 

                            y = Hx+n           (1) 

 

Here, H represents the optical channel gain, x is the 

transmitted signal, and n is additive Gaussian noise. The 

optical channel gain H is expressed as: 

 

        m

s2

(m+1) A
H = cos ( )T ( )g( ) cos( )
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
          (2)                     

 

Here, m is the Lambertian order of the LED source. A is 

the receiver aperture area. d is the distance between the 

transmitter and receiver. ∅ is the angle of irradiance.𝑇𝑠(𝜃) is 

the optical filter gain. 𝑔(𝜃) is the gain of the camera lens. 𝜃 is 

the angle of incidence. The transmitter modulates data using 

an adaptive modulation scheme. The data symbols are mapped 

to varying light intensities using an M-ary Quadrature 

Amplitude Modulation (M-QAM) scheme. The camera 

captures the transmitted signal and extracts the data using a 

demodulation process. The BER for M-QAM modulation is 

given by: 
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Here, M is the modulation order, and  𝛾 is the received 

signal-to-noise ratio. Key performance metrics such as 

spectral efficiency, latency, and reliability are considered 

when evaluating the proposed OCC model. Spectral efficiency 

is an important metric for assessing OCC performance. It 

defines the amount of data transmitted per unit bandwidth. The 

spectral efficiency is given by: 

                          
2SE = log (1+ )                (4) 

 

Here, 𝛾 is the Signal-To-Noise Ratio (SNR). Latency 

measures the time required for data to be transmitted and 

received. The transmission latency 𝜏 is given by: 

 
L

=
C

                (5) 

Here, L is the packet size, and C is the channel capacity. 

The BER defines the probability of incorrect bit detection at 

the receiver. The OCC system must maintain a low BER to 

ensure reliable communication. BER is influenced by noise, 

interference and mobility conditions. To optimize the OCC 

system a DRL framework is used. The problem is formulated 

as a Markov Decision Process (MDP), where each vehicle acts 

as an autonomous agent. The DRL framework optimizes 

spectral efficiency and transmission reliability. The state 

space includes received signal strength, vehicle speed, 

modulation order and inter-vehicle distance. 

 

The action space consists of adjusting the transmission 

power. It selects the optimal modulation order. It adapts to 

vehicle speed. The reward function ensures the OCC system 

maximizes spectral efficiency while minimizing BER and 

latency. The reward function is defined as: 

 

                       
1 2 3R = SE- BER-                  (6) 

 

Here 𝜔1, 𝜔2 and 𝜔3 are weight factors that balance 

spectral efficiency, BER and latency. The proposed vehicular 

OCC model optimizes communication performance using 

DRL. The system dynamically adjusts transmission 

parameters to maximize spectral efficiency and minimize 

errors. The DRL-based approach ensures robust vehicular 

communication under varying traffic conditions. 
 

4. Proposed Constrained and MDP Formulation  
Vehicular OCC faces several challenges, including 

ensuring optimal spectral efficiency, maintaining low latency 

and satisfying BER constraints. Traditional optimization 

techniques are computationally expensive and impractical for 

real-time vehicular networks. Therefore, this section presents 

a constrained optimization problem reformulated as an MDP 

to leverage reinforcement learning for efficient decision-

making. The proposed approach models the optimization 

problem as an MDP, where vehicles act as independent agents 

and learn optimal transmission strategies. The goal is to 

maximize spectral efficiency while adhering to reliability and 

latency constraints. The optimization objective is to maximize 

the sum of spectral efficiency while satisfying the BER and 

latency constraints. The mathematical formulation is given as: 

 

               
B
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subject to: 
b tgt

b max

b
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                       (8) 

 

Here, M represents the available modulation orders, 

𝐵𝐸𝑅𝑡𝑔𝑡 is the maximum allowable BER and 𝜏𝑚𝑎𝑥  is the 

maximum permissible latency. Given the complexity of 

solving the constrained optimization problem using traditional 

methods, it is reformulated as an MDP. The key components 

of the MDP are as follows: The state space represents all 

possible conditions the system can be in. The state at time t is 

defined as: 

t t t t ts = {d ,M , , }                             (9) 

 

Here, 𝑑𝑡 is the inter-vehicular distance, 𝑀𝑡 is the 

modulation order at time t. 𝛾𝑡 is the received SNR, 𝜏𝑡 is the 

latency at time t. The action space consists of selecting the 

optimal modulation order and adjusting the vehicle's speed. 

The available actions are defined as: 

 

t t ta = {v ,M }                            (10) 

 

Here, 𝑉𝑡 represents the vehicle's speed adjustment. 𝑀𝑡 is 

the selected modulation order. The transition probability 

function determines how the system transitions from one state 

to another based on an action taken: 

 

t+1 t tp(s | s ,a )                                (11) 

 

It shows the probability that taking action 𝑎𝑡  in state 𝑠𝑡 

will lead to state 𝑠𝑡+1. The reward function is designed to 

maximize spectral efficiency while ensuring that BER and 

latency constraints are met. It is given by: 

 

                
B

t d d r 2 b

b=1

1
R = r + log (M )

B
                  (12)                                    

 

Here, 𝜔𝑡  and 𝜔𝑟 are weights balancing distance and 

spectral efficiency rewards. 𝑟𝑑 ensures safe inter-vehicular 

distance. A DRL approach using Q-learning is employed to 

solve the constrained MDP problem efficiently. The value 

function is updated using: 

 

 t+1 t t t t t t t t a t t+1Q (s ,a ) = (1- )Q (s ,a ) + r + max Q (s ,a )   
  (13) 

 

Here, 𝛼𝑡 is the learning rate. 𝛾 is the discount factor. 𝑎′ 

represents future actions. The reinforcement learning agent 

explores different actions and learns optimal policies. The 

training process follows these steps to initialize Q-values. 

