
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 5, 108-117, May 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I5P109 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

A Fast FPGA-Based Implementation of Linear and Non-

Linear Image Filters

Riddhesh Veling1, Aditya Vishwakarma2, Shreyash Tiwari3, Ravindra Chaudhari4

1,2,3,4Department of Electronics and Telecommunication, St. Francis Institute of Technology, Maharashtra, India.

1Corresponding Author : velingriddhesh@gmail.com

Received: 06 March 2025 Revised: 08 April 2025 Accepted: 09 May 2025 Published: 27 May 2025

Abstract - Real-time image processing plays a crucial role in various domains, including medical imaging, surveillance, and

autonomous systems, where the demand for efficient hardware acceleration is paramount. Field-Programmable Gate Arrays

(FPGAs) emerge as a viable solution owing to their ability to perform parallel processing and their low-latency characteristics.

This study introduces an FPGA-based implementation of both linear and non-linear image filters that are specifically optimized

for real-time applications. The methodology employs a coefficient file (.coe) generation technique to facilitate efficient sum-of-

product calculations and swift pixel ordering within a 3×3 window, all executed within a single clock cycle. The design,

implemented on a Basys-3 FPGA using Verilog HDL and synthesized in Xilinx Vivado, achieves a processing latency of 0.04 ms

at a clock frequency of 464 MHz while deliberately avoiding the utilization of FPGA DSP blocks. The paper provides a

comprehensive account of the methodology to ensure reproducibility, detailing preprocessing steps, data management, and the

experimental framework. The results indicate that the proposed architecture enhances computational efficiency without

compromising image quality, thereby making it highly suitable for real-time applications in FPGA-based image processing.

Keywords - Digital signal processing, Field-programmable gate arrays, Image enhancement, Linear filters, Non-linear filters.

1. Introduction
Field-Programmable Gate Arrays (FPGAs) have become

a key platform in response to the growing demand for real-

time image processing solutions. This paper highlights the

benefits of using FPGA technology for real-time image

processing, focusing on its high processing speed, parallel

processing capabilities, and low latency, especially within the

Basys3 FPGA framework. Image enhancement is a crucial

preprocessing operation in various image-processing fields

like medical imaging, surveillance, remote sensing, etc.

In real-time process, these operations must be executed in

less amount of time compared to other key algorithms

executions time. The proposed liner and non-linear filter

architectures are combined and designed using efficient

parallel processing architecture with excellent memory

management techniques. It helps to minimize the overall

computational latency with good visual quality of the output

image. Image filters are also used to remove various noises

like Gaussian, Salt and Pepper, etc.

With its FPGA Basys3 framework, users can execute

various image enhancement techniques which utilize

convolution-based procedures through a toolbox-free process.

The FPGA Block RAM system operates on binary images to

generate filtered output following various functions such as

color conversion, blur effects, sharpening, edge detection,

brightness modifications, and artistic visualization based on

user selection. The processed images appear in real time on a

VGA display, which provides instant feedback to the user.

FPGA design optimization uses Verilog language to

achieve efficient parallel operations and maximize memory

performance. Python enables user-friendly digital image

preprocessing, allowing FPGA processors to work with binary

data. Developments of FPGAs and optimizations proceed

through the Vivado software suite alongside the platform for

debugging operations.

Researchers study FPGA-based real-time image

enhancement to improve the performance capabilities of

image enhancement systems that operate in multiple sectors.

Real-time image processing technological advancements

enable safer unmanned car travel, enhance crop farm

efficiency, and create better VR and augmented reality

settings.

2. Related Works
In recent years, there has been a significant surge in

research dedicated to leveraging the capabilities of Field-

Programmable Gate Arrays (FPGAs) for implementing image

enhancement techniques. To demonstrate the potential of

http://creativecommons.org/licenses/by-nc-nd/4.0/

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

109

hardware acceleration in real-time image processing

applications, Kumar et al. [1] used FPGA platforms to

implement various image enhancement techniques.

Complementing this, Nirmala et al. [2] conducted a

comprehensive review focusing on FPGA-based image

enhancement techniques, providing a nuanced understanding

of methodologies and challenges. Their study served as a

valuable resource for researchers and practitioners seeking

insights into FPGA-based image enhancement strategies.

Moreover, Patel et al. [3] significantly contributed by

exploring the utilization of Verilog HDL for FPGA

implementation, offering a robust framework for enhancing

image quality while capitalizing on hardware acceleration.

This approach not only demonstrated promising results but

also underscored the versatility of FPGA platforms in

addressing image enhancement challenges.

