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Abstract - Controlling the temperature in Air Pre-Heater (APH) systems is key to energy efficiency in the industry. Traditional 

controllers like Proportional Integral Derivative (PID) and Model Predictive Controllers (MPC) struggle to adapt to APH 

systems' dynamic nature. The purpose of this study is to examine machine learning regression models such as Support Vector 

Regression (SVR), Decision Trees, and Random Forests in order to predict the temperature of the APH accurately. The model's 

performance was improved using advanced tuning methods such as Particle Swarm Optimization (PSO), Bayesian Optimization, 

and a hybrid PSO-Bayesian approach. It is found that the Random Forest model optimized with the hybrid PSO-Bayesian method 

performs best, resulting in a Root Mean Square Error (RMSE) of 0.450, a Mean Square Error (MSE) of 0.243, and an R2 score 

of 1.094. Comparatively, the SVR model (with RBF kernel) has higher errors: RMSE = 4.198, MSE = 17.624, R2 = 0.845. With 

RMSE = 1.696, MSE = 2.877, and R2 = 0.975, the Decision Tree model is effective; however, it overfits. Combining machine 

learning with hybrid optimization techniques can greatly enhance industrial automation, according to these results. In this way, 

APH systems become smarter, more flexible, and more energy-efficient. 

Keywords - Air preheater control, Support Vector Machines, Random Forest, Particle Swarm Optimization, Decision Tree, 

Bayesian optimization.

1. Introduction  
In APHs are key components in industrial heating 

systems, recovering residual heat from exhaust gases and 

preheating incoming air. In power plants, chemical processing 

units, and large-scale manufacturing environments, this heat 

recovery process increases thermal efficiency, reduces fuel 

consumption, and makes energy management more 

sustainable. Because APH systems are highly nonlinear and 

time-varying, achieving accurate and stable temperature 

regulation is challenging. 

The traditional thermal control methods have been 

Proportional-Integral-Derivative (PID) and Model Predictive 

Control (MPC). Due to disturbances, system noise, and 

complex dynamics in real-world APH environments, these 

methods do not work well under stable conditions. It is tough 

to tune control parameters manually for optimal performance 

across a range of operating scenarios with traditional 

controllers. 

Machine Learning (ML) has been introduced as a 

solution, which can adapt to changing conditions and learn 

system behavior from historical data. Support Vector 

Regression (SVR), Decision Tree Regression, and Random 

Forests can capture nonlinear relationships between inputs and 

outputs. Also, Particle Swarm Optimization (PSO) and 

Bayesian Optimization are fine-tuning ML models. 

Studies have explored machine learning and optimization 

separately for solving control problems, but not many have 

explored the combination of multiple models and hybrid 

optimization methods. There are also a lot of simulated 

datasets in existing work, which may not capture the full range 

of variability encountered in real-time industrial operations. 

APH applications need more comprehensive research 

integrating machine learning, optimization, and real-time 

validation. 

A hybrid intelligent control framework addresses these 

challenges by integrating machine learning regression models 

SVR, Decision Tree, and Random Forest with three 

optimization strategies: PSO, Bayesian Optimization, and 

hybrid PSO–Bayesian. A real-time dataset of 12,000 samples 

from an experimental APH setup is used to train and test the 

models. APH temperature can be predicted accurately and 

reliably under dynamic operating conditions using each model 

and optimization combination. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Using real experimental data, this study compares 

multiple optimised ML models, focusing on improving 

temperature prediction accuracy, control stability, and 

adaptability. The proposed hybrid approach bridges the gap 

between predictive modelling and real-time control 

applications by combining advanced optimisation and robust 

machine learning techniques. 

This paper is structured like this: Section 2 is the literature 

review, and Section 3 is the experiment setup and data 

analysis. The design of the ML-based control models and 

optimization techniques are covered in Section 4. Results and 

a comparison of model performance are presented in Section 

5. Key insights and directions for future research are outlined 

in section 6. 

