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Abstract - India’s GDP is driven by the agriculture sector, which provides numerous individuals with livelihoods. During 

harvest, climatic and weather conditions highly affect crop production, resulting in losses, and incorrect analysis of these factors 

can result in lower yields. A well-defined process is needed to develop a model keeping geographical diversity in mind while 

ensuring accurate, cost-effective fertilization methods. This study introduces a hybrid model by integrating Transformers with 

Graph Attention Networks (GAT) to estimate fertilizer needs based on the region's unique requirements. GATs identify spatial 

correlations by modelling farms as graph nodes and edges connected by geographic distance based on closeness. Transformers 

handle sequential data to reveal temporal patterns. The hybrid model successfully combines spatial-temporal data, identifying 

complex relationships to make specific fertilization recommendations dynamically. It surpasses conventional ML models' 

accuracy, scalability, and adaptability, delivering consistent outcomes in the analysis of Tamil Nadu and Punjab regions. As 

India's agriculture is diverse regarding soil types, climates, and agricultural practices, this adaptive method updates 

recommendations dynamically, improving precision and relevance for farmers.  

Keywords - Precision farming, Fertilizer optimization, Machine learning, Hybrid models, Graph Neural Networks. 

1. Introduction  
It is estimated that the world's population will rise by 

about 2 billion to 9.7 billion in the next 25 years [1]. 

Agriculture faces a dual challenge: to arrange for the world's 

increasing population's food security while not damaging the 

environment. It must, therefore, use modern technologies in 

agroecosystems to increase food supplies and minimize the 

adverse effects of chemical fertilizers and improper waste 

management [2]. Traditional farming in India relies on labor-

intensive and environmentally sustainable practices, including 

crop rotation, agroforestry, and using natural manure for 

fertilization. While these methods promote soil health and 

sustainability, they require significant time for crop 

production and involve high input costs [3]. Plants need macro 

and micronutrients for optimal growth; fertilizer is the primary 

source of these micronutrients. They aid in plant growth and 

maintain soil fertility to ensure long-term agricultural 

productivity. The conventional use of fertilizers involves soil 

testing and choosing the appropriate fertilizer, either based on 

the plants' needs or the soil conditions. Other significant 

factors include applied methods, proper dosages, and proper 

timing to prevent over-fertilization [4]. Government agencies 

and policymakers have been keen to reduce the overuse of 

chemical fertilizers. However, the recent slowing in nitrogen 

use and reduced phosphorus and potash should be closely 

managed to maintain soil nutrient balance [5]. 

 

Climatic conditions, soil types, geography, land use, crop 

management, pedogenic processes, and physiographic factors 

influence the NWIH region's soil parameters. Knowledge of 

these impacts is vital for sustainable soil resource management 

and agriculture. Management zone maps are critical for 

optimizing agronomic inputs, especially fertilizers, to enhance 

environmental sustainability and economic efficiency [6]. The 

fertilization recommendations for paddy rice are uniform for 

all regions and not adjusted for variability in soil content of P 

and K. Information regarding the P and K nutritional levels of 

rice fields-defined as low, medium, or high-would be very 

helpful in developing such accurate, site-specific fertilizer 

recommendations [7]. 

 

Soils differ significantly from region to region in terms of 

nutrient content, pH, texture, and organic matter. A uniform 

approach to fertilization can prove inadequate since it either 

renders the soil deficient in nutrients or leads to overuse. For 

example, Punjab is rich in phosphorus but has a poor 
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percentage of micronutrients like zinc and boron [8]. Rainfall 

and temperature vary with each region and are crucial in 

fertilizer effectiveness. Heavy rain can cause nutrient leakage, 

while drought conditions delay fertilizer absorption without 

adequate irrigation, underscoring the need for climate-adapted 

fertilization strategies [9]. Similarly, regional studies on wheat 

and maize crops show that local varieties may need custom 

fertilization strategies based on their genetic characteristics 

and the environment in which they are grown.  In other areas, 

local crop rotation and organic fertilization could minimize the 

use of chemical fertilizers, while monocropping-intensive 

systems require more significant synthetic fertilizer inputs. 

This suggests the need to integrate the farming practices of a 

local region into the fertilizer optimization models for more 

sustainable agriculture production [10]. It is essential to 

address the issues of changing climatic conditions and 

regional variations regarding soil structure while devising an 

effective and efficient fertilization strategy. 

 

Numerous studies on fertilization optimization neglect 

regional variations despite their essential significance in 

facilitating efficient and site-specific fertilizer management 

[11]. The requirements for fertilization are significantly 

different depending on the soil type, climate, crop variety, and 

local agricultural practices. This calls for recommendations on 

fertilizer to be made on a regional basis. Strategies for 

fertilization must be tailored to the regional variations in soil 

composition, climate, crop requirements, and practices. 

Existing models are mostly generalized and cannot adapt to 

localized conditions, which is crucial in regions with varying 

soil characteristics, such as western India. If this is not 

considered, it may result in inefficient use of fertilizers, 

environmental degradation, and low crop productivity. 

 

This research addresses this critical gap by presenting a 

GAT-Transformer model combining spatial and temporal data 

to optimize fertilizer strategies, accounting for regional and 

environmental variations. This model efficiently captures 

regional differences through Graph Attention Networks for 

spatial relationships and through Transformers for the 

temporal trends to provide region-specific solutions toward a 

sustainable fertilizer. The GAT-Transformer hybrid model’s 

ability to jointly learn spatial and temporal dependencies 

makes it adaptable to diverse agricultural challenges. It 

enables precise and sustainable fertilization strategies. The 

generated model is tested on the Punjab and Tamil Nadu 

regions and provides better results than existing studies. 

 

2. Related Work 

A detailed literature review was carried out researching 

advances related to Graph Neural Networks (GNNs) in 

agriculture, Transformer models for precision farming, 

Hybrid GNN and Transformer architectures, and deep 

learning-based optimization in fertilization. This study 

attempts to evaluate and identify the key techniques, current 

emerging trends, and applications developed for agriculture 

management, emphasizing optimal fertilizer management and 

dealing with regional variations. 