Expanding on this foundational research, recent studies

have delved deeper into specific applications of FPGA-based

image enhancement techniques. For instance, [4] focused on

real-time FPGA implementation, emphasizing the

simultaneous realization of multiple image enhancement

techniques to bolster processing efficiency. Their work shed

light on the importance of optimizing FPGA resources to

accommodate the computational demands of concurrent

image enhancement algorithms. Ramyashree et al. [5]

contributed to the body of knowledge by presenting FPGA

implementation using a System Generator for contrast

stretching in image enhancement. Their work emphasized the

utilization of FPGA technology to efficiently implement

specific image enhancement algorithms, further expanding the

scope of FPGA-based image processing applications.

Shandilya [6] proposed a tailored FPGA-based approach

for automatic vehicle number plate detection, emphasizing the

pivotal role of image enhancement in enabling robust

detection systems. This targeted application highlighted the

practical implications of FPGA-accelerated image

enhancement in real-world scenarios. Additionally, Narula [7]

demonstrated the versatility of FPGA platforms by presenting

implementations using Verilog HDL, showcasing the

adaptability of FPGA-based image enhancement techniques

across various domains. Moreover, AlAli et al. [8] contributed

to the literature by exploring FPGA-based implementation of

image processing algorithms, emphasizing the broader

applicability of FPGA technology in image processing tasks

beyond enhancement.

Furthermore, the work by Sowmya [9] presented FPGA

implementation of image enhancement algorithms, enriching

the understanding of FPGA-based image processing

methodologies and their practical implications. The shift from

traditional software-based simulations to hardware-based

implementations for image enhancement is emphasized in

[10], which explores FPGA-based techniques using Verilog

HDL. The study highlights the implementation of

thresholding, contrast adjustment, brightness control, and

inversion on a Spartan-6 FPGA, demonstrating significant

improvements in image quality and processing speed. [11]

discusses various methodologies for noise removal in image

processing, highlighting the challenges of implementing

effective filters in FPGA hardware. It explores traditional

median filter variants and advanced non-linear filters, such as

those designed via Cartesian Genetic Programming (CGP),

which improve filtering quality and hardware efficiency. [12]

addresses noise removal in retinal images using an enhanced

median filter algorithm on FPGA, which is crucial for

diagnosing conditions like diabetic retinopathy. It optimizes

noise reduction and processing speed by incorporating

diagonal, vertical, and horizontal elements in a 3x3 window,

using a sorting network for superior noise suppression and

edge preservation compared to standard filters.

 These studies collectively underscore the growing

significance of FPGA technology in advancing image

enhancement capabilities and paving the way for innovative

applications in image processing.

3. Image Refinement Techniques
The image enhancement techniques implemented on

FPGA board can be classified into 6 categories:

3.1. Color Transformation

Fundamental operations altering the color composition

of images for improved visual representation.

3.1.1. RGB to Gray

Converting a color image to grayscale involves splitting

each 24-bit pixel into red, green, and blue components. By

adjusting these channels using right shift operations to

represent 28.1%, 56.2%, and 9.3% of their respective colors

[13], the color intensities are redistributed to create a balanced

grayscale representation. The adjusted values are then

combined to create an 8-bit grayscale representation for each

pixel, allowing the entire image to be converted to grayscale.

𝑮𝒓𝒂𝒚𝒐𝒑 = (𝑹 ≫ 𝟐) + (𝑹 ≫ 𝟓) + (𝑮 ≫ 𝟏) +

(𝑮 ≫ 𝟒) + (𝑩 ≫ 𝟒) + (𝑩 ≫ 𝟓)
(1)

3.1.2. Color Inversion

Color inversion in image processing involves

transforming the RGB components of each pixel in a color

image to their respective inverted values. This is achieved by

subtracting the original intensity values of the red, green, and

blue channels from 255. This operation reverses the color

scheme of the image, making bright areas dark and vice versa.

Applying this technique to all pixels ensures a uniform and

complete inversion of colors, enhancing the overall image. In

this context, 𝑅, 𝐺, and 𝐵 represent the input RGB components,

and 𝑅𝑜𝑝, 𝐺𝑜𝑝, 𝐵𝑜𝑝 represent the output components.

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

110

𝑹𝒐𝒑 = 𝟐𝟓𝟓 − 𝑹

𝑮𝒐𝒑 = 𝟐𝟓𝟓 − 𝑮

𝑩𝒐𝒑 = 𝟐𝟓𝟓 − 𝑩

(2)

Fig. 1 Color inversion filters output

3.2. Brightness Adjustment

Techniques for modifying the overall brightness level of

images to enhance or diminish illumination.

3.2.1. Increase Brightness

The Increase Brightness technique employs a simple yet

effective method to enhance the luminosity of an image

uniformly. By adding a predetermined adjustment factor 'g' to

the intensity of each pixel, the technique effectively brightens

the entire image. The formula adopted from [9, 14] ensures

that intensity values remain within the valid range of 0 to 255.