Observe current state 𝑠𝑡 . Select action 𝑎𝑡 based on an 

exploration-exploitation strategy. Observe reward 𝑅𝑡 and next 

state 𝑠𝑡+1. Update Q-values using the Bellman equation. 

Repeat until convergence. A DRL-based approach is proposed 

to optimize spectral efficiency while maintaining 

communication constraints. Future work will improve 

learning efficiency and system adaptability with a low bit error 

rate. 

 

5. Proposed Solution  
Vehicular OCC presents challenges in ensuring high 

spectral efficiency, low BER and minimal latency. Traditional 

optimization methods struggle to adapt to dynamic 

environments and are computationally expensive. This section 

introduces an RL-based optimization approach modeled using 

a constrained MDP. The goal is to adjust speed and 

modulation dynamically to optimize communication while 

satisfying system constraints. The OCC optimization is 

modeled as a constrained MDP where multiple agents 

(vehicles) interact with their environment and make decisions 

based on observed states. The constrained MDP ensures that 

actions satisfy Quality-of-Service (QoS) constraints such as 

BER and latency limits. The state space consists of parameters 

that define the current system state, which is given in equation 

(9). The action that the agent chooses with respect to the 

transmission parameters is computed and presented in 

equation (10). The reward function, which balances spectral 

efficiency and QoS constraints, is defined as (12). Then, DRL 

will be used to solve the constrained MDP. DRL model is 

built around an agent that learns how to take optimal actions 

within a dynamic environment, taking into consideration 

certain constraints. The Q-function is iteratively updated and 

is given in (13).  

RL-based Decision-AI for Accelerated Decision Making 

in Vehicular Communication System in Figure 1 RL, like any 

other learning technique, has two main parts: the agent and 

the environment. The agent receives the state from the 

environment and passes it onto a policy π to yield the optimal 

action to take. This action is then applied in the environment 

comprising multiple interacting vehicles. The environment 

changes given the action, and the agent is rewarded for 

choosing. The agent observes the next state and receives a 

reward after taking action. Thus, this feedback loop enables 

the RL agent to enhance its decision-making over time. The 

environment is modeled on moving vehicles that change their 

positions and states when the agent performs an action. The 

agent aims to maximize these decisions using traffic speed, 

lane change, or communication routing to enhance traffic 

fluency and communication efficiency. As the agent explores, 

the reward function allows it to judge the quality of its 

actions, incentivizing efficient behavior. With each learning 

episode, the agent improves its policy, attempting to 

maximize rewards and respond to intricate vehicular 

conditions. This model can be used in autonomous driving, 

adaptive communication, and traffic management. This 

enables the agent to consistently learn and enhance its 

behavior, resulting in improved coordination and safer 

interactions between vehicles.  
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Fig. 1 Basic reinforcement learning framework for V2V communications 

 

The RL agent undergoes training using the following 

steps: initialize Q-values. Observe current state 𝑠𝑡. Select 

action 𝑎𝑡  using an  greedy policy. Execute action and 

observe reward. Update Q values using the Bellman equation. 

 

Repeat until policy convergence. The RL-based optimization 

framework is implemented in the SUMO vehicular simulator. 

The following metrics are evaluated. Spectral Efficiency has 

the RL-based system achieves higher spectral efficiency 

compared to traditional methods. The optimized policy 

ensures BER remains below acceptable limits. Latency has a 

system that meets ultra-low latency requirements. 

Adaptability is the model that adjusts dynamically to changing 

vehicular environments. The RL-based approach is 

benchmarked against classical optimization techniques. 

Results indicate a significant improvement in spectral 

efficiency. A lower BER due to adaptive modulation faster 

adaptation to environmental changes. 

 

The proposed method scales efficiently with an 

increasing number of vehicles. The DRL model maintains 

high performance across different traffic densities, ensuring 

robustness in various real-world scenarios. This section 

presents an RL-based optimization framework for vehicular 

OCC. By formulating the problem as a constrained MDP, 

optimal spectral efficiency is ensured while BER and latency 

constraints are maintained. The DRL approach outperforms 

traditional methods and provides an efficient, scalable 

solution for real-time vehicular communication. Future work 

will focus on further improving learning efficiency and 

exploring multi-agent reinforcement learning frameworks to 

enhance system-wide optimization. 

 

6. Simulation Setup  
The proposed implementation of the DRL-based 

vehicular OCC system is discussed in this section. The 

simulation framework is established in the Simulation of 

Urban Mobility (SUMO) platform to generate realistic traffic 

scenarios and cooperate with various DRL algorithms 

effectively. This allows for building a joint simulation 

framework, having vehicles work as agents while learning to 

optimize spectral efficiency and minimizing BER and latency. 

