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Abstract - Edge networks consist of devices that analyze different data types and models. A knowledge map can be developed 

in device scheduling using homogeneous or heterogeneous models. In this study, a Federated learning algorithm is used to 

minimize communication overhead by distributing device information in batches, ensuring that all devices have an equal 

opportunity. The federated learning method is utilized in this study to allocate spectrum between primary and secondary users 

by categorizing them using standard parameters such as bandwidth utilization, energy, and a novel metric known as signal-

to-noise ratio. Here, the spectrum is allocated using the deep learning technique. However, in other algorithms, global loss 

minimization was not considered for the model analysis. Fortunately, in this study, model analysis was carried out using deep 

learning architectures such as Convolution Neural Networks for feature extraction, pooling layers for downsampling, and 

accessing the performance using evaluation metrics. The findings indicated that knowledge mapping could also be improved 

by improving the model. 

Keywords - Heterogeneous network, 5G, Deep learning, Knowledge mapping, Cognitive radio network, Spectrum allocation, 

Federated Learning.

1. Introduction 
Many different devices can now communicate with one 

another and share data through a network; this data is then 

saved on a central server, which is known as an edge server. 

Multiple devices comprise the edge network, each 

conducting analysis using a unique combination of models 

and data. Each device should have a suitable schedule for 

using the edge network's resources in such situations. A 

knowledge map can be used to achieve the goal of accurately 

scheduling the devices. This knowledge map can be 

formatted in a way that works for either homogeneous or 

heterogeneous models. 

Homogenous models will keep the data and machine 

learning the same across all devices. In circumstances like 

this, the knowledge map can be readily framed. While the 

heterogeneous models allow for unique data and machine 

learning models on each device. When this happens, the 

process of forming the knowledge map will be challenging. 

Federation learning can overcome this obstacle, which is the 

construction of a knowledge map in a heterogeneous 

network. 

In [1, 2], a strategy for heterogeneous networks based on 

load balancing and using a traditional scheduling approach 

was suggested. In [3], the scheduling was improved even 

further by using the network behaviour gleaned by the double 

deep Q learning technique. While in [4], the difficult handoff 

that occurs in a heterogeneous network is reduced by 

applying user experience and load-balancing approaches. 

The Q learning is improved in [5] using the user experience 

during scheduling. In [6], along with scheduling, minimizing 

bandwidth consumption also involved employing caching 

within the base stations. In [7], the optimization method 

contributes to an even higher level of improvement in device-

to-device communication. In [8, 9, 10], a concise assessment 

of the functions that machines and deep learning algorithms 

play in wireless networks was presented. 

The algorithms described above assessed the properties 

of the device networks primarily for the purpose of 

scheduling. However, in federated learning, in addition to the 

node features, the purpose of the device is also studied in 

order to ensure resource allocation and usage most 

effectively. In light of what was found in [11], a combination 

of game theory and federated learning was used to schedule 

devices. On the other hand, [12] scheduling events using the 

network service and its characteristics. The cache was used 

by [13] in the same way as [6] did, but it integrated with user 

properties and made use of a separate policy for sharing the 

information. For wireless networks, [14, 15] conducted a 

cursory investigation into the federated learning strategy. In 
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[16], a hierarchical game-theoretic framework for optimizing 

edge association and resource allocation in Hierarchical 

Federated Learning (HFL) systems. In [17], a two-layer 

Federated Learning (FL) framework is tailored for 6G-

enabled Internet of Vehicles (IoV) environments. The 

proposed model leverages a distributed end-edge-cloud 

architecture to enhance learning efficiency and accuracy 

while preserving data privacy and minimizing 

communication overhead. 

The deployment of Federated Learning (FL) in energy-

harvesting wireless networks, where base stations equipped 

with massive Multiple-Input Multiple-Output (MIMO) 

systems serve users powered by independent energy 

harvesting sources [18]. In [19], it provides an overview of 

Federated Learning (FL), focusing on its types, architectures, 

challenges, and potential applications. It discusses various FL 

paradigms, including horizontal, vertical, and transfer 

learning, and examines client-server and peer-to-peer 

architectures.  