Here, 𝑰𝒌(𝒓, 𝒄) and 𝑱𝒌(𝒓, 𝒄) are input and output pixel values.

𝑱𝒌(𝒓, 𝒄) = {
𝑰𝒌(𝒓, 𝒄) + 𝒈 , 𝒊𝒇 𝑰𝒌(𝒓, 𝒄) + 𝒈 ≤ 𝟐𝟓𝟓

 𝟐𝟓𝟓 , 𝒊𝒇 𝑰𝒌(𝒓, 𝒄) + 𝒈 > 𝟐𝟓𝟓
 (3)

3.2.2. Decrease Brightness

The Decrease Brightness technique operates by uniformly

reducing the luminance of an image. This method diminishes

the intensity of each pixel by a predetermined adjustment

factor ′𝒈′. By systematically lowering the brightness across

the image, the technique effectively attenuates the luminosity

of brighter regions while preserving the visual details and

contrast within the image.

𝑱𝒌(𝒓, 𝒄) = {
𝑰𝒌(𝒓, 𝒄) − 𝒈 , 𝒊𝒇 𝑰𝒌(𝒓, 𝒄) − 𝒈 ≥ 𝟎

 𝟎 , 𝒊𝒇 𝑰𝒌(𝒓, 𝒄) − 𝒈 < 𝟎
 (4)

3.3. Edge Detection

Provide sharp intensity transitions for the purpose of

object boundary and structural feature identification.

3.3.1. Outline (Laplacian Filter)

Edge detection utilizing the Laplacian Filter is pivotal in

image processing, as it allows for the precise localization of

edges and contours. By amplifying the intensity of the central

pixel and subtracting the weighted sum of neighbouring pixel

intensities, this method effectively highlights areas of rapid

intensity changes [15]. The Laplacian Filter is particularly

adept at detecting edges regardless of their orientation or

thickness, making it a versatile tool for edge detection tasks in

various image processing applications. However, it has certain

drawbacks, including sensitivity to noise, the tendency to

produce thick edges, and susceptibility to gradient reversal

issues. The Laplacian Filter kernel can be seen in Figures 2(a)

and (b).

3.3.2. Sobel Edge Detection

The Sobel Edge Detection algorithm is a fundamental

technique in image processing aimed at highlighting edges

within an image. This method involves the application of the

Sobel operator in both the horizontal (x) shown in Figure 2(c)

and vertical (y) shown in Figure 2(d) directions to detect

changes in intensity indicative of edges [16, 17]. By

convolving the image with separate Sobel kernels for x and y

directions, the algorithm computes the gradient magnitude of

each pixel, representing the rate of change of intensity.

Subsequently, the gradient magnitudes' Root Mean Square

(RMS) value in both directions is calculated to create the final

edge-emphasized image. This approach effectively enhances

edges while suppressing noise, enabling precise edge

detection and boundary delineation in various image-

processing applications.

Fig. 2 Edge Detection kernels (a) Laplacian kernel (used for horizontal

and vertical edge differences), (b) Laplacian kernel (the one used here),

(c) Gx horizontal component, and (d) Gy vertical component.

3.4. Blurring

Averaging the pixel values of neighboring pixels to

reduce image detail and noise to improve the appearance.

3.4.1. Average Blurring

Average blurring is a widely used image filtering

technique employed to reduce noise and smooth out images.

This method involves convolving the image with a kernel

where each element represents a weighted average of its

neighbouring pixels. Typically, the kernel, as shown in Figure

3. (a), is a square matrix with equal weights assigned to each

element, resulting in a uniform blur effect across the image.

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

111

Average blurring is effective in reducing high-frequency noise

while preserving overall image structure.

3.4.2. Motion Blurring(xy)

Motion blurring, often employed in image processing and

computer graphics, simulates an object's motion effect by

averaging the pixel values along a specific direction. As

shown in Figure 3(b), a convolution kernel employs diagonal

square matrix organization with nonzero elements because the

x and y dimensions blend together in the situation (xy).

The weight associated with a pixel in the image, e.g. the

element of the kernel, is high when the pixel is closer to the

movement direction. Consequently, motion blurring in the xy

direction leads to streak-like artifacts in the image, which

mimic the effect of objects moving in horizontal and vertical

directions.

3.4.3. Motion Blurring (x)

Motion blurring in the x direction is a very common

method in image processing to simulate object movement in

the horizontal direction. Convolution with a kernel that

averages pixel values along the x-axis results in streaks

produced in the direction of motion, thus making up this

method. In Figure 3(c), the kernel contains a row having non-

zero elements, each of which represents the weight associated

with the neighbouring pixels. It blurs the pixels with greater

weights assigned closer to the motion direction.

3.4.4. Weighted Average Blurring

Weighted Average Blurring is one of the most used image

processing tools that reduces noise and smooths the images

while not distorting the important features. This method first

involves convolving the image with a bell shape-weighted

average kernel, having pixel weight given by a bell-shaped

curve [18].