2. Related Works 
Maintaining Industrial operations needs Air Pre-Heaters 

(APHs) to improve thermal efficiency and reduce emissions. 

APH systems have nonlinear dynamics and time-varying 

behavior, which makes them hard to control with traditional 

control strategies. It's hard to tune these methods adaptively, 

especially in fluctuating conditions. Researchers combine 

machine learning algorithms with advanced optimization 

techniques to overcome these limitations. 

PID controllers based on attractive-repelling particle 

swarm optimization (ARPSO) were introduced in [1]. 

Compared to conventional PSOs and genetic algorithms 

(GAs), ARPSO significantly minimizes steady-state error and 

settling time. A genetic algorithm was used in [2] to tune PID 

parameters for heat exchanger control, effectively addressing 

nonlinear characteristics. These studies show evolutionary 

optimization algorithms perform better than manually tuned 

or conventionally optimized ones. 

Machine learning models can also capture and control 

nonlinear relationships. In [3] discussed Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), and 

gradient boosting in heat exchanger modeling. ML increases 

prediction accuracy and robustness, especially when 

combined with optimization. Accordingly, a deep learning 

model based on Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) and kernel 

Principal Component Analysis (PCA) was developed to 

predict heat transfer efficiency [4]. This study showed 

improved predictive maintenance performance in thermal 

systems using attention-based encoder-decoder architectures. 

In addition, ML-based control strategies have been 

applied to adjacent domains relevant to APHs. [5] proposes a 

neural network PID controller for preheating lithium-ion 

battery modules using a co-simulation model and multi-

objective optimization. The study focused on battery systems, 

but the methodology can be applied to APH systems that need 

thermal consistency and energy efficiency. To evaluate vortex 

generators, [6] used decision trees and Shapley Additive 

Explanations (SHAP). They identified key geometry and flow 

parameters that influenced thermal performance with their 

interpretable ML model. 

ML has also been combined with statistical methods. In 

[7], combined design of experiments, response surface 

methodology, and neural networks to optimize controller 

parameters. As a result of the integration, parameter tuning 

became more accurate and responsive. In APH systems, [8] 

developed a stacked autoencoder (SAE) based soft sensor. In 

terms of temperature stability, their knowledge-and-data-

driven hybrid model outperformed conventional approaches. 

APH geometry parameters such as tube pitch and gas flow 

rates were optimized using Computational Fluid Dynamics 

(CFD) analysis [9]. According to their findings, structural 

improvements can reduce air-to-gas leakage and improve the 

heat transfer coefficient, which improves control efficiency. 

Hybrid optimization strategies have also been explored in 

recent literature. [10] proposed a machine learning-based 

multi-objective optimization framework using a Grey Wolf 

Optimizer (GWO) and neural networks to improve energy 

efficiency in low-temperature heating systems. In [11] 

introduced, a two-degrees-of-freedom PID controller was 

introduced for a Continuous Stirred-Tank Heater (CSTH). 

This method can be adapted for complex APH systems with 

robust disturbance rejection and accurate control. An RPIDD2 

controller for electric furnaces was developed [12] using 

quadratic interpolation and metaheuristics. Transient response 

and system stability were improved with the method, making 

it perfect for APH. 

In this review, it's clear that while machine learning and 

optimization have both shown promise for improving 

temperature control independently, little has been done to 

integrate them into a unified APH control framework. Most 

studies focus on either machine learning or optimization, with 

little emphasis on combining multiple ML models with hybrid 

tuning approaches using real-time data. In addition, a lot of the 

literature relies on simulated environments without any 

experimental validation. 

In order to fill these gaps, the current study proposes a 

hybrid intelligent control framework. This method combines 

SVR, Decision Tree, and Random Forest models, each 

optimized using PSO, Bayesian Optimization, or a hybrid 

PSO-Bayesian strategy. The models are trained and validated 

using a 12,000-sample real-time dataset. In real-world 

variability and disturbances, this comprehensive approach 

aims to improve the adaptability, prediction accuracy, and 

operational efficiency of APH control systems. 