 

Graph Neural Networks (GNNs) are specialized neural 

systems that use message transmission between nodes to 

capture dependencies in graph-structured data. GCN, GAT, 

and GRN are recent developments in GNN variations that 

have shown impressive performance in a range of deep 

learning tasks. This study [12] highlights the distinctive 

qualities and contributions of the main varieties of GNN 

models and presents a broad design framework for creating 

them. GNNs are utilized in precision agriculture to model 

spatial and temporal relationships between farm plots, crops, 

and environmental factors, enabling optimized decision-

making for tasks like irrigation, fertilization, and yield 

prediction.  

 

GNN and CNN-based models have been instrumental in 

advancing pest disease detection. A CNN-based pest detection 

system (GPA-Net), with a multilayer graph pyramid structure, 

trilinear attention module, and CSP backbone, was introduced 

to enhance pest detection. With up to 99% accuracy on 

cassava leaf and other datasets, it promotes smart agriculture 

and environmental protection [13]. In a related effort, the 

study [14] implemented knowledge graphs and DL for the 

sophisticated detection of plant diseases. However, these 

models need to be structurally optimized for practical 

application in intelligent agriculture and to extend beyond 

identifying pests and diseases to weather forecasting and 

managing grain storage. This can be solved by improving 

computational efficiency, fusing multi-domain datasets, and 

employing transfer learning methodologies. This study [17] 

demonstrates the pipeline for few-shot learning with Swin 

transformers to achieve very high accuracy for pest detection 

in scarce data conditions. It can differentiate between similar 

classes and localize symptoms using GradCAM. However, 

there is a scope to simplify models through feature distillation 

and venture toward OFSL to handle unreliable labels in 

limited datasets. 

 

Multiple studies have focused on predicting yield and 

plating recommendations using GNN. This study [15] 

proposed a knowledge graph-based recommendation method 

for identifying appropriate maize planting areas using county-

scale meteorological data. The model outperformed traditional 

machine learning and graph-based methods by improving 

recommendation accuracy by up to 24.3%. The study [16] 

introduces the ASTGNN model, which combines GNNs and 

attention mechanisms with varied geospatial data to predict 

wheat yields in Anhui, China, during winters with a high 

accuracy of R² = 0.70. The proposed model improves early 

yield forecasting and provides valuable insights for advancing 

digital agriculture and managing climate impacts. Integrating 

soil nutrient data with knowledge graphs and incorporating 

real-time climate factors can enhance fertilizer 
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recommendation accuracy. A multimodal and temporal deep 

learning framework that integrates data from both 

perspectives is proposed: meta-transformers and temporal 

GNNs are combined to determine crop yield classifications 

[17]. This demonstrates the effectiveness of integrating 

geographical and temporal knowledge for yield predictions. 

 

Fertilizer optimization is still underappreciated despite 

significant advancements in yield and pest modelling. In [18], 

the authors developed a Q-learning-based simulation tool to 

optimize fertilizer application dynamically using real-time 

environmental and remote sensing data for observing crop 

growth and quality. The framework implemented a reward-

based mechanism for deciding on the optimum nourishment 

level. Experimental results have established the computational 

efficiency of the approach and indicate its performance to be 

at par with or even superior to advanced deep learning models. 

However, the approach doesn’t consider regional variations 

and may not be adaptable. The NDCF system proposed to 

optimize fertilizer recommendations by integrating properties 

of soil and nutrients, as introduced in this research. It captures 

both linear and nonlinear land-nutrient interactions using 

WMF and FC-MLP, thus bringing a 1.44% enhancement in 

accuracy over baseline methods [19]. A possible future 

direction could be further improvement by using attention 

mechanisms for location-specific recommendations.  

 

Additional studies developed mobile applications 

integrating multiple features. This study [20] introduces an 

agronomic aid system leveraging image processing, ML, and 

DL for features like disease identification in plants, weather 

forecasting, and a crop-specific fertilizer calculator. The app 

supports multilingual functionality in Marathi, Hindi, Punjabi, 

and English. The approach is limited by the dataset's lack of 

diversity in crop types and illnesses, which limits the 

algorithm's capacity to adjust to conditions in real-time and 

offer more exhaustive coverage. Irrigreat [21] provides a 

solution by offering neutral advice on biological and 

conservative fertilizers, helping agriculturalists make well-

versed decisions for optimal crop growth. The research 

utilizes data science methods; a machine learning model 

achieves 96.44% accuracy, higher than the set target of 90%. 

A deep learning model is also integrated for pesticide 

recommendations based on pest identification. The app's crop-

specific fertilizer calculator isn't very useful for site-specific 

fertilization methods because it doesn't have precision nutrient 

analysis, real-time weather integration, or dynamic soil data. 

This highlights how the system's capacity to offer accurate and 

flexible agronomic suggestions is restricted by the absence of 

soil and climate data integration. 

 

Various models developed for fertilization rely on image-

based inputs. This study [22] provides a YOLOv5 model-

based target-oriented spray control system for cabbage fields 

that is enhanced with a transformer module for precise 

identification in challenging circumstances. A system based 

on the NVIDIA Jetson Xavier NX achieves 96.14% precision 

while processing images in 51.07 milliseconds. This study 

[23] uses a CNN model that combines XGBoost and PCC to 

discover key variables. Although promising, these techniques 

frequently suffer in dimly illuminated or obscured 

environments, compromising the dependability of real-world 

deployments. These findings show an over-reliance on image-

based analysis, which reduces the reliability of disease 

detection in real-world settings by making it less effective 

under low light or obscured conditions. 