Realistic urban traffic conditions are modeled using the 

Simulation of Urban Mobility (SUMO) platform. Individual 

vehicles are treated as agents, with a mobility model assigned 

to each agent. SUMO simulation framework is composed of 

three main parts: the SUMO environment; the middleware 

layer for communication, which enables interaction between 

the SUMO and the Deep Reinforcement Learning (DRL) 

agent; and the DRL agent, which learns the optimal policies 

and applies them by executing the appropriate actions. This 

DRL-based vehicular OCC system is implemented in SUMO, 

with the DRL agent interfacing through the Traffic Control 

Interface (TraCI). The SUMO environment is configured 

with pre-parameters such as road network, vehicle density and 

speed distribution at the top of it. This allows the simulation 

environment to closely mirror real-world traffic scenarios. 

 

The simulation starts with loading the SUMO simulator 

and a given traffic scenario. TraCI establishes the simulator's 

connection and allows real-time traffic data extraction. Road 

vehicles are given initial states that consist of speed, the order 

and position of the multihop modulation scheme. 

Subsequently, the DRL agents receive these states as input 

and choose actions that maximize spectral efficiency. When 

an action is performed, the SUMO environment updates the 

vehicle state, allowing the system to progress iteratively. The 

DRL policy is updated as it receives the rewards from each 

action and assesses past action outcomes. This is repeated 

until the simulation reaches its end of criteria. The relevant 

state parameters must first be extracted from the SUMO 

simulation to enable proper training of the DRL agent. Some 

extracted parameters are number of vehicles per lane, vehicle 

speed and acceleration, distance between vehicles, currently 

assigned modulation scheme, etc. The model could receive 

the state vector as input, and these data points are transformed 
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into the state vector to be sent as input to a neural network 

model of the DP agent. Thus, this state representation enables 

the agent to decide on the best suitable transmission 

parameters. 

 

A Deep Q-Network (DQN) based DRL framework is 

applied for vehicular OCC to learn the optimal transmission 

policies. Printed data can survive an idle state to MEK state, 

which is 0 degrees in 5 times 104. The Action Space consists 

of controlling the vehicle's speed and selecting a modulation 

scheme that maximizes the 'spectral efficiency' while 

balancing channel conditions. The reward function, which is 

used to balance spectral efficiency, latency and BER 

constraints, determines the optimal trade-off between the 

system's performance and reliability. This section offers a 

comprehensive overview of the simulation environment for 

the DRL-based vehicular OCC system. The combination of 

DRL and SUMO allows for real-time optimization of 

transmission parameters for spectral efficiency subject to 

latency and BER constraints. In the next section, performance 

evaluation of the proposed system is demonstrated, together 

with key enhancements in terms of spectral efficiency, 

reduction of BER and adaptiveness of the system. 

 

7. Performance Evaluation 
This section evaluates the efficacy of the proposed multi-

agent DRL-based strategy for maximizing sum spectral 

efficiency in vehicular OCC. The proposed scheme is 

evaluated against multiple benchmark methods by considering 

spectral efficiency, latency and BER performance in different 

scenarios with respect to vehicular density and environmental 

conditions. Extensive simulations are carried out to assess the 

performance with key metrics, including convergence, 

spectral efficiency and latency. In previous works (Gao et al., 

2021; Fradkin et al., 2022; Arjovsky & Bottou, 2012; 

Simmons et al., 2017), the convergence of the DRL training 

process is studied using different loss functions. It shows the 

stability of the proposed learning framework by decreasing 

loss function over training episodes. Parabola of weights and 

multiple weight configurations are evaluated to determine the 

optimal balance between distance and spectral efficiency 

rewards. Figure 9 Sum spectral efficiency of proposed DRL-

based OCC scheme with other schemes. The performance 

results show that the proposed scheme is the hawk with the 

largest spectral efficiency of many vehicular distributions. 

Interference is a problem for RF-based MARL and SARL, 

whereas the random scheme results in the lowest 

performance. The performance comparison of different 

schemes is given in Table 1.  

 

Latency CDFs for various schemes are evaluated. Under 

high vehicular densities, other schemes such as greedy 

MARL, far-sighted MARL and RF-based MARL do not 

consistently satisfy the latency constraint of 10 ms. The 

efficacy of the suggested technique is assessed relative to 

competing systems based on BER. It can be seen that unlike 

the other methods, which often violate the required BER, the 

proposed scheme keeps this value within the needed limits. 

The performance analysis of the proposed DRL-based 

vehicular OCC framework is provided in this section. The 

results show that the proposed scheme not only provides high 

spectral efficiency but also better latency and BER compliance 

than the baseline approaches. In future work, the study 

addresses scalability across all protocol phases while tailoring 

the framework for vehicular network conditions. 

 
Table 1. Performance comparison of different schemes 

Scheme 

Spectral 

Efficiency 

(bps/Hz) 

Latency 

(ms) 
BER 

Proposed 

Scheme 
5.8 8.2 1.2 𝑥 10−3 

Greedy 

Scheme 
5.0 12.5 1.8 𝑥 10−3 

Far-Sighted 

Scheme 
5.2 14.0 1.7 𝑥 10−3 

Random 

Scheme 
3.1 20.3 4.5 𝑥 10−3 

RF-Based 

MARL 
4.5 10.1 2.0 𝑥 10−3 

RF-Based 

SARL 
4.2 11.8 2.3 𝑥 10−3 

         