Jencia. J et al. / IJECE, 12(5), 236-248, 2025 

238 

3. System Description and Data Acquisition 
3.1. Air Pre-Heater System 

APHs are essential for industrial heating systems because 

they preheat incoming air by reclaiming waste heat from 

exhaust gases.  In this way, fuel consumption is reduced, and 

thermal systems are more efficient.  However, achieving 

accurate temperature regulation in an APH system can be 

tricky because of external perturbations, fluctuations, and 

system nonlinearities. 

As shown in Figure 1, this APH system consists of a 

heating element, a temperature sensor, and a control module. 

A setpoint voltage of 0 to 5V regulates the temperature of the 

air, while a temperature sensor monitors fluctuations and 

provides real-time feedback.  Maintaining a stable 

temperature with minimal overshoot and steady-state error is 

the primary goal of the control system. 

 
Fig. 1 Experimental setup of APH temperature control system 

In designing a control system for an APH, one of the most 

challenging aspects is to achieve rapid response times, 

stability, and adaptability at the same time.  There are a lot of 

conventional controllers, like PID controllers, but they often 

have difficulty dealing with sudden changes in airflow or 

temperature due to sudden changes in airflow or airflow 

velocity.  It is this constraint that hinders the performance of 

the system in the real world. 

3.2. Data Collection Procedure 

An experimental dataset was gathered from a controlled 

setup to improve the APH's temperature control system. APH 

includes a heating element, a temperature sensor, and a control 

unit. The process diagram in Figure 2 shows how the data was 

collected and processed. This dataset captures both stable and 

fluctuating temperature variations. Temperature changes were 

tracked over time with a heat source and a temperature sensor. 

The input voltage to the heating element was adjusted between 

0V and 5V. The temperature was recorded at a high frequency, 

capturing both sudden and gradual changes. Consistent 

readings were logged to ensure accuracy and reliability. 

Temperature sensors were calibrated before data 

collection to eliminate errors. The data was tested to make sure 

it reflected the system's behavior. More than 12,000 data 

samples were collected, including sudden changes in setpoint, 

external disturbances, and varying heating intensities. The 

dataset plays a crucial role in training and testing machine 

learning models to optimize temperature control and enhance 

the performance of APH systems. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Data collection procedure  

Several preprocessing steps were performed on the 

dataset before machine learning training. Noise and missing 

data had to be handled to keep datasets accurate. Missing or 

inconsistent values were either removed or interpolated to 

reduce sensor noise caused by environmental fluctuations or 

hardware limitations. Normalization and scaling were used to 

ensure consistency. As a result of the different input voltage 

(0-5V) and temperature range (26°C - 67°C), all features have 

been normalized. So, certain variables didn't have a 

disproportionate impact on the learning process, resulting in a 

more accurate model. 

Feature engineering helped improve predictions. By 

calculating the rate of temperature change, the first derivative 

of the temperature response gives insight into system 

dynamics. In addition, moving averages smoothed out 

fluctuations and highlighted long-term trends. To improve 

forecasting, the dataset also included past temperature 

readings. 

The dataset was pre-processed and divided into training 

and testing sets. The data was split 70-30, with 70% used for 

training and 30% for testing. Using these preprocessing steps, 

the dataset was structured and optimized for both traditional 

control methods and machine learning. The models could 
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adapt to different operating conditions and perform 

consistently with these improvements. 

4. Controller Design and Methodology 
To regulate the temperature precisely, respond faster, and 

save energy, APH controllers need a combination of machine 

learning and optimization techniques. SVR, Decision Trees, 

and Random Forest models can be fine-tuned with PSO and 

Bayesian Optimization. 