 

Recent work has explored integrating transformers and 

optimization algorithms. This study [24] provides substantial 

technological assistance for improving nitrogen and 

maintaining superior tea-making control. With an accuracy of 

92-96%, a ResNet-18 model accurately identified the nitrogen 

levels in tea granules and the buds. This study [25] proposes a 

Bagged Convolutional Neural Network (CNN) combined with 

the WOA to forecast rice production using a soil nutrient 

dataset with over 11,000 samples. The model uses CNN layers 

to process multidimensional numerical data. WOA optimizes 

weights, improving accuracy to 90.31% with an error rate of 

9.69%.  

 

This demonstrates that while Graph Neural Networks and 

Transformer models have been widely employed in PA for 

crop monitoring, pest identification, and yield prediction, the 

potential for fertilizer optimization in the above-mentioned 

models remains untapped. The presented research aims to 

overcome this constraint by proposing a novel fusion model 

that combines GATs and Transformers in a framework 

designed explicitly for fertilizer optimization. The proposed 

model uses GATs' relationship learning skills to examine 

spatial and soil nutrient interdependence, whilst Transformers 

improve temporal and contextual knowledge of agricultural 

data. The experimental results show that this fusion model is 

highly adaptable across different geographies, providing a 

scalable and effective strategy for increasing agricultural 

output and sustainability. The proposed GAT-Transformer 

fusion model offers a promising approach to closing gaps in 

fertilizer recommendation and sustainable farming. 

 

3. Materials and Methods  
Soil degradation, which is caused by the excessive use of 

fertilizers such as urea, is a significant problem in India, 

causing imbalances in soil health, reduced fertility, and 

environmental pollution. The excessive use of chemical 

fertilizers upsets the natural nutrient balance, leading to soil 

degradation and water pollution. India has 15 distinct agro-

climatic zones [26], as shown in Figure 1, each with its soil 

types, climates, and crop requirements. This diversity requires 

a region-specific strategy of fertilizing crops for high 

productivity and optimal management of healthy soils. 

Most Indian farmers have small landholdings, which puts 

them in a difficult situation because they have few resources. 
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It is critical to provide cost-effective solutions that can be 

scaled and enable optimization in terms of irrigation, 

fertilization, and pesticides. The SHC Scheme [27] is a 

government initiative that promotes organic farming and 

fertilizer balance. Sustainability must be included in farming 

techniques and regional strategies to overcome these 

concerns. These challenges can be addressed by implementing 

an optimized fertilization model that promotes balanced 

nutrient application. This study is envisioned to capture 

regional variations in soil and environment data for fertilizer 

application. It has been tested on two different Indian states, 

Punjab and Tamil Nadu, with unique agricultural 

characteristics. Punjab follows irrigation-intensive 

monoculture farming, has loamy soil, and relies heavily on 

fertilizers for wheat and rice cultivation. In contrast, Tamil 

Nadu's rain-fed, diversified agriculture, with moderate 

fertilizer use, supports crops like paddy, cotton, and 

groundnut, with varying soil types and irrigation from the 

Kaveri River. 

 
Fig. 1 Agro-climatic Zones of India 

 

GAT and Transformers are combined to prepare a fusion 

model to recommend optimized fertilization, considering 

spatial and temporal data. All types of agricultural data are 

collected from different sources and normalized. The GAT 

layer captures the spatial dependencies by assigning weights 

to close farmlands based on similarity, and seasonal variations 

are captured by the transformer model. The outputs from both 

layers are combined to devise and generate a precise region-

specific strategy for fertilization recommendation. This 

approach promises to ensure a complete understanding of 

dynamic agricultural data and has better decision-making 

capabilities. 

 

3.1. Data Collection and Types of Data 

Crop growth trends, weather and climate records, soil 

nutrient maps, and geospatial data are some of the data sources 

used in this study. The dataset is intended to include region-

specific data on agricultural practices, climate, and soil 

characteristics. Processing of data before analysis helped to 

remove inconsistencies and missing values. Missing data 

points are filled using an Expectation Maximization approach, 

which calculates the mean of existing values for replacement. 

To ensure uniformity, the dataset is normalized so that all 

attributes are on the same scale for effective modelling and 

analysis. 

 

Nutrient data for soils is accessed from the SHC [36] 

website and the Nutrient Dashboard offers data on 

macronutrients and micronutrients at the state level. Weather 

and climate data, temperature, rainfall, and humidity are 

available from the India Meteorological Department (IMD) 

[28] through its Climate Data Service Portal, and the All India 

Seasonal and Annual Temperature Series are available on 

data.gov.in [29].  

 

Data on crop growth stages is not readily available. Still, 

the Soil and Land Use Survey of India [30] gives information 

regarding land use patterns and soil health, which can correlate 

with crop growth. The Bhuvan platform [31], hosted by the 

National Remote Sensing Centre, is used for geospatial data, 

including latitude, longitude, and adjacency status of 

farmlands. These diverse datasets are integrated to construct a 

comprehensive GNN model tailored to India's agricultural 

landscape to enhance fertilization strategies through informed 

decision-making. The main goal of fertilizer optimization is to 

estimate the optimal amount required for NPK. The final 

attribute list reflected and used in the study is presented in 

Table 1. 

 
Table 1. Types of data 

Type of Data List of Attributes 

Soil Nutrient Maps 
Nitrogen, Phosphorus, Potassium, 

and Organic Carbon levels  

Weather and Climate 

Data 

Temperature (°C), Rainfall (mm), 

and Humidity (%) for each data 

point. 

Crop-specific 

Growth Patterns 

Early, Mid, and Late Growth 

stages  

Geospatial Data 
Latitude, Longitude, and 

Adjacency status of farmlands 

 

3.2. Graph Attention Networks 

GNNs are highly effective models for explaining graph-

oriented data because they capture links and interactions via 

messages delivered between nodes. A primary use is node 

classification, which uses labels for some nodes to predict 

labels for others without ground truth. GNNs and 

Convolutional Neural Networks (CNNs) differ significantly in 

pipeline design, loss functions, computational techniques, and 

implementation tactics. GNNs iteratively aggregate and 

transform information from connected neighbors. Each node 

updates its representation by combining its features with those 

of its neighbors through neural network layers.    
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Fig. 2 Input graph and GNN Working [32] 

 
Thus, GNNs can easily capture complex spatial 

dependencies, making them suitable for fertilizer optimization 

applications in agriculture. The working of GNN and the 

Graph structure is shown in Figure 2. 