In Figure 3(d), the kernel's central pixel has the highest

weight, and its value gradually falls as it gets away from the

center. The structure is, therefore, low frequency noise

reducing while providing an essential structural detail while

causing that gentle, isotropic blurring effect. Unlike uniform

averaging, which weights the contribution of all the

neighboring pixels equally, weighted averaging gives more

weight to the neighboring pixels closer to the averaged pixels

to avoid excessive detail loss.

This is an often-used approach in medical imaging, object

detection and photography enhancement to reduce noise

without causing image sharpness to decline significantly. This

technique is popular because, typically, Gaussian kernels are

used because they are efficient in terms of balancing out noise

reduction with feature preservation; thus, it can be used as a

pre-processing technique in computer vision tasks such as

feature extraction and edge detection.

Fig. 3 Blurring Kernels (a) Average blurring kernel, (b) Motion

blurring xy kernel, (c) Motion blurring x kernel, and (d) Weighted

average blurring kernel.

3.5. Artistic Filters

Artistic effects were put onto the images to make them

look different and unique, giving them an artistic style.

3.5.1. Embossing

Image enhancement by embossing is a particular

technique in which edges in an image are emphasized through

embossing. The embossing technique simply convolves the

picture using an embossed kernel, typically a small square

matrix. Figure 4(a) shows a kernel that organizationally

features a symmetrically negative and positive parts, related to

the zero parts, which is in turn surrounded by a negative core.

When applied to the picture, this kernel contrasts the pixel

brightness of adjacent regions for the sake of highlighting

edges.

3.5.2. High Boost Filtering (Sharpening)

Image enhancement with sharpening is an important

technique for making images clearer and more detailed by

enhancing the edge contrast. Here we convolve the image with

a sharpening kernel, making the image appear sharper by

enhancing the difference in pixel intensities between

neighboring regions of the image. Figure 4(b) shows that the

sharpening kernel is a positive-valued central element

surrounded by negative and zero-valued elements in a

symmetric configuration. Thus, when we apply it to the image,

the sharpening kernel increases the intensity of edges so that

they appear sharper and more distinct.

Fig. 4 Artistic Kernels (a) Emboss filter mask, and (b) High boost filter

mask.

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

112

3.6. Non-Linear Filters

Modification of pixel values using complex neighbours

relations preserves the edges while removing noise.

3.6.1. Median Filter

The median filter kernel slides a window over the signal

or image and replaces each pixel’s value with the median of

the pixels in the window. In the first step, you need to define

the size of the kernel, for example, 3x3 or 5x5. While the

kernel is being traversed over the image pixel by pixel, all the

pixel values in the window are being stored. The list of these

values is then sorted using the merge sorting technique, which

divides the list into smaller sublists, sorts them, and combines

them back with another in ordered form. After sorting, the

original pixel value is replaced with the median value as in this

sorted list, or (if the list has an even number of elements) the

average of the middle two values. This method provides a

good result in image smoothing and noise reduction.

4. Proposed Design Flow
As opposed to the image input technique as in [1, 9, 19],

the Proposed Design Flow to convert an input image to some

intermediate format for the processing is divided into 2 stages

respectively:

4.1. Initialization

The initialization stage consists of two Python files

utilized for converting the input image into a format

compatible with the Basys-3 FPGA board, as shown in Figure

6. The first Python script is responsible for splitting the given

input image into nine smaller overlapping sections, ensuring

that the FPGA can process localized pixel information

efficiently. This division allows for parallel processing of

different sections of the image, optimizing computational

performance. Additionally, the script applies necessary

padding to the edges of the image to maintain uniform

dimensions, preventing data loss at the borders. Each of these

segmented images is stored temporarily in an array before

being passed to the second Python script for further

processing.

Fig. 5 Bits formation from one pixel of the input image

The second Python script is responsible for generating

and initializing the coefficient (.coe) file, which is essential for

storing image data in FPGA memory. This script defines the

necessary preamble for setting the memory initialization radix

and memory initialization vector. It goes over each pixel of the

grey scale image and its shifted versions, iterate over their

intensity value, and converts to binary string. They are

concatenated to retain structured memory access, formatted in

a .coe file structure, and stored sequentially. The binary data

resulting after processing each row of pixels is appended

to .coe file for the proper organization for FPGA-based

filtering operations. Also, the RGB value of the original .png

image is extracted and saved at the end of each row to keep

the color. The file is then finalized and stored in the correct

directory where the file can be integrated into the FPGA

memory. First, it guarantees that the FPGA obtains pre-

processed image data directly, so that image enhancement

algorithms can be run in real time.