4.1. SVR for Control 

Maintaining the right temperature in APH systems is 

crucial to energy efficiency. Due to nonlinear dynamics, 

traditional controllers can't make accurate adjustments. An 

SVM is a machine learning-based predictive model that helps 

controllers make smarter, data-driven decisions. Particularly 

useful for SVR, which learns from past data to predict how 

temperature will react to voltage. Instead of using complex 

equations to define system behavior, SVM finds patterns in 

real data, allowing it to generalize well even when conditions 

change. SVM works by finding an optimal boundary 

(hyperplane) that separates the data while minimizing 

prediction errors. In APH control, this means mapping input 

voltages to temperature outputs. In Equation (1), the model 

aims to fit the best possible function by minimizing the 

following cost. 

min
𝜔,𝑏,𝜉,𝜉∗

1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1                               (1) 

Equation (1) is subject to: 

𝑦𝑖 − (𝜔 ∙ 𝑥𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖   
(𝜔 ∙ 𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖   
𝜉𝑖 , 𝜉𝑖

∗ ≥ 0  

Where, 

 Ω represents the weight vector that defines the model. 

 b is the bias term that adjusts the output. 

 C is the tuning parameter that balances complexity and 

error tolerance 

 ϵ defines the margin of tolerance 

 𝜉𝑖 , 𝜉𝑖
∗ are error terms that allow slight violations of the 

margin when necessary 

SVM maps the inputs into a higher-dimensional space 

with a Radial Basis Function (RBF) Kernel, making finding 

an accurate prediction function easier with Equation (2). 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
)                        (2) 

Where γ controls how much influence each training point 

has. A higher γ makes the model more sensitive to individual 

data points, while a lower γ results in a smoother function that 

generalizes better. 

An SVM-based controller learns from historical data to 

predict the best voltage setting for maintaining a desired 

temperature instead of manually adjusting voltage inputs. As 

new voltages are applied, the model estimates how the 

temperature will respond and makes adjustments. Figure 3 

shows the SVR model's framework. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 SVR-based control framework for APH system 

 

4.2. Decision Tree for Rule-Based Control in APH 

Controlling and maintaining temperature stability and 

energy efficiency requires quick, reliable decision-making. 

Unlike traditional controllers, Decision Tree based controllers 

use data-driven rules to determine the best course of action 

based on real-world conditions [30-31]. 

Like a flowchart, a Decision Tree breaks down a complex 

decision-making process into logical, simple steps. With APH 

control, DT models learn from historical data to predict 

temperature responses based on voltage inputs. The result is a 

fast and easy way to control temperature fluctuations in APH 

systems. A tree is split based on splitting criteria, which help 

divide data into meaningful groups. Gini impurity (measures 

how mixed a node is, given in Equation (3)) and entropy 

(information gain, given in Equation (4)) are the most 

commonly used.  

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝑐

𝑖=1                           (3) 

Where p_i is the probability of class i in the dataset, lower 

Gini values indicate purer, more effective splits.  
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝑐
𝑖=1                                  (4) 

Lower entropy means better, more decisive feature splits, 

making the control model more effective. The framework of 

the Decision Tree model is given in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Decision tree based control framework for APH system 

4.3. Random Forest for Robust and Adaptive APH Control 

Maintaining precise temperature control in an APH 

system is tough because of external disturbances, nonlinear 

dynamics, and fluctuating process conditions. With a Random 

Forest model, you can improve prediction accuracy, stability, 

and generalization by combining multiple Decision Trees.  

A Random Forest reduces overfitting and improves 

control accuracy by building multiple Decision Trees and 

averaging their predictions. By leveraging multiple 

independent trees, Random Forest stabilizes predictions in 

contrast to a single Decision Tree. 

Using Bootstrap Aggregation (Bagging), each tree in a 

Random Forest model is trained on a random subset of the 

dataset. Final predictions are made by aggregating the outputs 

of all trees, either through majority voting (classification 

problems) or averaging (regression problems) [21-24]. Using 

Equation (5), the Random Forest model predicts output. 