 

This study's primary goal is to forecast the ideal 

fertilization range while considering regional variances. GAT 

is a type of GNN that appears to be an appropriate choice. 

GATs dynamically assign weights to nodes and edges based 

on their importance. Here, a graph-based representation is 

applied where nodes (vertices) refer to farmlands, basically, 

districts in a state, and edges represent relationships between 

such regions based on geographic proximity. Each node 

contains node features with more elaborate information about 

the soil pH level, nutrient availability, and the crop mainly 

cultivated in that area. The edges are enriched with edge 

features that encode the relationships' precise nature, like 

whether two regions are adjacent or not and up to which 

degree the similarity in temperature and rainfall trends exists. 

This design provides a detailed and comprehensive model for 

farmlands and their interactions. 

 

3.2.1. Graph Notation 

The representation of a graph is Graph (V1, E1), where 

V1 represents farmlands, E1 represents relationships between 

regions, Node attributes are represented, including soil, 

weather, crop, and geospatial data, and Edge weights are 

defined as capturing proximity or similarity metrics. Each 

node in the graph represents a farmland and is characterized 

by a feature vector containing soil nutrients and geospatial 

coordinates specified by latitude and longitude. These features 

comprehensively describe each farmland's characteristics, 
allowing detailed analysis and prediction. Each edge in the 

graph is defined by features, including weights representing 

specific relationships between adjacent nodes based on past 

patterns. Adjacency is binary, with 1 representing adjacent 

farmlands and 0 representing no direct connection. In addition, 

soil similarity is treated as a continuous value (e.g., 0.8), 

representing the degree of similarity in soil properties between 

adjacent nodes. An attention mechanism is used to learn 

dynamic weights for the edges. The model concentrates on the 

most pertinent connections for learning since attention scores 

are calculated for each edge according to the predefined 

weights and the node attributes of the connected nodes (u and 

v). Edge weights are dynamically adjusted, and a graph 

reduction step removes unimportant edges, reducing noise in 

the learning process. 

3.2.2. Feature Transformation 

Before computing attention, the raw feature vectors of the 

nodes are linearly transformed into a new representation space 

using a learnable weight matrix W. This transformation, as 

represented in equation 1, ensures that the features are 

compatible with subsequent attention computations. 

 

ℎ′𝑢 = 𝑊. ℎ𝑢             (1) 

 

Where ℎ𝑢the feature of node u and W is the weight 

matrix, the transformed feature ℎ′𝑢 is then used for the 

attention calculation. 

 

3.2.3. Attention Coefficients 

The attention mechanism determines the importance of 

each neighboring node 𝑣 for a target node u with equation 2. 

The modified characteristics of connected nodes and any edge 

attributes are used to compute attention scores for every edge 

(u, v). 

 

𝛼𝑢,𝑣 =
exp⁡(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[ℎ′𝑢||ℎ′𝑣||𝑒𝑢,𝑣]))

∑ exp⁡(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[ℎ′𝑢||ℎ′𝑘||𝑒𝑢,𝑘]))𝑘∈𝑁(𝑢)
           (2) 

 

Where,  

 a - is a learnable attention vector. 

 || - denotes concatenation 

 eu,v - is the edge feature 

 

A learnable attention vector ‘a’ is applied to ascertain 

each feature's contribution to the concatenation, letting the 

model concentrate on crucial elements of the edge and node 

characteristics. The nonlinear activation function LeakyReLU 

is applied to the weighted features, introducing nonlinearity to 

assist the model in capturing complicated relationships within 

the graph. Finally, Softmax normalization ensures that the 

attention scores⁡𝛼𝑢,𝑣 for all neighbors v∈N (u) sum to 1, 

enabling the model to distribute focus among the neighbors 

during feature aggregation proportionally. 

 

3.2.4. Feature Aggregation 

Once the attention scores 𝛼𝑢,𝑣 are computed, the features 

of the nearby nodes are combined to update the target node’s 

(u) feature representation. Each neighbor’s contribution is 

weighted by its attention score, as shown in Equation 3. 

 

ℎ′𝑢 = 𝜎(∑ 𝛼𝑢,𝑣 .𝑊. ℎ𝑣𝑣∈𝑁(𝑢) )           (3) 

Where, 

𝑊.: The transformed feature vector of the neighbor node 

v is projected into the same space ℎ𝑢. 

𝛼𝑢,𝑣: The attention score, indicating how much influence 

v's features have on u. 
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σ: ReLU, used on aggregated features to introduce 

nonlinearity and capture more complex patterns 

3.2.5. Multi-Head Attention(MHA) 

Varied associations are recorded using MHA to improve 

the model's learning ability. Rather than a single attention 

mechanism, numerous separate attention heads are used. Each 

head learns a different set of attention scores and aggregates 

features uniquely. 

 

3.3. Transformers Model 

Transformers are highly effective for learning temporal 

patterns in sequential data. Once the spatial dependencies are 

captured, the enriched feature matrix is passed to the 

transformer to model temporal relationships (growth stages 

and climatic conditions over time). The transformer employs 

self-attention processes to learn the relationships between 

distinct time steps. 

 

3.3.1. Scaled Dot Product Attentions 

Each input feature is linearly transformed into three 

separate matrices: Query (Q), Key (K), and Value (V) using 

equation 4. These transformations are learned parameters that 

let the model focus on certain relationships. The attention 

mechanism computes scores between queries and keys using 

the scaled dot product: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉             (4)  

Where 

𝑑𝑘 - Dimension of key vectors 

𝑄𝐾𝑇⁡- Computes the similarity between the Q and K. 

Softmax - converts the similarity scores into a 

probability distribution, emphasizing essential 

connections. 

V is the values weighted according to the calculated 

attention scores. 