Fig. 6 Flow diagram for Initialization Stage

Input image in

.png format
Parallel_generator.py coe_generator.py

Input image in

.png format

gray.bmp

left.bmp

right.bmp

up.bmp
down.bmp
leftup.bmp

leftdown.bmp
rightup.bmp

rightdown.bmp

Input image in

.png format
Initialization

Image

Enhancement

Operations

Output

images on

VGA display

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

113

Fig. 7 Flow diagram for image enhancement operations stage

4.2. Image Enhancement Operations

The .coe file generated in the initialization stage is

utilized by the Verilog code, as shown in Figure 7. For

example, if the image has a size of 160x115, then the number

of rows in the .coe file will be equal to the size of the image

(it will be 18400 rows). The memory is loaded with the .coe

file. At each positive clock edge, one row of this file is stored

in a temporary array. Depending on what operation is selected,

switches on Basys3 are used to access elements of this array.

The board does various image enhancement operations

according to the mode chosen. The applied image

enhancements result in a processed image rendered on a VGA

display connected to the Basys3, allowing real-time

visualization of the effects of the applied image

enhancements.

Fig. 8 Architecture of proposed design

Initially, the entire .coe file is stored in a RAM memory

cell, as seen in Figure 8. At each row memory location, all 9-

pixel values are stored with the variable ‘gray’ as the centre

for every 3x3 selection, and the surrounding 8-pixel values are

also stored in the same row. Similarly, all different types of

filter coefficients are stored in a ROM memory cell.

According to the 4-bit filter selection input, a particular type

of filter is selected. When reset = 0, all 9 coefficients are

assigned parallel to the variables Co1, Co2, ..., Co9. Whenever

a linear filter is selected through the filter select input, the

Load .coe file

on the

memory of

Basys3

Mode selection

on Basys3

Color Transformation

Brightness Adjustment

Blurring

Edge Detection

Filter Effects

Artistic Effects

Non-Linear Filtering

Output image

Input image in

.png format
Initialization

Image

Enhancement

Operations

Output

images on

VGA display

Image Enhancement

Operations

ROM Memory

(Filter Coefficient)

Filter

Selection Reset = 0

Co

1

Co

2

Co

9

……………

M

1

M

2

M

3

M

9

……………….

A1 A2 A3 A4

A5 A6

A7

A8
SOP Section

Lin =

1

RAM

Memory

gray

left

right

up

dow

n
left-up

left-

down
right-up

right-

down

en = 1

cl

k

Input .coe

file

Serial

Address

Generator

en

cl

k

Division

Operator

16 bits 4 bits
Outpu

t

Pixels

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

114

variable Lin is set to 1, and for a non-linear filter, Lin is set to

0. Additionally, another variable, en, is set to 1 for both types

of filters.

When en = 1, at the next positive clock edge, the input

address generator generates the first address location.

Subsequently, the next address location is sequentially

generated at every positive clock signal. In this way, at each

clock pulse, all 9 values are assigned in parallel to the

variables of the SOP section.

The Sum of Products (SOP) of 9 coefficients and 9 pixels

is performed using 9 multipliers and 8 adder units. In the end,

the final output value is truncated to a specific number of bits

using a division operation facilitated by a right shift operation.

This output is then sequentially applied to a display device

through the FPGA board.

When Lin = 0, meaning that non-linear filtering using the

median filter is selected, the separated input pixels are taken

as input to the merge sort algorithm. The merge sort algorithm

works on the principle of divide-and-conquer technique. The

pixels are already divided or separated and assigned to the

given 9 variables, as shown in Figure 9; now, these are sorted

to find the median value at the 5th position.

Fig. 9 Non-linear median filtering using merge-sort algorithm

Three vectors are assigned, namely x, y, and z, with sizes

9 and each 8-bit length. Only their indexes are controlled to

sort the sequences within 3 stages. In the first stage, 2 samples

are compared to find the minimum and maximum value, and

then it is arranged in vector 'y' as shown in Figure 9.

Similarly, in the 2nd stage, 4 samples are compared, and

their results are stored in vector 'z’. In the last stage, 2

sequences with lengths 4 and 5 samples, respectively, are

compared and determine the 5th smallest value, which will be

the median value of the input sequence.

5. Simulation Results
The Artix-7 Basys3 FPGA Board was used for synthesis

purposes. Within the Basys3 FPGA framework, users can

choose from various image enhancement operations using

physical switches/buttons, including filters, color

transformations, and blurring. The entire code is written in

Verilog HDL language, and simulation/synthesis is done with

Vivado ML Edition 2022.2 version. The 4 switches represent

4 bits for each image enhancement mode. Toggling

switches/buttons enables smooth transitions between modes,

facilitating customization of image processing workflows, as

demonstrated in the presented outcomes.