Explores the concept of Knowledge-Defined 

Networking (KDN), an architectural paradigm that integrates 

Software-Defined Networking (SDN), network telemetry, 

and Machine Learning (ML) to achieve autonomous and 

intelligent network management, particularly in the context 

of future 6G wireless networks [20]. In [21], it introduces a 

Knowledge-Aided Federated Learning (KFL) framework 

tailored for energy-constrained wireless networks. Unlike 

traditional federated learning, which requires devices to share 

entire model parameters, KFL enables devices to 

independently design their machine learning models and 

share only high-level data features, termed "knowledge".  

In [22], it addresses the challenges posed by client 

heterogeneity in Federated Learning (FL) systems, which can 

lead to increased training latency and straggling during server 

aggregation. In [23], it introduces a Federated Learning (FL) 

framework that incorporates a lightweight differential 

privacy mechanism to enhance data security while 

maintaining model performance. A comprehensive reflection 

on the current state and future directions of Federated 

Learning (FL) as applied in practical scenarios [24]. 

By modelling worker behaviour through evolutionary 

game theory and leveraging a Stackelberg differential game 

for incentive mechanisms, the study enables dynamic, 

decentralized coordination among workers, edge servers, and 

the model owner. 

The proposed federated learning distinguishes itself 

from other schemes and has the following impacts. The 

federated learning approach combines both resource 

utilization and network energy efficiency for scheduling the 

devices. However, it is mostly applied to homogeneous 

models. Only a few works were analyzed for heterogeneous 

models with two or three layers. 

• It is also mostly used to combine the model parameters 

for the classification process. 

• The SNR was also not included in the analysis. 

• The federation algorithm is also not applied for device 

scheduling. 

 

As a result, an optimal federated learning technique for 

device scheduling in a whole heterogeneous network 

employing a deep learning approach is proposed. In addition 

to that, it incorporated SNR and Model error for the federated 

learning that was performed in device scheduling. 

The following outline should help you understand how 

the paper is structured: The mechanisms for scheduling the 

operation of the devices are discussed in Section 2. In 

sections 3 and 4, a concise explanation of the procedures 

involved in the suggested method and the outcomes of using 

it has been shown. In section 5, a summary of the suggested 

method's advantages is provided, and in part 6, the method's 

potential applications are discussed. 

2. Literature Review 
Fletscher et al. (2018) utilized a predictive controller for 

energy utilization to operate the heterogeneous wireless 

sensor network. Here, the heterogeneous network was 

operated using grid and renewable energy sources. In that, the 

author proposed a model predictive controller to estimate the 

network load and utilize energy from renewable instead of 

the grid. This approach helps minimize grid utilization but 

can be further enhanced by using the routing and scheduling 

of data. 

Huang et al. (2018) also proposed a load-balancing 

concept for the femtocells of the heterogeneous networks. 

However, they utilized energy efficiency and load balancing 

by gathering the device information from the base station. 

Then, the base station employed dynamic switching off and 

on of femtocells using the incoming load and its own node 

parameters. Its performance can be enhanced further by using 

optimization and learning algorithms. 

Zhao et al. (2018) employed multiple algorithms to 

schedule the nodes in the heterogeneous network. Here, they 

employed multi-agents to gather information from the nodes. 

Then, it utilized a double deep Q reinforcement algorithm to 

learn the network behavior for optimal scheduling. This 

performance is good compared to the existing one, but its 

computational time is high because it uses multiple 

algorithms. 

Kobayashi et al. (2018) proposed a new approach for 

efficient transmission in heterogeneous networks. Here, they 

employed user experience, load balancing, and network 

properties to select the network's access points. Because the 
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access points should possess higher energy and processing 

speed for scheduling, they proposed user experience-based 

access point selection to minimize the hard handoff. 

Wang et al. (2019) utilized the distributed Q-learning 

network instead of double Q-learning for scheduling. 

However, they employed network service as one of the 

parameters for node scheduling. This approach is designed 

only for the two-tier heterogeneous network. 