 

This [33] mechanism determines the importance of each 

time step relative to others by calculating attention scores and 

weighting V values accordingly. 

 

3.3.2. Multi-head Attention (MHA) 

In MHA, multiple attention mechanisms operate 

simultaneously and independently. Each attention head 

computes its own Q, K, and V matrices by applying separate 

linear transformations to the input, as shown in Equation 5. By 

combining the outputs from all heads, the model achieves a 

richer and more comprehensive representation of the input, 

enhancing its ability to learn complex patterns effectively. 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , …… , ℎ𝑒𝑎𝑑𝑛)𝑊
0 (5) 

Where 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) for each 

attention head  

𝑊0 is a learnable output weight matrix 

3.3.3. Transformer Layer Output 

 

Output=Norm(X+ AttentionOutput )               (6) 

Where  

Attention Output is 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉, ) and X is input 

to the transformer layer. 

 

The training is stabilized by merging input X with the 

output from multi-head attention and normalized using layer 

normalization. This results in a temporal representation that 

effectively captures the evolution of dynamic factors with 

respect to time. The dynamic factors include climate changes, 

crop growth stages and soil characteristics. 

 

3.4. The Fusion Layer 

Combining these two architecture models enables the 

hybrid model to join insights related to latitude and temporal 

factors to synthesize a comprehensive understanding of the 

interaction between different fields and their temporal 

variability, represented using equation 7. This is applied in the 

present study to forecast optimal fertilization needs based on 

spatial relationships and temporal variations in climatic and 

agricultural conditions. This combination enables the model 

to effectively assimilate local (GAT) and global (Transformer) 

connections. 

 

𝐹ℎ𝑦𝑏𝑟𝑖𝑑⁡ = ⁡𝜎(𝑊𝑔𝑎𝑡𝐻𝑔𝑎𝑡(𝐾) +𝑊𝑡𝑟𝑎𝑛𝑠𝑍𝑡 + 𝑏)    (7) 

 

Where 

𝑊𝑔𝑎𝑡: are learnable weights for the GAT output 

This represents the output from the Graph Attention 

Network after K layers 

𝑊𝑡𝑟𝑎𝑛𝑠:⁡is the weight matrix for the Transformer’s output 

at time step t 

b: represents a bias term. 

 

The self-learning fusion layer dynamically balances GAT 

and Transformer contributions, while uncertainty 

quantification estimates confidence levels for fertilizer 

predictions. 

 

3.5. Uncertainty Quantification 

Uncertainty quantification provides a measure of 

confidence in the fertilizer predictions generated by the model. 

By quantifying uncertainty, the model can indicate when 

predictions are highly confident or when caution is needed due 

to uncertain data conditions. This helps farmers make 

decisions, reducing the risk of over- or under-fertilization, 

resulting in better crop yield and sustainable resource 

utilization. This is especially useful in agriculture, where 

decisions must consider variability and risk. The model is 

designed to predict two outputs for each input: 

 

a) Mean (μ): The expected value of the fertilizer 

requirement. 
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b) Variance (σ2): The uncertainty or confidence interval 

around the predicted mean. 

 

Mathematically, the model outputs: 

Prediction=𝐹𝐶μ(𝐹ℎ𝑦𝑏𝑟𝑖𝑑) 

Uncertainty=⁡𝐹𝐶σ2(𝐹ℎ𝑦𝑏𝑟𝑖𝑑) 

 

Where Fhybrid represents the fused feature representation 

from the hybrid model.  

 
3.6. The Model Training and Evaluation 

Processing the graph (G) and temporal data is the model's 

initial training and assessment stage. The Transformer 

analyses the temporal data to capture sequential dependencies, 

while GAT processes the graph to model spatial interactions 

during the forward pass. The outputs from both components 

are then fused into a single representation. A combined loss 

function (L) is used for training, and terms of Huber Loss and 

uncertainty regularization are monitored. The model outputs 

the predicted mean (μ) and the variance (σ2) during inference. 

Confidence intervals are then computed using the variance, 

giving a range that the actual value is anticipated to fall inside 

with a given degree of confidence. For example, a 95% 

confidence interval can be computed as: 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒⁡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = μ ± z. √σ2               (8) 

 

Where z is the z-score corresponding to the desired 

confidence level, this quantifies the model's uncertainty, 

offering actionable insights for decision-making. 

 

The model is evaluated using weights trained with Adam 

on a separate test set. Metrics, MAE, RMSE, and Uncertainty 

Calibration Error are computed to assess accuracy and 

reliability. The model is tested across two locations and crop 

types to ensure good generalization. Figure 3 depicts the 

system's workflow. The outputs from the GAT, capturing 

spatial relationships between fields, and the Transformer, 

modelling temporal dynamics like climate changes, are 

combined to predict optimal fertilization ranges for each field. 

This hybrid approach considers inter-field influences and 

time-dependent factors, providing a comprehensive solution 

for precision agriculture. This model introduces several novel 

advancements that enhance its effectiveness. Dynamic edge 

weighting enables better representation of relationships 

between farmlands by adjusting edge importance in real-time. 

Hierarchical and adaptive feature aggregation improves 

learning by allowing the model to prioritize relevant features 

at different levels of granularity. Multi-resolution embedding 

captures local and global patterns, enhancing the model’s 

understanding of spatial and temporal dependencies. 

Additionally, self-learning fusion dynamically balances 

spatial and temporal contributions, ensuring optimal decision-

making without manual tuning. Finally, the model integrates 

Transparency and uncertainty estimation, making predictions 

more interpretable and reliable for agricultural systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Workflow of framework 

 

4. Results and Discussion  
Because of their distinct agricultural features, Punjab and 

Tamil Nadu offer a suitable basis for evaluating the model's 

ability to consider regional variations of farm data for fertilizer 

optimization. Punjab, located in North India, is known for 

large-scale wheat and rice farming. It relies heavily on 

irrigation from the Indus River and benefits from fertile, 

loamy soil, which supports high crop yields. However, 

intensive monoculture farming and high-intensity cultivation 

practices have raised concerns about long-term soil health. 