Image processing techniques encompass various methods

to enhance and transform images. Figure 10 shows grayscale

conversion adjusts the red, green, and blue channels to create

an 8-bit representation. Color inversion subtracts RGB values

from 255, while brightness adjustments add or subtract a

predetermined factor to each pixel's intensity.

Fig. 10 (a) 0000 for RGB to gray, (b) 0001 for increase brightness, (c)

0010 for decrease brightness, and (d) 0011 for color inversion.

Fig. 11 (a) Salt and pepper noise image, (b) 0100 for median filtered

image, (c) 0111 for Original image, and (d) 1000 for average blurring.

y0
x

0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

y
1

y
2

y3

y
4

y
5

y
6

y
7

y
8

gray

left
z

0

z
1

z
2

z
3

z
4

z
5

z
6

z
7

Compare

both

sequence

5th

element

(median)

right

up

down

left-up

left-down

right-up

right-down

Lin = 0

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

115

Figure 11 shows Salt and pepper noise is introduced to the

image, and median filtering replaces each pixel with the

median of its neighbors, both utilizing the FPGA’s

parallelism. Average blurring replaces each pixel with the

average of its neighbors through parallel convolution,

similarly employed in Sobel and Laplacian edge detection for

highlighting edges.

Figure 12 shows motion blurring in both (x & y) and (x)

directions involves convolving the image with a motion-

simulating kernel, while embossing uses a convolution kernel

to emphasize intensity differences, creating a 3D effect.

Fig. 12 (a) 1001 for sobel edge detection, (b) 1010 for outline (laplacian

edge detection), (c) 1011 for motion blurring (xy), and (d) 1100 for

embossing.

As shown in Figure 13, high boost filtering enhances

edges by amplifying high-frequency components, requiring

parallel convolution and arithmetic operations. Gaussian noise

introduces normally distributed perturbations, and Gaussian

blurring applies a weighted average, both efficiently handled

by FPGAs using their parallel processing strengths.

Fig. 13 (a) 1101 for sharpening (high boost filtering), (b) 1110 for

motion blurring (x), (c) Gaussian noise image, and (d) 1111 for weighted

average blurring (gaussian blurring)

The maximum clock frequency used is 464 MHz. The

propagation delay in getting one output pixel after completing

the entire convolution operation is 2.155 nsec. So, the latency

(number of clock cycles) for the entire image is equal to the

total no. of pixels of an image. In this case, the latency delay

is 0.04 msec.

Table 1. Hardware resource utilization summary

Resource Utilization Available Utilization %

LUT 838 20800 4.03

FF 61 41600 0.15

BRAM 49 50 98.00

IO 20 106 18.87

DSPs 0 90 0

The resource utilization of the FPGA implementation is

summarized in Table 1, which presents an overview of the

hardware resource consumption. The table highlights the

utilization of key FPGA components, including Look-Up

Tables (LUTs), Flip-Flops (FFs), Block RAMs (BRAMs),

Input/Output (IO) blocks, and Digital Signal Processing

(DSP) slices. The percentage utilization of each resource is

also provided to illustrate the efficiency of hardware usage.

Notably, the BRAM utilization is significantly high, nearing

98%, indicating that memory resources are a primary design

component. On the other hand, the DSP utilization remains at

0%, suggesting that the implemented filtering techniques

primarily rely on logical operations rather than DSP-based

computations.

Table 2. Slice logic utilization summary

Resource Utilization Available Utilization %

SLICE

LUTs
194 20800 0.93

LUT as

Logic
194 20800 0.93

LUT as

Memory
0 9600 0

Slice

Registers
8 41600 0.02

Register as

FF
8 41600 0.02

Register as

Latch
0 41600 0

F7 Muxes 90 16300 0.55

F8 Muxes 0 8150 0

Further insights into the logical utilization of FPGA slices

are presented in Table 2. This table details the usage of slice

LUTs, registers, multiplexers (Muxes), and different

configurations of logic resources. The LUTs are primarily

used as logic elements, with no utilization as memory blocks.

Slice registers, which play a crucial role in sequential logic

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

116

design, show minimal usage, indicating that the design relies

more on combinational logic. The utilization of multiplexers,

particularly F7 and F8 Muxes, demonstrates how efficiently

routing and selection operations are managed within the

FPGA fabric. These tables collectively provide a

comprehensive view of how efficiently the FPGA resources

are allocated and utilized to implement the proposed image

filtering system.

6. Conclusion
The implementation of FPGA for image enhancement is

a Verilog-based project designed for the Basys3 FPGA, which

is aimed at facilitating image-enhancing operations such as

convolution on input images. It leverages Block RAM to store

images and displays them through a VGA interface.