          Figure 2 presents a graph that illustrates the relationship 

between vehicular density, measured in vehicles per 180 

meters and spectral efficiency, measured in bits per second per 

Hertz (bps/Hz) for different communication schemes. Six 

different schemes are compared, including the proposed 

scheme, greedy scheme, far-sighted scheme, random policy, 

RF-based MARL and RF-based SARL. The proposed scheme 

provides superior spectral efficiency and overall vehicular 

densities. The random policy is the least exemplary, with 

substantial degradation of spectral efficiency due to vehicular 

density. The greedy scheme and the far-sighted scheme 

perform moderately well, but they are inferior to the proposed 

scheme. The RF-based MARL and RF-based SARL methods 

outperform random policy but are still inferior to the proposed 

method. With increasing vehicular density, all schemes 

present a downward trend in spectral efficiency. This 

proposed process consistently catches great spectral 

effectiveness with respect to values of 5 bps/Hz , even at high 

vehicular densities. The greedy and far-sighted schemes 

remain at 4.5 to 5 bps/Hz. The RF-based MARL and RF-

based SARL methods can only achieve about 3.5 to 4.5 

bps/Hz. The random policy is the worst when the maximum 

vehicular density is reached, which drops to below 2 bps/Hz. 

The proposed scheme has greater efficiency and scalability, 
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along with higher spectral efficiency under congested 

vehicular environments, as shown in simulation results. The 

results demonstrate that efficient incentive design and 

learning-based optimization can greatly improve the 

achievable performance of vehicular networks in terms of 

spectral efficiency. For example, the sudden drop in 

performance for the random policy indicates the importance 

of structured decision-making in communication systems. As 

auto density increases, efficiency declines proportionately. A 

higher density results in more interference in communication. 

It suffers from this in terms of speed of completion, and 

advanced optimization techniques would be required to 

ascertain that performance is reliable. 

 

 
Fig. 2 Spectral efficiency versus Vehicular density 

 
Figure 3 illustrates the performance of the various 

communication schemes employed, displaying the SNR vs. 

the BER in dB from October 2023 training data. The graph 

compares five different schemes: the proposed DRL-based 

OCC, greedy scheme, far-sighted scheme, random policy and 

RF-based MARL. As shown, the proposed DRL-based OCC 

obtains the lowest BER for all SNR values. The random 

policy has the highest BER; thus, it is the worst one. Other 

policies, like the greedy policy and the far-sighted policy, have 

intermediate performance. DRL-based OCC outperforms the 

RF-based MARL significantly, while the RF-based MARL is 

still better than the random policy in terms of BER. All 

scheme's performance improves with the incremental SNR 

but at a different pace. All schemes show a decreasing trend 

in BER as SNR rises. It can be seen from Figure 7 that the 

BER of the proposed DRL-based OCC is less than 10⁻⁵ at 

about 20 dB SNR, while the greedy and far-sighted schemes 

need to increase SNR to achieve the same level of BER. The 

random policy scheme has the slowest decrease in BER, 

retaining a relatively high BER at high SNR values. The 

decline in performance of the RF-based MARL occurrence is 

more significant than the proposed one, suggesting that it is 

much less effective in decreasing errors at low SNR. The 

demonstrated results show that the proposed DRL-based 

OCC improves reliability with a significant reduction in BER, 

particularly at lower SNR values. The greater improvement in 

the performance with BER for the proposed method confirms 

the robustness of the proposed method against noise. The 

result clearly shows that communication reliability has been 

greatly enhanced by the learning-based optimization scheme 

compared with conventional mappings. Moreover, the sub-

optimality of the random policy suggests the need for 

systematic decision-making in communication systems. The 

proposed DRL-based OCC significantly outperforms existing 

approaches. It exhibits lower BER at every SNR. This makes 

it particularly suited for aviation communication, where 

reliability is key. 

 

 
Fig. 3 BER versus SNR 

 

Figure 4 shows a CDF graph where the x-axis meets the 

millisecond latency while the y-axis is the cumulative 

probability for RF-based MARL and SARL schemes. The RF-

Based SARL scheme has higher latency than the RF-Based 

MARL scheme. The difference between the two schemes 

becomes pronounced at higher latencies, where SARL induces 

a relatively significant delay in communication as opposed to 

MARL. The increasing trend in both curves suggests latency 

accumulates with time, and SARL-based learning is more 

prone to high-latency events. However, RF-Based SARL has 

a consistently higher latency distribution than RF-Based 

MARL, indicating that SARL-based reinforcement learning 

takes longer to process and respond. Around 800 ms latency, 

the CDF value of RF-based SARL rises more steeply, showing 

that a larger proportion of data points are experiencing higher 

latency. 

 

On the other hand, RF-based MARL maintains a 

smoother increase and results in lower latency overall. These 

results suggest that RF-based MARL is a more efficient 

approach for reducing latency in vehicular communication 

systems. The differences between the two schemes become 

more evident as latency increases, emphasizing the need for 

an optimized learning strategy to enhance communication 
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performance. The figure highlights that RF-based SARL 

struggles with latency management, making it less suitable for 

real-time applications requiring low-latency responses. The 

clear difference in latency between the two approaches 

suggests that Multi-Agent Reinforcement Learning (MARL) 

is a better option for reducing delay in time-sensitive 

communication systems. 

          

 
Fig. 4 Latency CDF for different RF schemes 

 

         Figure 5 shows a graph that represents the relationship 

between training episodes and the loss function value for 

different reinforcement learning-based schemes. The graph 

compares four schemes, including the proposed DRL-based 

OCC, greedy scheme, far-sighted scheme and random policy. 