Fertilizer usage in Punjab is significantly high, with large 

amounts of nitrogen, phosphorus, and potassium applied to 

sustain productivity in its irrigation-dependent systems. 

Figure 4 shows the soil nutrients map of Punjab. 

 

In contrast, Tamil Nadu, situated in South India, features 

a more diverse agricultural landscape, cultivating crops such 

as paddy, cotton, and groundnuts. Varied soil types, including 

red and black soils, support the state’s agriculture. It employs 

rain-fed and irrigated farming systems, often relying on the 

Kaveri River. Fertilizer use in Tamil Nadu is more moderate 

than in Punjab, emphasising tailoring inputs to specific crops 

and addressing regional soil deficiencies through 

micronutrient management. The contrasting agricultural 

systems, soil types, and climatic conditions between Punjab 

and Tamil Nadu provide a robust framework for testing the 

model’s adaptability to varying agricultural parameters, 

ensuring its effectiveness across diverse farming contexts. The 

soil nutrients map of Tamil Nadu is displayed in Figure 5. 
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Fig. 4 Soil nutrients map of Punjab (micronutrients) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Soil nutrients map of Tamil Nadu 
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Both soil maps, which are for 2024-2025, demonstrate the 

regions' diversity. Data is divided into spatial and temporal 

data. Each dataset is separately designed for Punjab and Tamil 

Nadu. The dataset includes various attributes, such as district, 

which represents the name or identifier of the district where 

data is collected. Soil nutrient levels are measured across 

different ranges: Nitrogen, Phosphorus, and Potassium in 

high, medium, and low ranges. Organic Carbon (OC) levels 

are high, medium, or low. The dataset also includes Latitude 

and Longitude, representing the geographical coordinates of 

the district’s central point or sampling location. The longitude 

and latitude information is collected from [34]. 
 

The temporal data for the study is collected from [35], 

which consists of temperature, humidity, wind speed, and 

rainfall. The crop data and growth stages are collected from 

[36]. The GAT Transformer model was developed 

considering these datasets and was first trained on the Tamil 

Nadu dataset.  
 

The graph is built using the attention mechanism, whereas 

the adjacency matrix is used to decide the edges of the nodes. 

The graph structure generated for Tamil Nadu is represented 

in Figure 6.  

 
Fig. 6 Graph representation of Tamil Nadu 

The graph is highly connected, meaning each node has 

multiple neighbours influencing it. It suggests strong 

interdependence between regions. The feature distribution, 

represented by a colour gradient, highlights bright yellow 

nodes with the highest feature values and dark purple nodes 

with the lowest.  

This variation suggests that the GAT model has assigned 

different feature values based on learned relationships. The 

node labels, which correspond to the district, indicate that 

Node 16 (blue), which represents the TUTICORIN district, 

and one bright yellow node, seven, which represents the 

ERODE district in the centre, are key nodes in the network. 

Since GAT applies attention mechanisms, some nodes 

receive more influence from their neighbours, making the 

yellow-highlighted node potentially a highly influential 

district, possibly due to central positioning or extreme soil 

properties. The dense connectivity of the graph implies that 

the model may be leveraging non-local interactions rather than 

just spatial adjacency, making it essential to check edge 

weights or attention scores to determine the most significant 

relationships. The graph shows that the yellow nodes indicate 

areas with higher fertilizer demand, while regions with similar 

colours likely share identical soil and weather conditions. 

Figure 7 shows the correlation matrix of GAT Output for the 

state of Tamil Nadu. The similarity matrix in GAT embedding 

aids in capturing the relationships between nodes based on 

their learned attributes. Figure 8 shows the similarity matrix 

of GAT output embeddings. 

The GAT output correlation matrix reveals how different 

features interact after message passing, reflecting the model's 

learned relationships. Clusters of red blocks indicate strongly 

related features, while blue regions highlight opposing trends. 

A strong negative correlation suggests that one feature 

corresponds to higher fertilizer demand while another 

indicates a lower need in complementary conditions. This heat 

map represents a similarity matrix showing GAT output 

embedding, where the X and Y axes (1–36) correspond to 

different districts of Tamil Nadu. 

 
Fig. 7 Correlation matrix of GAT Output for the state of Tamil Nadu 

 
The color scale indicates cosine similarity, with yellow 

(~1.0) showing high similarity, green (~0.0 to -0.4) indicating 

moderate similarity, and blue/purple (-0.8 to -1.6) 

representing dissimilar embedding. Diagonal yellow blocks (𝑖, 
𝑖) confirm self-similarity, while clustered green regions 

suggest the model has learned meaningful spatial relationships 

based on soil and adjacency features. Blue/purple patches 

highlight distinct nodes, likely due to differing soil nutrients. 
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Well-defined clusters indicate that the GAT layer effectively 

captures spatial and feature-based dependencies, while sparse 

dark patches suggest significant feature differences among 

specific nodes. 

 
Fig. 8 Similarity matrix 

 
The temporal data is analyzed using the Transformer 

model, which is trained separately on the Tamil Nadu dataset 

and assessed with performance metrics. Agro-climatic zones 

in Tamil Nadu [37] and crop production are available. The 

fertilization prediction is performed using a transformer 

model, and the results from the two models are combined to 

make the final predictions using the fusion model.  

 

The fusion model runs for 100 epochs using MSE loss and 

Adam optimizer, storing loss values for visualization. Finally, 

the model is evaluated using MAE and MSE, and a loss curve 

is plotted to monitor training performance. The model 

achieved an MAE of 4.0952 and an MSE of 144.5147, 

indicating high accuracy and minimal prediction deviation. 

Figure 9 shows the Loss Curve for the Tamil Nadu region data. 

 

The model utilizes specific hyperparameters across its 

GAT, Transformer, and Training components. In the GAT, the 

input dimension is determined by soil and spatial data 

concatenation. In contrast, the hidden dimension is set to 16 

and the output dimension to 8. The edge dimension is 2, 

representing edge attributes, and self-loops are not included in 

the GATConv layer.  