Development is carried out using Verilog and Python with the

Vivado software suite. The project offers two primary

implementations: one for the transfer of images between a PC

and the FPGA and another for the display of processed images

on a monitor. The VGA interface is specifically configured for

a 480p display with a 60Hz refresh rate. To initialize the block

RAM in Xilinx FPGA designs, a .coe file is provided. The

project's development structure supports basic image

enhancement and convolution-based operations, each

requiring specific implementation approaches. Python scripts

are utilized to generate .coe files tailored to these operations.

Additionally, incorporating hardware accelerators or co-

processors could further enhance the system's performance

and enable it to tackle more computationally intensive tasks.

References
[1] Karan Kumar, Aditya Jain, and Atul Kumar Srivastava, “FPGA Implementation of Image Enhancement Techniques,” Photonics

Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, Wilga, Poland, vol. 7502, pp. 1-10,

2009. [CrossRef] [Google Scholar] [Publisher Link]

[2] S.O. Nirmala, T.D. Dongale, and R.K. Kamat, “Review on Image Enhancement Techniques: FPGA Implementation Perspective,”
International Journal of Electronics Communication and Computer Technology, vol. 2, no. 6, pp. 1-9, 2012. [Google Scholar] [Publisher

Link]

[3] Sagar Patel et al., “Image Enhancement on FPGA Using Verilog,” International Journal of Technical Innovation in Modern Engineering

& Science, vol. 5, no. 3, pp. 2455-2585, 2019. [Google Scholar] [Publisher Link]

[4] Muhammed Yildirim, and Ahmet Çinar, “Simultaneously Realization of Image Enhancement Techniques on Real-Time FPGA,” 2019

International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, pp. 1-6, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[5] B.H. Ramyashree, R. Vidhya, and D.K. Manu, “FPGA Implementation of Contrast Stretching for Image Enhancement Using System

Generator,” 2015 Annual IEEE India Conference, New Delhi, India, pp. 1-6, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[6] Rahul Shandilya, and R.K. Sharma, “FPGA Implementation of Image Enhancement Technique for Automatic Vehicles Number Plate

Detection,” 2017 International Conference on Trends in Electronics and Informatics, Tirunelveli, India, pp. 1-5, 2017. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Mandeep Singh Narula, and Nishant Singla, “FPGA Implementation of Image Enhancement Using Verilog HDL,” International Research

Journal of Engineering and Technology, vol. 5, no. 5, pp. 1794-1797, 2018. [Google Scholar] [Publisher Link]

[8] Mohammad I. AlAli, Khaldoon M. Mhaidat, and Inad A. Aljarrah, “Implementing Image Processing Algorithms in FPGA Hardware,” 2013

IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, Amman, Jordan, pp. 1-5, 2013. [CrossRef]

[Google Scholar] [Publisher Link]

[9] S. Sowmya, and Roy Paily, “FPGA Implementation of Image Enhancement Algorithms,” 2011 International Conference on Communications

and Signal Processing, Kerala, India, pp. 584-588, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[10] Narayan A. Badiger et al., “FPGA Implementation of Image Enhancement Using Verilog HDL,” International Research Journal of

Engineering and Technology, vol. 7, no. 6, pp. 5663- 5668, 2020. [Google Scholar] [Publisher Link]

[11] Zdenek Vasicek, Michal Bidlo, and Lukas Sekanina, “Evolution of Efficient Real-Time Non-Linear Image Filters for FPGAs,” Soft

Computing, vol. 17, pp. 2163-2180, 2013. [CrossRef] [Google Scholar] [Publisher Link]
[12] C.K. Priyanka, “Median Filter Algorithm Implementation on FPGA for Restoration of Retina Images,” International Journal of Innovative

Science, Engineering & Technology, vol. 3, no. 5, pp. 415-420, 2016. [Google Scholar] [Publisher Link]
[13] Kaushal Kumar, Ritesh Kumar Mishra, and Durgesh Nandan, “Efficient Hardware of RGB to Gray Conversion Realized on FPGA and

ASIC,” Procedia Computer Science, vol. 171, pp. 2008-2015, 2020. [CrossRef] [Google Scholar] [Publisher Link]
[14] R. Dhanabal et al., FPGA Based Image Processing Unit,” 2015 IEEE 9th International Conference on Intelligent Systems and Control,

Coimbatore, India, pp. 1-4, 2015. [CrossRef] [Google Scholar] [Publisher Link]
[15] Ghassan Mahmoud Husien Amer, and Ahmed Mohamed Abushaala, “Edge Detection Methods,” 2015 2nd World Symposium on Web