Although the greedy scheme and far-sighted scheme converge 

more slowly, they share a similar trend. The random policy 

has the largest loss values and converges to the optimal policy 

significantly slower than any of the other approaches. All 

schemes begin with a high loss function value at the beginning 

of the training process. The proposed DRL-based OCC 

converges faster to a lower loss than all other methods. This 

decay is almost immediate, suggesting that the models learn 

and adapt quickly, leading to improved performance with 

time. We observe that while the value of the loss function 

decreases with each epoch for all schemes, the rate of descent 

varies. Below that, DRL based OCC loss value reaches below 

0.2 in the first 200 episodes and continues to stabilize with 

minor fluctuations. The greedy and far-sighted schemes have 

a slightly longer time to a similar loss value yet still exhibit a 

monotonically decreasing profile. Comparative analysis 

reveals the random policy retains significantly higher loss 

values than other methods after 500 training episodes. This 

result demonstrates that the proposed DRL-based OCC 

enables more efficient learning and parameter optimization 

than conventional approaches. The steep fall in loss function 

values for the proposed method indicates that its learning 

model progressively minimizes errors and adapts itself to the 

environment. G greedy and far-sighted schemes also exhibit 

effective learning, but it takes more training episodes for 

them to stabilize. The random policy, however, does not 

exhibit clear convergence, suggesting that it lacks an effective 

learning strategy. The figure highlights that structured 

decision-making significantly improves the learning process, 

while random strategies lead to slow and unstable 

convergence. The proposed scheme has a much lower loss 

than the random policy. This shows the importance of 

reinforcement learning optimization. It improves performance 

in vehicular communication systems. Reinforcement learning 

models need careful design. Proper reward functions and 

optimization techniques help achieve efficient convergence. 

This ensures stable performance in real-world scenarios. 

 

 
Fig. 5 Convergence of DRL training 

 

         Figure 6 presents a graph that shows the relationship 

between modulation order and spectral efficiency, measured 

in bits per second per Hertz (bps/Hz) for different 

communication schemes. The graph compares six different 

schemes: the proposed scheme, greedy scheme, far-sighted 

scheme, random policy, RF-based MARL and RF-based 

SARL. The proposed scheme achieves the highest spectral 

efficiency across all modulation orders. The random policy 

performs the worst with significantly lower spectral 

efficiency. The other schemes, including the greedy scheme, 

far-sighted scheme, RF-based MARL and RF-based SARL, 

show intermediate performance with spectral efficiency 

increasing as modulation order increases. The clear upward 

trend in all schemes suggests that higher modulation orders 

result in better spectral efficiency, but the efficiency gain 

depends on the learning approach used in each scheme. As the 

modulation order increases, all schemes show a steady rise in 

spectral efficiency. The proposed scheme reaches a spectral 

efficiency of approximately 5.5 bps/Hz at 64-QAM. The 

random policy achieves only around 3.5 bps/Hz. The greedy 

and far-sighted schemes follow a similar trend closely behind 

the proposed scheme, indicating effective modulation 

adaptation. The RF-based MARL and RF-based SARL 

approaches show moderate spectral efficiency improvements 

but remain lower than the greedy and far-sighted schemes. The 



A. Kondababu et al. / IJECE, 12(5), 80-93, 2025 

 

88 

differences between the schemes highlight the impact of 

optimization in modulation selection. The proposed scheme 

achieves the highest spectral efficiency. The random policy 

performs poorly in comparison. This shows the need for 

intelligent modulation to improve data transmission rates. 

These results suggest that reinforcement learning-based 

optimization can significantly enhance spectral efficiency in 

communication systems. As modulation order increases, the 

proposed scheme performs better. The gap between it and 

lower-performing schemes grows. This shows that learning-

based approaches scale well with higher modulation orders. 

The random policy’s poor performance confirms that 

unstructured modulation selection leads to inefficient 

spectrum utilization. Reinforcement learning-based methods 

are especially effective. They are important for modern 

communication systems. 

 

 
Fig. 6 Spectral efficiency versus Modulation order 

 
         Figure 7 presents a graph that illustrates the relationship 

between vehicular density and latency for different 

communication schemes. The graph compares six different 

schemes: the proposed DRL-based OCC, greedy scheme, far-

sighted scheme, random policy, RF-based MARL and RF-

based SARL. The proposed DRL-based OCC achieves the 

lowest latency across all vehicular densities. The random 

policy performs the worst, exhibiting the highest latency 

values. The other schemes, including the greedy scheme, far-

sighted scheme, RF-based MARL and RF-based SARL, show 

intermediate latency levels. As vehicular density increases, all 

schemes show a rising trend in latency, but the rate of increase 

differs among them. The proposed DRL-based OCC method 

consistently shows the smallest increase in latency, making it 

more efficient for real-time applications. The proposed DRL-

based OCC maintains the lowest latency, starting at around 10 

ms for a vehicular density of 5 and reaching approximately 18 

ms at a vehicular density of 50. The density-based increasing 

trends can be seen in greedy and far-sighted schemes for 

latency values between 12 ms and 25 ms. The RF-based 

MARL and RF-based SARL methods incur slightly higher 

latency, with values being between 15 ms and 30 ms. The 

random policy has the highest rate of increase in latency, 

reaching nearly 40 ms at maximum vehicular density. These 

results indicate that the proposed DRL-based OCC handles 

vehicular congestion effectively with lower latency than the 

other approaches. The variance in latency among schemes 

demonstrates that vehicular communication can benefit from 

optimization techniques. The contemporary method reduces 

the delay successfully, while the random policy suffers from 

congestion, which results in diminished performance. These 

findings point out that applying intelligent reinforcement 

learning strategies can help maintain low-latency 

communication under dynamic vehicular environments.  