Haw et al. (2019) proposed a new approach for saving 

the bandwidth along with the node's energy. They employed 

the cache process in the base station to save the most popular 

information. This helps to reduce the multiple searches for 

data in the network. Overall, it helps the network's node 

energy and bandwidth. 

Chen et al. (2019) proposed an optimization algorithm 

for efficient spectrum utilisation by the devices in 

heterogeneous networks. Because in a heterogeneous 

network, the communication between the devices is highly 

difficult as it utilizes most of the higher spectrum. Hence, this 

problem was overcome using an optimization algorithm with 

different propagation conditions and switching mechanisms 

between micro and millimeter wavebands. 

Lim et al. (2020) proposed a federated learning approach 

for data transmission in heterogeneous networks. In this, they 

employed learning to load the model parameters from 

different devices without saving the data.  

 

This helps to preserve the original information. 

However, the game theory approach is used to describe the 

user nature. By using federated learning and game theory, the 

information is shared securely. 

Zhang et al. (2020) employed the deep learning 

algorithm with the Lagrange decomposition technique to 

allocate the power for the devices in the heterogeneous 

network. Here, the allocation is based on node energy 

efficiency and then network service. Using these two pieces 

of information, power and bandwidth will be allocated to the 

devices in the network. 

Li et al. (2020) also employed the cache process to 

preserve the resource bandwidth. However, they employed a 

smart way of caching by using the user experience and the 

device properties. 

Lim et al. (2021) enhanced their federated learning by 

using two layered architectures in a hierarchical manner for a 

vehicle-based heterogeneous network. In this case, the device 

selection is also based on the game theory for both layers.  

Zhou et al. (2021) also proposed a two-layered federated 

network for vehicle networks. However, they employed a 

distributed learning pattern for device scheduling and 

reducing the communication overhead. 

Hamdi et al. (2021) also employed the federated learning 

approach to minimize grid power utilization by harvesting 

more energy from renewable energy sources. This minimizes 

the grid power utilization and enhances the network size by 

employing more nodes for efficient communication. Singh et 

al. (2022) and Ashtari et al. (2022) analyzed the federated 

learning and knowledge mapping in wireless networks. 

2.1. Research Gap 

Based on the above analysis, the following points were 

observed 

• The federated learning approach combines resource 

utilization and network energy efficiency to schedule the 

devices. 

• But it is mostly applied to homogeneous models. Only a 

few works were analyzed for heterogeneous models with 

two or three layers. 

• It is also mostly used to combine the model parameters 

for the classification process. 

• The SNR was also not included in the analysis. 

• The federation algorithm is also not applied for device 

scheduling. 

3. Proposed Method 
In this study, federated learning was used to distribute 

spectrum to secondary users in homogenous and 

heterogeneous networks. This allowed the researchers to 

overcome obstacles such as bandwidth utilization, energy 

consumption, and signal-to-noise ratio. The allocation of 

communication channels is accomplished through the use of 

device scheduling. In this scenario, the different devices each 

make use of a deep learning algorithm in order to complete 

the recognition process. 

3.1. System Model 

The proposed algorithm is tested on an edge network 

consisting of N devices connected to an edge server, as shown 

in Figure 1. It illustrates the system architecture used in the 

proposed federated learning framework for spectrum 

allocation. The model consists of an edge server and multiple 

edge devices (e.g., Device 1, Device 2, ..., Device N). 

3.1.1. Edge Server 

It acts as the central coordinating unit that collects local 

model updates from scheduled devices, aggregates the 

updates to improve a global model, and broadcasts the 

updated model back to the devices.  

 

3.1.2. Edge Devices 

These are the participating edge nodes (e.g., IoT devices, 

mobile devices) that possess local data and perform 

individual deep-learning tasks. Each device trains a model 
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locally and may be scheduled or unscheduled in each training 

round. 

 

3.1.3. Scheduled Devices 

Actively participate in federated learning during the 

current round by sharing their local updates with the edge 

server.  

 

3.1.4. Unscheduled Devices 

Do not participate in that particular round due to 

constraints like low battery, poor network conditions, or 

system scheduling policies. 