 

The Transformer module has an input dimension of 8 

(matching the GAT output), a hidden dimension of 16 for 

feed-forward layers, two attention heads, and two encoder 

layers, with batch-first processing enabled. The model 

employs the Adam optimizer with 0.001 LR and MSE as the 

loss function for training. Training runs for 100 epochs, with 

target values initialized randomly in the shape of (n_nodes, 1). 

 
Fig. 9 The loss curve for Tamil Nadu 

 

Key hyperparameters are tuned across GAT and 

Transformer during training to optimize the performance. The 

number of hidden units and attention heads for GAT are 

adjusted to enhance feature extraction. In the Transformer 

component, the number of layers, attention heads, and hidden 

dimension is optimized to improve representation learning. 

Fine-tuning is done by varying the LR, batch size and epochs. 

This comprehensive tuning approach ensures the best 

performance for the hybrid GAT-Transformer model. Table 2 

shows the results of hyperparameter tuning. 

 
Table 2. Hyper parameter tuning 

Configuration MAE Score 

GAT(16, 2 heads) + Transformer(2 

layers, 2 heads, 32 hidden) + LR=0.01 
0.245 

GAT(16, 4 heads) + Transformer(3 

layers, 2 heads, 32 hidden) + LR=0.001 
0.198 

GAT(32, 2 heads) + Transformer(2 

layers, 4 heads, 64 hidden) + LR=0.005 
0.152 

GAT(8, 1 head) + Transformer(1 layer, 

2 heads, 16 hidden) + LR=0.01 
0.312 

GAT(32, 4 heads) + Transformer(3 

layers, 4 heads, 64 hidden) + LR=0.001 
0.174 

 

More attention heads in GAT and Transformer improved 

performance, with four heads achieving the best results. 

Increasing hidden dimensions (16 → 64) reduced MAE, and 

an optimal learning rate (0.005) balanced training speed and 

accuracy, while excessive Transformer layers led to 

overfitting. The GAT (32 hidden, four heads) + Transformer 

(2 layers, four heads, 64 hidden) with LR 0.005 achieved a 

final MAE of 0.152 after 100 epochs. 

 

The model is further trained on the Punjab dataset to 

assess the model's ability to generalize across regions. Figure 

10 shows the graph representation of Punjab districts based on 

attention. Bright yellow nodes represent the fertilizer to 
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indicate areas with higher fertilizer demand, while dark purple 

nodes may suggest regions with lower fertilizer requirements, 

as discussed in Tamil Nadu. 

 
Fig. 10 Graph representation of Punjab 

 
Figure 11 shows the similarity matrix of GAT 

Embedding. 

 

 
Fig. 11 GAT Embedding of Punjab District 

 

Finally, the original hybrid model resulted in an MAE of 

approximately 8.22, and the Mean Squared Error (MSE) is 

approximately 529.63. In contrast, the hyper-tuned model 

resulted in an MAE of 2.78, similar to the MAE Given in the 

Tamil Nadu data, proving that the model is unaffected by 

regional variations. Figure 12 shows the loss curve for Punjab 

data.  Trans-regional evaluation has helped to understand how 

well the model can predict fertilization requirements and crop 

yields in different environmental conditions and management 

practices, providing insights into its robustness and 

adaptability. The model has given similar results for data from 

the state of Punjab.  

 

 
Fig. 12 Loss curve for Punjab 

 
The suggested GAT-Transformer model is compared to 

ML models and CNNs for benchmarking, focusing on 

demonstrating its superior ability to optimize fertilizer use.  

 

Conventional ML models, including Decision Trees, 

Random Forest, and XGBoost, are geared toward structured 

tabular data and not spatial information, which disadvantages 

them in their ability to leverage regional patterns within soil 

and weather conditions.  

 

Moreover, they fail to consider spatial relationships 

among agricultural areas, resulting in generalized and less 

accurate fertilizer recommendations. Conversely, CNNs are 

good at discovering local spatial patterns of grid-based farm 

data like satellite imagery and soil maps.  

 

Still, they are poor at dealing with sequential 

dependencies, so they perform less well in modelling temporal 

variations in fertilizer requirements due to weather and crop 

cycles. Conversely, the GAT-Transformer hybrid model 

leverages the best of both spatial and temporal learning.  

 

The GAT learns intricate spatial relationships between 

farmlands, providing location-specific fertilizer 

recommendations. At the same time, the Transformer module 

efficiently models temporal dependencies, responding to 

climate fluctuations, seasonal trends, and changing soil health. 

Through its spatial and temporal aspects, the model provides 

extremely accurate region-specific fertilization plans, 

outperforming conventional methods in terms of precision and 

responsiveness. Table 3 compares the proposed model with 

existing models. 
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Table 3.  Features of hybrid model vs Traditional models 

Feature Traditional Model 

GAT-

Transformer 

Hybrid Model 

Spatial 

Relationships 

Limited (distance-

based) 

Captured via 

GAT’s attention 

Temporal 

Trends 

Basic time-series 

models 

Advanced 

sequential 

modelling via 

Transformer 

Data Integration 

Separate processing 

for different types 

of data 

Unified 

framework for 

spatial-temporal 

data 

Precision in 

Fertilization 

Generalized 

recommendations 

Targeted and 

dynamic 

strategies 

Scalability 
Region-specific 

models required 

Scalable across 

regions 

 

Stringent statistical testing validated the potency of the 

envisaged GAT-Transformer model. Paired t-tests also 

indicated a profound improvement in predictability (p < 0.01), 

demonstrating that the model performs much better than 

ordinary methods with complete confidence. The upgrades are 

specific and not chance but are guaranteed by the potency of 

the model to identify patterns in space-time. Further, a feature 

importance analysis identified GAT’s essential role in 

acquiring spatial relationships, regional soil properties, and 

environmental factors impacting fertilizer suggestions most 

significantly. This confirms the model's strength in 

comprehending localized agricultural situations for accurate 

fertilization plans. Figure 13 shows the comparison of 

proposed models with existing studies. 