 

 
Fig. 7 Latency versus Vehicular density 

 

         The proposed scheme has a better performance when 

vehicular density increases. This shows that, in high-traffic 

situations, learning-based models scale well. It validates that 

the paradigm of machine learning plays a pivotal role in either 

optimizing the efficiency of communication as the network 

conditions evolve. 

 

         Figure 8 presents a CDF graph illustrating the 

relationship between BER and cumulative probability for 

different communication schemes. The graph compares six 

schemes: the proposed scheme, greedy scheme, far-sighted 

scheme, random policy, RF-based MARL and RF-based 

SARL. The proposed scheme achieves the lowest BER among 

all schemes, with most of its values concentrated in the lower 

BER range. The random policy exhibits the highest BER with 

its CDF curve shifted significantly to the right. The greedy 

scheme, far-sighted scheme, RF-based MARL and RF-based 

SARL follow a similar trend, positioned between the proposed 

scheme and the random policy. The RF-based SARL performs 

better than the random policy but worse than the other 

optimized schemes. The noticeable gap between the curves 
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suggests that different learning approaches significantly 

impact BER performance. As BER increases, the CDF values 

for all schemes rise steeply, indicating the probability of lower 

BER occurrences. The proposed scheme reaches a CDF value 

of nearly 1 at the smallest BER values, demonstrating its high 

reliability. The greedy and far-sighted schemes reach similar 

CDF levels but at slightly higher BER values, and they have 

moderate performance. The RF-based MARL and RF-based 

SARL also show reasonable BER distributions but are less 

efficient than the proposed scheme. The random policy has the 

worst BER performance; with its CDF rising gradually over a 

wider BER range, it experiences more frequent high error 

rates.  

 
Fig. 8 CDF versus BER (reliability analysis) 

 

         The clear separation between the proposed scheme and 

other approaches highlights the importance of reinforcement 

learning-based optimization in reducing BER. These results 

suggest intelligent learning-based methods enhance reliability 

and communication efficiency by minimizing error rates. The 

curves show that structured decision-making improves 

performance. Reinforcement learning provides lower and 

more stable BER. It works better than random or less 

optimized methods. Additionally, the sharp decline in BER for 

the proposed scheme at lower values indicates that it maintains 

consistent performance under varying conditions. The 

findings emphasize the role of optimized resource allocation 

in minimizing transmission errors and improving overall 

network reliability. 

 

         Figure 9 presents a graph that illustrates the relationship 

between time and speed for different reinforcement learning-

based approaches in an OCC system. The graph compares six 

different schemes: the proposed DRL-based OCC, greedy 

scheme, far-sighted scheme, random policy, RF-based MARL 

and RF-based SARL. Comparatively, the proposed DRL-

based OCC demonstrates relatively constant speed during the 

whole duration, which shows that it effectively adapts to 

speed against potential obstacles. The random policy exhibits 

the highest speed fluctuations, usually peaking over 28 m/s 

and then quickly decreasing. Speed - The greedy scheme, far-

sighted scheme, RF-based MARL and RF-based SARL show 

moderate variations and remain in the speed range of about 

16 to 22 m/s. The plot suggests that structured learning-based 

work controls speed better than random policy. More stable 

performance shows the advantage of using reinforcement 

learning for vehicular communication. The DRL-based OCC 

proposed smooth moves between 18 and 22 m/s while having 

an upper and lower bound, the stability of which shows that 

it does not fluctuate much.  

 

 
Fig. 9 Speed adaptation versus Time 

 

         Somewhat more variation are present for the greedy and 

far-sighted schemes; however, several values still horizontally 

stably represent a trend, oscillating between 17 and 21 m/s. 

The RF-based MARL and RF-based SARL methods also 

oscillate, but the speed oscillations indicate that the learning 

is less efficient in comparison with that of the proposed 

method.  

 

         The random policy provides a very high variance, 

where speed peaks at approximately 30 m/s and then suddenly 

decreases to 0, showing that the system is not adapting speed 

appropriately. The results suggest that reinforcement learning 

strategies significantly impact speed adaptation in vehicular 

communication. The proposed DRL-based OCC achieves the 

most efficient speed adjustments, while the random policy 

struggles to maintain consistency. The random policy shows 

unstable behavior. Without structured learning, performance 

becomes erratic and inefficient. This can harm real-time 

vehicular coordination and safety. The proposed DRL-based 

OCC keeps speed balanced. It ensures predictable and 

efficient mobility. This makes it a reliable choice for vehicular 

speed optimization. 

 

         Figure 10 presents a graph comparing the performance 

of the RMSProp optimizer and the Adam optimizer regarding 
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loss function reduction over 500 training episodes. The graph 

shows two curves: one for RMSProp and another for Adam. 