 

3.1.5. Local Knowledge 

It Represents the individual model updates or insights 

generated by each device based on its local dataset 

 

3.1.6. Device Selection and Global Broadcasting 

This denotes the communication flow from the edge 

server, where selected devices are chosen to contribute to the 

global model, and the aggregated global model is broadcast 

back to them. 

 

 

 

 

 

 

 

 

 
Fig. 1 Heterogeneous network model 

Each individual device is denoted as 1, 2, 3 and N 

devices. The device notation is as follows: 

Device notation=1,2,3...N              (1) 

Each device has different datasets and classification 

processes. The datasets in the devices are noted as follows: 

Dataset=D1, D2, D3...DN            (2) 

The corresponding classification process is as follows: 

Task=T1, T2, T3...TN                     (3) 

There is no overlapping between the datasets in the 

devices, and the dataset samples in the tasks are as follows. 

Dk, T=|Dk, T|                 (4) 

With this information, the federated learning process 

allocates the bandwidth for a device to share its information 

based on its energy and signal-to-noise ratio values. 

3.2. Federated Learning 

This paper aims to minimise the overhead 

communication in the edge server while updating the device 

information. Hence, the communication overhead is reduced 

by sharing their information in batches.  

 

This helps reduce the communication overhead and 

gives all communication devices equal chances. The steps in 

federated learning are as follows: 

3.2.1. Selection 

In this algorithm, the devices communicate circularly, as 

indicated by the parameter 

 

𝑆𝑛,𝑟. The selection of a device is as follows: 

Sn,r = {
1 if device n is selected

0; otherwise
      (5)  

In this, the r indicates the rounds 1, 2, 3… R rounds, and 

n indicates the devices. 

3.2.2. Broadcast 

Once the devices are selected, the edge server will start 

to broadcast the information between the selected devices. 

This process is called the global knowledge update process 

and is denoted using 𝐺𝑟. 

This global update in terms of tasks is given as follows: 

𝐺𝑟 = 𝐺1,𝑟 , 𝐺2,𝑟 , … , 𝐺𝑡,𝑟          (6) 

Here, the t denotes the tasks in each device; the 

individual tasks of each device will be updated in all the 

scheduled devices in each round for training. 

3.2.3. Training 

Once the devices receive the global knowledge, they 

start to update their local feature and its corresponding 

predictor using the following equations: 

𝑓𝑛,𝑟,𝑙+1 = 𝑓𝑛,𝑟,𝑙 − 𝜂𝑢(∇𝑢𝐹𝑛(𝑓𝑛,𝑟,𝑙 , 𝑝𝑛,𝑟,𝑙  ) + 𝜆∇𝐿𝑛(𝑓𝑛,𝑟,𝑙)) (7) 

In this, ∇ is the gradient operator, 𝐿𝑛 is the local 

knowledge of own device, 𝜂𝑢 is the feature extractor learning 

rate, (𝑓, 𝑝 ) is the loss of the feature extractor. The 

corresponding predictor is as follows: 

 

 

 

 

 

Edge Server 

(Global 

Knowledge 

Aggregation) 

 

 

Device 1 

(Scheduled) 

 
 

Device 2 

(Unscheduled) 

 

 

Device N 

(Scheduled 

Device selection and Global broadcasting 

Local knowledge 
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𝑝𝑛,𝑟,𝑙+1 = 𝑝𝑛,𝑟,𝑙 − 𝜂𝑣(∇𝑣𝐹𝑛(𝑓𝑛,𝑟,𝑙 , 𝑝𝑛,𝑟,𝑙  ) + 𝜆∇𝐿𝑛(𝑓𝑛,𝑟,𝑙)) (8) 

In this, ∇ is the gradient operator, 𝐿𝑛 is the local 

knowledge of own device, 𝜂𝑣 is the feature extractor learning 

rate, (𝑓, 𝑝 ) is the loss of the feature extractor. To balance the 

predictor and the feature training process, the 𝜆 is used. 