Applications and Networking, Sousse, Tunisia, pp. 1-7, 2015. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1117/12.837179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Image+Enhancement+Techniques&btnG=
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7502/750208/FPGA-implementation-of-image-enhancement-techniques/10.1117/12.837179.short
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+on+Image+Enhancement+Techniques%3A+FPGA+Implementation+Perspective&btnG=
https://ijircst.org/DOC/review_on_image_processing_fpga_implementation_perspective.pdf
https://ijircst.org/DOC/review_on_image_processing_fpga_implementation_perspective.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+Enhancement+on+FPGA+using+Verilog+S+Patel&btnG=
https://www.ijtimes.com/index.php/ijtimes/article/view/2361
https://doi.org/10.1109/idap.2019.8875959
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Simultaneously+Realization+of+Image+Enhancement+Techniques+on+Real-Time+FPGA&btnG=
https://ieeexplore.ieee.org/document/8875959
https://doi.org/10.1109/indicon.2015.7443730
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Contrast+Stretching+for+Image+Enhancement+Using+System+Generator&btnG=
https://ieeexplore.ieee.org/document/7443730
https://doi.org/10.1109/icoei.2017.8300860
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Image+Enhancement+Technique+for+Automatic+Vehicles+Number+Plate+Detection&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Image+Enhancement+Technique+for+Automatic+Vehicles+Number+Plate+Detection&btnG=
https://ieeexplore.ieee.org/document/8300860
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Image+Enhancement+Using+Verilog+HDL&btnG=
https://www.irjet.net/archives/V5/i5/IRJET-V5I5341.pdf
https://doi.org/10.1109/aeect.2013.6716446
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementing+Image+Processing+Algorithms+in+FPGA+Hardware&btnG=
https://ieeexplore.ieee.org/document/6716446
https://doi.org/10.1109/iccsp.2011.5739392
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Image+Enhancement+Algorithms&btnG=
https://ieeexplore.ieee.org/document/5739392
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=N.+A.+Badiger%2C+FPGA+Implementation+of+Image+Enhancement+using+Verilog+HDL&btnG=
https://www.irjet.net/archives/V7/i6/IRJET-V7I61064.pdf
https://doi.org/10.1007/s00500-013-1040-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evolution+of+Efficient+Real-Time+Non-Linear+Image+Filters+for+FPGAs&btnG=
https://link.springer.com/article/10.1007/s00500-013-1040-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Median+Filter+Algorithm+Implementation+on+FPGA+for+Restoration+of+Retina+Images&btnG=
https://ijiset.com/vol3/v3s5/IJISET_V3_I5_60.pdf
https://doi.org/10.1016/j.procs.2020.04.215
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Hardware+of+RGB+to+Gray+Conversion+Realized+on+FPGA+and+ASIC&btnG=
https://www.sciencedirect.com/science/article/pii/S187705092031200X
https://doi.org/10.1109/isco.2015.7282380
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+based+image+processing+unit%2C+R+Dhanabal&btnG=
https://ieeexplore.ieee.org/document/7282380
https://doi.org/10.1109/WSWAN.2015.7210349
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GMH+Amer%2C+Edge+Detection+Methods&btnG=
https://ieeexplore.ieee.org/abstract/document/7210349

Riddhesh Veling et al. / IJECE, 12(5), 108-117, 2025

117

[16] Girish Chaple, and R.D. Daruwala, “Design of Sobel Operator Based Image Edge Detection Algorithm on FPGA,” 2014 International

Conference on Communication and Signal Processing, Melmaruvathur, India, pp. 788-792, 2014. [CrossRef] [Google Scholar] [Publisher

Link]
[17] Zhang Jin-Yu, Chen Yan, and Huang Xian-Xiang, “Edge Detection of Images Based on Improved Sobel Operator and Genetic

Algorithms,” 2009 International Conference on Image Analysis and Signal Processing, Linhai, China, pp. 31-35, 2009. [CrossRef]

[Google Scholar] [Publisher Link]
[18] James Coady et al., “An Overview of Popular Digital Image Processing Filtering Operations,” 2019 13th International Conference on

Sensing Technology, Sydney, NSW, Australia, pp. 1-5, 2019. [CrossRef] [Google Scholar] [Publisher Link]
[19] Tarek M. Bittibssi et al., “Image Enhancement Algorithms Using FPGA,” International Journal of Computer Science and Communication

Networks, vol. 2, no. 4, pp. 536-542, 2012. [Google Scholar]

https://doi.org/10.1109/iccsp.2014.6949951
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+Sobel+Operator-Based+Image+Edge+Detection+Algorithm+on+FPGA&btnG=
https://ieeexplore.ieee.org/document/6949951
https://ieeexplore.ieee.org/document/6949951
https://doi.org/10.1109/iasp.2009.5054605
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge+Detection+of+Images+Based+on+Improved+Sobel+Operator+and+Genetic+Algorithms&btnG=
https://ieeexplore.ieee.org/document/5054605
https://doi.org/10.1109/icst46873.2019.9047683
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Overview+of+Popular+Digital+Image+Processing+Filtering+Operations&btnG=
https://ieeexplore.ieee.org/document/9047683
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+Enhancement+Algorithms+Using+FPGA&btnG=