Initially, both optimizers start with a high loss value near 1.0, 

which decreases as training progresses. However, the Adam 

optimizer exhibits a faster and smoother convergence than 

RMSProp. By around 100 training episodes, Adam's loss 

function is already below 0.2. While RMSProp takes longer to 

reach similar values. This indicates that Adam is learning 

more efficiently in the early training stages. The smoother 

trajectory of Adam suggests that it is more effective in 

avoiding sharp oscillations in loss, leading to a more stable 

learning process. As training continues, both optimizers show 

a gradual decline in loss. Adam maintains a consistently lower 

loss than RMSProp. By 500 episodes, Adam stabilizes at 

around 0.05, whereas RMSProp stabilizes slightly higher with 

more variations. The fluctuations in RMSProp suggest it does 

not converge as smoothly as Adam.  

 
Fig. 10 Performance Comparison of Optimizers 

 

         This result highlights the advantage of Adam in 

reinforcement learning, where adaptive moment estimation 

helps optimize learning rates dynamically. The overall trend 

confirms that Adam achieves lower loss values faster, making 

it a more efficient optimization method for deep learning 

applications. The two curves show the impact of optimizer 

choice. The right optimizer improves convergence speed and 

model performance. Selecting the best one is important for 

reinforcement learning tasks. The slightly higher fluctuations 

in RMSProp indicate that fine-tuning of hyperparameters may 

be required to achieve smoother convergence. These findings 

suggest that Adam is more suitable for complex learning 

environments where faster and more stable convergence is 

required. 

 

         Figure 11 presents a graph showing the relationship 

between training episodes and reward values for three 

different learning schemes: the proposed scheme, the far-

sighted scheme and the greedy scheme. All three schemes 

exhibit an increasing trend in reward values as training 

episodes progress. The proposed scheme achieves the highest 

reward values throughout the training. The greedy scheme 

consistently has the lowest values. The far-sighted scheme 

performs better than the greedy scheme but does not reach the 

same reward levels as the proposed scheme. Initially, all 

schemes start with low rewards near zero, but they increase 

steadily as the models learn and improve. The proposed 

scheme shows a rapid improvement in early episodes, 

reaching a higher reward level faster than the other two 

schemes, demonstrating its efficient learning capability. As 

training continues, the reward values for all schemes begin to 

stabilize. The proposed scheme reaches a reward value close 

to 1.1, while the far-sighted scheme stabilizes slightly below 

1.0. The greedy scheme is still the lowest and goes on to 

stabilize around 0.9. It appears that the proposed scheme's 

rewards vary more compared to the other two schemes. The 

far-sighted scheme of mustering larger packets always 

outperforms the greedy one. But it gets to a lower reward 

level. This is less efficient in maximizing rewards, as shown. 

The slowest learning and final rewards are achieved by the 

greedy scheme, which is the simplest one in the context of the 

choice process. The findings indicate that reward optimization 

can be significantly modulated by varying reinforcement 

learning strategies. The suggested scheme has shown the best 

performance, establishing a beneficial balance between 

exploration and exploitation that accelerates learning and 

maximizes rewards. This generalization is important since 

many schemes differ significantly from one another, meaning 

that in future studies with reinforcement learning models, 

performance is only guaranteed with organized approaches to 

how contexts are utilized. Moreover, all schemes continuously 

converge over episodes, indicating that training the models for 

more epochs will make the models even more efficient. The 

result is a scheme that gets a higher reward faster. This 

demonstrates its capacity for decision-making and 

adaptation.  

 

         Figure 12 represents the disparity of SNR (dB) versus 

PLR in terms of the number of strategies. The proposed DRL-

based OCC, greedy scheme, far-sighted scheme, random 

policy, RF-based MARL and RF-based SARL are the six 

different schemes that the graph compares. The proposed 

DRL-based OCC shows the minimum achievable PLR values 

for all SNR levels. The random policy has the highest PLR 

and is most unsuccessful in reducing packet loss. Each of the 

other schemes, including the greedy scheme, far-sighted 

scheme, RF-based MARL and RF-based SARL, have a 

similar decreasing trend in the value, but they stay in the 

regions between the proposed scheme and the random policy. 

The results indicate that the PLR decreases for all schemes as 

the SNR increases, and a stronger signal reduces packet loss. 

At low SNR values below 10 dB, PLR is high for all schemes. 

The random policy has a PLR of 0.9. The proposed DRL-

based OCC achieves a lower PLR of about 0.6. When SNR 

goes above 10 dB, PLR drops quickly for all schemes. The 

proposed scheme reaches near-zero PLR before 15 dB. The 

greedy and far-sighted schemes take more time to reach this 
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level. The RF-based MARL and RF-based SARL methods 

also follow a similar trend but maintain slightly higher PLR 

values. The random policy shows the slowest reduction in 

PLR, with values remaining above 0.2 even at 15dB at higher. 

 

 
Fig. 11 Reward per training episodes 

 

With SNR values beyond 20 dB, all schemes converge to 

a near-zero PLR, indicating that packet loss is effectively 

eliminated when the signal quality is high. The differences 

between the schemes highlight the impact of reinforcement 

learning strategies in optimizing communication reliability. 

The proposed DRL-based OCC reduces PLR at low SNR 

levels. It ensures efficient packet transmission. This makes it 

highly effective for real-world vehicular communication. 

Intelligent learning-based methods improve data reliability. 

They reduce errors and enhance communication. This ensures 

efficient and stable performance in noisy environments. 