3.2.4. Mapping 

After the completion of training in scheduled devices, 

each device predicts the class with the gained knowledge and 

data. Again, the knowledge will be updated and broadcast 

between the devices. The mapped knowledge is given in the 

following equation: 

𝐺𝑛,𝑡,𝑟+1 =
1

𝐷𝑛,𝑡
∑ ℎ𝑛(𝑢𝑛,𝑟+1; 𝑥)𝑥,𝑦∈𝐷𝑛,𝑟                (9) 

The overall knowledge mapping for all tasks is denoted 

as follows: 

𝐺𝑛,𝑟+1 = (𝐺𝑛,1,𝑟+1, … . 𝐺𝑛,𝑡,𝑟+1)                    (10)   

3.2.5. Aggregation 

Once the round is completed, the knowledge gathered 

from the devices will be updated in the edge server using the 

following formula: 

𝐺𝑡,𝑟+1 =
∑ 𝐷𝑛,𝑟𝐺𝑛,𝑡,𝑟+1𝑛∈𝑠𝑟

∑ 𝐷𝑛,𝑟𝑘∈𝑠𝑟

                             (11)                                         

With these steps, the edge network updates the 

information for all users. While training, the loss factor is 

important for efficient training and final knowledge 

mapping. This feature and predictor loss calculation are 

explained below 

3.3. FL Training Metric 

In this, the federated Learning algorithm optimizes its 

training process by minimising its loss function. The model 

error will be the only loss function for a normal model. But 

in this, the different types of models were combined; hence, 

the FL also optimize its training by minimizing two losses 

called 

• Model error loss 

• Knowledge aided loss 

3.3.1. Model Error Loss 

The term model error loss indicates the individual model 

error by the individual device with the collected feature from 

the edge network. Because the device applies its model using 

the features from the FL process. Hence, this loss should be 

minimized for efficient knowledge mapping. This formula is 

denoted in equation 7. 

3.3.2. Knowledge Aided Loss 

This loss function denotes the overall knowledge model 

loss in equation 9. Knowledge-aided loss minimization also 

helps enhance the final knowledge mapping. 

With these loss parameters, the federated learning will 

improve its learning process for device scheduling. 

3.3.3. Problem Formulation 

The proposed federated learning will improve its 

learning using the model and knowledge loss function 

optimization for individual devices. However, this loss 

function will not be sufficient for the overall network. Hence, 

in addition to this loss function, the following parameters are 

also considered for the learning process: 

• Energy consumption

• Bandwidth

• SNR of device

• Round time

• Device selection

 

Based on these above factors, the device can be 

scheduled for knowledge mapping in the federated learning 

process. The notation and boundary of the values is as 

follows: 

Table 1. Notations of problem formulation 

Term Notation Definition Value 

Energy E 

Energy 

consumed by 

devices for 

knowledge 

sharing 

𝐸𝑛 < 𝐸_𝑚𝑎𝑥 

(12) 

Band 

width 
B 

Bandwidth 

occupied by 

all devices and 

individual 

devices 

𝐵𝑛&𝐵𝑁 < 𝐵 

(13) 

SNR SR 

The signal-to-

noise ratio of 

the overall 

device and 

individual 

device 

𝑆𝑅𝑛& 𝑆𝑅𝑁

> 𝑆𝑅_𝑚𝑖𝑛 
(14) 

Time T 

The total time 

for one round 

by each device 

𝑇𝑛 < 𝑇_𝑚𝑎𝑥 

(15) 

Device 

Selecti

on 

DS 

The same 

device cannot 

be selected for 

all rounds in a 

continuous 

manner 

𝐷𝑆𝑛 < 𝐷𝑆_𝑚𝑎𝑥 

(16) 

The edge network also updates these metrics for device 

scheduling in the federated learning process. These metrics 

help to utilize all device knowledge in edge networks to 

create a well-equipped network for information sharing. 
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3.4. Device Scheduling 

As the network consists of N number of devices, the 

proposed problem cannot be solved using single convex 

problem optimization. Hence, in this, the problem is 

formulated as non-convex optimization and solved using the 

Lyapunov optimization process in21. Using those steps, the 

devices are scheduled. The device will be scheduled for deep 

learning using the following process. 