 

 

Fig. 13 Model accuracy comparison 

 

Building on the findings of this study, an interactive web-

based system has been developed to help farmers optimize 

fertilizer usage effectively. The system features an intuitive 

dashboard where farmers can input key parameters such as 

region, crop, and soil type. The proposed machine learning 

model processes these inputs in real time at the system's core, 

generating region-specific fertilization recommendations. The 

system is integrated with the Open Weather API, which 

provides up-to-date environmental data. This weather data is 

seamlessly incorporated into the model to refine predictions 

further. By providing simultaneous data analysis and adaptive 

ML, the system empowers farmers with precise, data-driven 

insights, enabling them to make informed decisions that 

maximize crop production, minimize fertilizer waste, and 

promote sustainable agricultural practices. Figure 14 shows 

weather information and other features of the system's user 

interface. The model was piloted, and data is still being 

collected to enhance the utilization of fertilizers in Punjab and 

Tamil Nadu. Sample data was collected from the Erode district 

of Tamil Nadu and the Amritsar district of Punjab.  

 

It computed soil type, crop requirements, and 

environmental conditions to maximize fertilizer application. 

Both regions demonstrated increased nutrient efficiency and 

improved crop yields. In Punjab, the model minimized the 

over-fertilization of Nitrogen (N) fertilizers, particularly urea. 

It advised a 20–30% decrease in nitrogen application without 

impacting wheat and rice yields. This prevented the loss of 

nitrogen and enhanced sustainability. The model also 

corrected excessive Phosphorus (P) content due to successive 

DAP applications. It advised decreasing the application of 

phosphorus and using organic fertilizers, which enhanced soil 

health. Moreover, crop fields that adhered to these organic 

fertilizer guidelines experienced an increase of 12% in soil 

organic carbon, resulting in improved nutrient capture. In 

Tamil Nadu, the model fine-tuned fertilizer advice concerning 

soils and various cropping systems. Balanced phosphorus use 

in rice-pulse farming boosted nitrogen fixation by 18% in 

pulses. In rain-fed areas, maximized potassium utilization 

made millet and sugarcane crops more drought-resistant. 

Potassium deficiencies were corrected, which resulted in a 9% 

increase in yield in these crops. The model is further refined 

to recommend the application of biofertilizers like 

Azospirillum and Mycorrhiza, which can enhance nutrient 

uptake by 15% and minimize reliance on chemical fertilizers. 

 

Overall, the model enhanced crop yields by 8–15% and 

decreased synthetic fertilizer application by 10–25%, varying 

with the region and crop. In Punjab, nitrogen use efficiency 

showed considerable improvement, whereas in Tamil Nadu, 

consistent potassium and phosphorus applications were 

critical factors in yield increases. Farmers were positively 

responsive to the suggestions of the model. In Punjab, 78% of 

farmers surveyed saved money on fertilizers without 

sacrificing yield. In Tamil Nadu, 85% of farmers noticed 

improved soil conditions and drought resistance in millet and 

sugarcane. Figure 15 shows the farmer’s feedback. Despite 

being successful, the model has certain limitations. Further 

7
8

.4

8
2

.1

9
1

.7

Accuracy

Model Accuracy Comparison

Traditional ML Models CNN Models

GAT-Transformer



Omprakash Mandge & Suhasini Vijaykumar / IJECE, 12(5), 184-199, 2025 

 

196 

refinement of recommendations is required based on more 

region-specific field data. Real-time soil testing through 

sensors would render fertilizer recommendations even more 

precise. A mobile-based advisory system can also assist 

farmers in accessing and using the recommendations in the 

field. 

  

Fig. 14 User Interface of the system covering all aspects 
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Fig. 15 Farmer’s feedback 

The Hybrid GAT-Transformer model proposed here is a 

significant improvement in the field of fertilization 

optimization because it effectively deals with spatial and 

temporal complexities that are inherent in agricultural 

systems. The GAT module of the model, in particular, 

facilitates the incorporation of complex spatial relationships 

between fields. Concurrently, the Transformer module 

captures temporal dynamics, such as crop growth phases and 

seasonal climatic trends. The spatial-temporal aware 

architecture facilitates highly context-specific, attentive 

fertilizer recommendations, a critical drawback of numerous 

earlier works. The model's versatility to local conditions was 

evaluated through experimental deployment over two 

disparate agro-climatic zones-Punjab and Tamil Nadu. Results 

indicated higher percentages of farmer satisfaction in cost 

savings, soil enrichment, and yield satisfaction, as evident in 

survey feedback statistics. The hybrid model outperformed 

LSTM, GCN, and other benchmark models, achieving a 6-

12% boost in recommendation accuracy. A significant 

strength of the suggested framework is that it can dynamically 

refresh recommendations by using real-time crop and weather 

data as soon as fed into the system, which is unavailable in 

most static, pre-trained models presented in the literature.  

 

Secondly, by including soil health and environmental 

sustainability indicators in the optimization step, the model is 

very close to national agricultural policies that ensure resource 

conservation in the long term. 

 

5. Conclusion  
Crop simulation models rely on high-quality, granular 

data, but data from agencies like ICAR may lack consistency. 

Limited internet access and low digital literacy in rural areas 

necessitate offline or edge-computing solutions. Calibration 

for specific regions requires extensive field trials, making the 

process time-consuming and resource-intensive. Addressing 

these challenges is critical for effective model deployment in 

Indian agriculture. The proposed model provides a robust way 

to suggest optimal fertilization irrespective of regional 

differences. The model can be generalized for any region. The 

GAT Layer captures spatial relationships, whereas the 

Transformer layer captures temporal data. In conclusion, 

considering India's diverse agricultural landscape, 

characterized by varying soil types, climates, and farming 

practices, this adaptive approach enables dynamic updates to 

recommendations. This enhances both the precision and 

relevance of the guidance provided to farmers.
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