 

         Figure 13 presents a graph that shows the relationship 

between vehicular density and network throughput for 

different communication schemes. The graph compares four 

different schemes: the proposed DRL-based OCC, the greedy 

scheme, the far-sighted scheme and the random policy. The 

proposed DRL-based OCC consistently achieves the highest 

network throughput across all vehicular densities. The random 

policy has the lowest network throughput. The greedy and far-

sighted schemes perform moderately well. The far-sighted 

scheme maintains a slightly higher throughput than the greedy 

scheme. As vehicular density increases, network throughput 

decreases for all schemes, indicating that higher vehicle 

density introduces more interference and reduces data 

transmission efficiency. The difference between the schemes 

grows as vehicular density increases, demonstrating the 

impact of optimized decision-making in maintaining high 

throughput levels. At low vehicular densities, the proposed 

DRL-based OCC reaches 14 Mbps. The greedy and far-

sighted schemes start at about 12 Mbps. This shows better 

throughput for the proposed scheme. The random policy 

begins at around 8 Mbps, already showing lower performance 

than other schemes. As vehicular density increases, network 

throughput steadily declines for all schemes. At a vehicular 

density of 50, the proposed scheme maintains a throughput 

close to 6 Mbps.  

 

 
Fig. 12 Packet loss rate versus SNR 

 

The greedy and far-sighted schemes drop to about 4 

Mbps. The random policy experiences the steepest decline, 

reaching nearly 1 Mbps at maximum vehicular density. The 

results indicate that the proposed DRL-based OCC is the most 

efficient in maintaining higher network throughput under 

increasing vehicular density. The significant gap between the 

proposed scheme and the random policy highlights the 

importance of intelligent resource allocation in optimizing 

network performance. Reinforcement learning-based 

optimization improves network throughput. Network 

throughput decreases as vehicular density increases. Adaptive 

communication techniques are needed to reduce congestion. 

They help improve spectral efficiency in high-density 

environments. The proposed DRL-based OCC maintains 

higher throughput levels. 

 

        Figure 14 presents a graph that shows the impact of 

different learning rates (α) on the convergence of the loss 

function over 500 training episodes. The graph compares four 

different learning rates: 0.0005, 0.001, 0.005 and 0.01. The 

learning rate 0.0005 shows a slower convergence compared to 

the other values. The learning rate of 0.01 achieves the fastest 

convergence, quickly reducing the loss function value within 

the first 100 training episodes. The other two learning rates, 

0.001 and 0.005, exhibit moderate convergence speeds. 

Initially, all learning rates start with a high loss value near 1.0. 

They decrease steadily as training progresses. The sharp 

decline in the loss function for higher learning rates indicates 

rapid adaptation, but potential instability can be seen in the 

fluctuations later in training. As training continues, the 

learning rate of 0.01 maintains the lowest loss function values, 

indicating fast learning. However, it also shows slight 
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fluctuations after 300 episodes, suggesting potential 

instability. The learning rate of 0.0005, while stable, 

converges the slowest and maintains a higher loss value 

compared to the others.  

 

 
Fig. 13 Network throughput versus vehicular density 

 

The learning rates of 0.001 and 0.005 follow a similar 

decreasing trend and achieve relatively low loss values while 

maintaining stability. A higher learning rate, like 0.01, speeds 

up convergence. However, it may cause instability. A lower 

learning rate is more stable but needs more training time. The 

discrepancies between the curves emphasize the significance 

of choosing an adequate learning rate to balance convergence 

speed and stability. A moderate learning rate like 0.001 or 

0.005 balances speed and stability. It ensures faster learning 

with fewer fluctuations. This makes it a good choice for 

reinforcement learning applications. Additionally, the slight 

instability observed in higher learning rates suggests that 

further tuning may be needed to prevent oscillations while 

maintaining rapid convergence. The study confirms that 

learning rate selection is a crucial parameter affecting model 

training efficiency and final performance. 

 

8. Conclusion  
This paper presents a Deep Reinforcement Learning 

(DRL)-based sum spectral efficiency optimization scheme for 

multi-vehicular Optical Camera Communication (OCC) 

scenarios, rigorously maintaining Bit Error Rate (BER) and 

latency constraints. The study begins by modeling the OCC 

channel and defining critical performance parameters. 

Subsequently, an optimization problem is formulated to 

maximize sum spectral efficiency, incorporating constraints 

on modulation orders, BER, and latency.  

 

 
Fig. 14 Impact of learning rate on convergence 

 
         Due to the inherent NP-hard complexity, the problem is 

reformulated as an MDP to enable the tractable solution. The 

reward function was designed to reflect the optimization 

objectives. To address the complexity of the constrained 

problem, The Lagrangian relaxation method was applied to 

transform the constrained optimization problem into an 

unconstrained formulation by relaxing both BER and latency 

constraints. Deep Q-learning was then employed to solve the 

problem efficiently. This allowed for intelligent decision-

making regarding vehicle speed and modulation order 

selection. Extensive simulations were conducted to evaluate 

the performance of the proposed scheme. The results 

demonstrated that the proposed approach significantly 

improves sum spectral efficiency while achieving lower 

average latency compared to alternative schemes. By 

analyzing the CDF of experienced latency and BER, 

Experimental results confirm that the proposed system 

satisfies ultra-low latency communication requirements while 

consistently maintaining BER constraints. 

 

In contrast, competing schemes failed to consistently 

satisfy these constraints over extended periods. In summary, 

this study highlights the effectiveness of using DRL to 

optimize vehicular OCC performance. Future research 

directions include further improvements in learning 

efficiency, incorporating more complex mobility models and 

developing adaptive strategies for real-world deployment.
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