Step : 1 Begin 

Step : 2 Load network and device properties for federated 

learning. 

Step : 3 Perform the first round of federated learning with 

initialized parameters. 

Step : 4 Compute global loss and other problem 

formulation metrics. 

Step : 5 Analyze the bandwidth allocation using Lyapunov 

optimization. 

Step : 6 Allocate bandwidth utilization of individual 

devices and the overall network. 

Step : 7 Compute global loss. 

Step : 8 If equation 13 is satisfied, the energy scheduling 

process will be takes place. 

Step : 9 Like bandwidth, the energy and SNR are also 

calculated using Lyapunov optimization. 

Step : 10 if equations 12 and 14 are satisfied along with 

equation 16, the device can be selected for the next 

round.  

Step : 11 Otherwise, the device will not be included for 

learning. 

Step : 12 Once all the rounds are completed, the global loss 

will be calculated, and the knowledge map will be 

updated. 

Step : 13 Stop. 

 

With these steps, the devices are scheduled for the 

federated learning and the knowledge map is built. 

4. Results and Discussion 

In this, the proposed federated learning was tested on the 

MNIST dataset using simulation software. The proposed 

method performance was evaluated in two scenarios as 

follows: 

• Homogeneous model 

• Heterogeneous model 

In a homogeneous model, the same deep learning 

algorithm was applied to all the devices in the network. While 

in the heterogeneous model, a different model architecture 

was used for analysis. But, in both the models, the deep 

learning algorithm was used. Both models' performance was 

analyzed regarding accuracy versus the number of rounds. 

Because in each round, the device selection will be different 

and its performance will also be different. The simulation 

results of the deep learning algorithm in a heterogeneous 

network model are shown in the following figures. 

The device performance is transmitted through channels 

using federated learning. The channel parameters are shown 

in the figure. It illustrates the distribution of the H0 test 

statistic used for channel selection in the proposed federated 

learning framework. The figure contains two subplots 

representing the real and imaginary components of the  H0 

statistic.  

The real component (top subplot) shows a symmetric, 

bell-shaped distribution centered around zero, resembling a 

Gaussian distribution. This reflects low-magnitude noise 

under the null hypothesis, indicating no primary signal. 

The imaginary component (bottom subplot) exhibits a 

similar pattern, further confirming the presence of complex 

Gaussian noise in the channel. 

These statistical insights help distinguish occupied and 

unoccupied spectrum bands, enabling efficient and dynamic 

channel allocation. Federated learning is used for local 

analysis, allowing devices to share only model updates with 

the edge server, thereby preserving privacy and reducing 

communication overhead. 

 
Fig. 2 Channel selection 

Using the federated learning, the power control value, 

the resource allocation and energy threshold are shown in the 

below figures. 

The performance of a cyclostationary detector at 

different SNR values is displayed in Figure 3. The theoretical 

false alarm probability computed false alarm probability PFA, 

and estimated probability of detection PD are plotted. While 

PFA is rather stable and closely resembles the theoretical PFA, 

PD greatly improves as SNR rises, approaching 1. 
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Fig. 3 Cyclostationary detection at power control values 

 

The performance of an energy detector at different SNR 

levels is shown in Figure 4. It displays the theoretical and 

computed odds of false alarm PFA and detection PD. PFA is 

steady and around the expected value the entire time, whereas 

PD rises dramatically and matches the theoretical curve as 

SNR increases. 

 

Fig. 4 Energy detection at power control values 

Figure 5 shows the average time and energy usage for 

the three algorithms ANN-ROF, SaROF, and CNN-FR over 

various uplink spectrum resources for bandwidth allocation. 

CNN-FIT consistently demonstrates lower time and energy 

consumption, but SARCF typically displays the highest 

results, particularly at lower resource allocations. 

Figure 6 shows a comparison of energy detector 

thresholds versus SNR for two methods: CNN_CR Threshold 

and Bayes Threshold. Both thresholds decrease as SNR 

increases, with the CNN_CR threshold slightly higher than 

the Bayes threshold at lower SNR values. 

 
Fig. 5 Bandwidth allocation 

 

 
Fig. 6 Energy allocation 

4.1. Homogeneous Model 

In homogeneous model, all the devices in the edge 

network utilize the same model. As it utilized the same 

model, the proposed device scheduling reaches its 

convergence earlier and its accuracy remains the same 

for all the scheduling patterns. 

 

 
Fig. 7 Homogeneous model performance 
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In this, the homogeneous model performance was 

analyzed for fifty devices with the same deep learning 

algorithm for all devices. As all the devices generate the same 

loss, the scheduling algorithm performance will remain the 

same for all the models. 

4.2. Heterogeneous Model 

Each device uses a different deep learning algorithm for 

analysis in heterogeneous models. Hence, the model 

performance will differ, and the scheduling has a significant 

role in the knowledge mapping. The proposed model 

performance for the heterogeneous model is shown in the 

below figure. 

 

 
Fig. 8 Heterogeneous model performance 

 
 In this, the homogeneous model performance was 

analyzed for fifty devices with different deep learning 

algorithms for all devices. As the models differ, the 

scheduling performance will help enhance the knowledge 

mapping by minimizing global loss and meeting the device 

requirements stated in the FL Training Metric section. 
 

Based on the scheduling algorithm, the federated 

learning performance for fifty devices versus the number of 

rounds is given in the figure below. 
 

 
Fig. 9 Scheduling algorithm performance 

Based on the research findings presented above, it was 

determined that the suggested federated learning-based 

scheduling algorithm and deep learning model are the most 

effective approaches for device communication in edge 

networks. In both the heterogeneous and the homogeneous 

models, the accuracy and scheduling capabilities of the 

suggested technique are superior to those of the other 

algorithms.  

While several prior works explore machine learning in 

wireless communication, they typically apply uniform 

models or restrict usage to basic parameter updates. In 

contrast, our approach employs deep learning architectures 

such as Convolutional Neural Networks (CNNs) for feature 

extraction and downsampling, even in heterogeneous settings 

where different devices utilize varying models. This 

flexibility ensures robust local training while enabling more 

representative global knowledge aggregation. 

A dual-loss function combining model error loss and 

knowledge-aided loss offers a critical innovation. Many 

previous federated learning models, including those utilizing 

hierarchical or layered architectures, focus primarily on 

model aggregation or privacy preservation.  

However, they seldom emphasize the optimization of 

heterogeneous model compatibility. By jointly minimizing 

both types of losses, the system ensures not only accurate 

local performance but also improved global knowledge 

synthesis. 

Dynamic scheduling mechanism is formulated as a non-

convex optimization problem and solved using Lyapunov 

techniques, in contrast to static or heuristic-based device 

scheduling employed. This rigorous mathematical 

framework ensures real-time adaptability to dynamic 

network conditions and optimizes device selection across 

multiple rounds. 

 

While in other algorithms, the model analysis was not 

taken into account for the global loss minimization. However, 

in this paper, the model analysis was performed using deep 

learning architectures, and its results showed that the 

knowledge mapping can be enhanced by enhancing the 

model. 

 

5. Conclusion 
In many network architectures, knowledge mapping on 

edge networks presents special difficulties. The federated 

learning strategy is employed as a means of avoiding it. The 

global loss and device selection are critical aspects of FL 

knowledge mapping. This study expands upon prior studies 

using a signal-to-noise ratio to determine which devices 

should participate in federated learning to boost FL 

performance. By giving devices access to various learning 

models, deep learning models enhance the feature 
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aggregation procedure in FL. The enhanced feature 

contributes to minimizing the loss of both models and 

information. The proposed deep learning models also 

contributed to reducing global loss. The signal-to-noise ratio 

is provided alongside the other criteria for selecting devices. 

Signal-to-Noise Ratio (SNR) metrics enhance the signal 

quality that a device receives. Data transmission at the 

network's edge is improved using the suggested deep learning 

and federated learning paradigm. 

Future works 
In the future, the proposed federated learning 

performance can be enhanced using hybrid deep learning 

algorithms or the different non-convex optimization 

algorithms. 
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