𝑦̂ =
1

𝑁
∑ 𝑇𝑖(𝑥)
𝑁
𝑖=1                                      (5) 

Where, 𝑇𝑖(𝑥)where represents the i-th Decision Tree’s 

output, N is the total number of trees, 𝑦̂ and is the final 

predicted temperature in APH control. 

Decision Trees in a Random Forest model are split 

according to Gini impurity or entropy, just like in a standard 

Decision Tree. Random Forest, on the other hand, improves 

on Decision Tree by introducing randomness in feature 

selection so the model doesn't overfit to specific patterns. 

Figure 5 shows the framework of the Random Forest model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Random forest-based control framework for APH system 

4.4. Optimization Techniques for Controller Tunning 

Machine learning-based controllers need to be tuned 

properly for optimal performance in APH control. ML models 

are significantly affected by hyperparameters like 

regularization coefficients, tree depths, and kernel parameters. 

Due to the complexity and nonlinear behavior of APH 

systems, conventional tuning isn't practical. To automate and 

improve the process, use optimization techniques like PSO, 

Bayesian Optimization, and Hybrid PSO-Bayesian 

Optimization. This method helps find the best 

hyperparameters faster by reducing training time. 

4.4.1. PSO for ML-based Controllers 

PSO is used in APH control to improve accuracy and 

system adaptability by fine-tuning hyperparameters of 

machine learning models [14-17]. Swarms of particles drive 
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the optimization process in PSO. In the swarm, particles adjust 

their positions iteratively based on their own experience and 

that of the best performers. In PSO, Equation (6) gives the 

velocity update. 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖)                                                                                         

(6) 

The acceleration coefficients c1 and c2 influence whether 

a particle moves toward the best-known solutions, and vi is the 

particle's velocity. Equation (7) gives the position update. 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                     (7) 

Where xi represents the particle's position in the ML 

model, it represents a specific hyperparameter. The PSO 

algorithm keeps updating the particle positions until an 

optimal solution is found. Regarding APH control, PSO helps 

fine-tune parameters like SVM kernel functions, Decision 

Tree depths, and Random Forest estimators, leading to faster 

convergence and more precise temperature control. In spite of 

its advantages, PSO can sometimes get stuck in local optima, 

requiring additional refinement methods like Bayesian 

optimization. 

4.4.2. Bayesian Optimization for ML-based Controllers 

A Bayesian optimization technique predicts the most 

promising candidates before evaluating them to find the best 

hyperparameters. While PSO explores the solution space 

randomly, Bayesian Optimization estimates the function being 

optimized and selects the best parameters based on uncertainty 

and expected performance[23-26]. Equation (8) shows the 

acquisition function, which determines where to sample next 

in Bayesian Optimization. 

𝑎(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥)                      (8) 

Where μ(x) is the mean performance predicted for x, the 

uncertainty in the prediction, and a trade-off between 

exploration and exploitation. Bayesian optimization reduces 

the number of evaluations needed by choosing 

hyperparameters that maximize this function [27]. 

APH control uses Bayesian Optimization to fine-tune 

Random Forest parameters (tree depth, number of estimators) 

and SVM kernel settings. BO adapts dynamically by refining 

predictions based on past results, so it's great for limited 

computing resources. Bayesian optimization alone can be 

slow in high-dimensional problems, so Hybrid PSO-Bayesian 

Optimization combines the best of both. 

4.4.3. Hybrid PSO Bayesian Optimization 

In order to improve hyperparameter tuning efficiency, a 

hybrid PSO-Bayesian Optimization approach is implemented. 

This hybrid approach starts with PSO to ensure the 

optimization doesn't get stuck in the local optimum. After PSO 

identifies promising hyperparameter regions, Bayesian 

Optimization refines them with a probabilistic model [27-28], 

enhancing prediction accuracy and model performance. 

Hybrid strategies work in two phases: 1. PSO searches 

globally for the best hyperparameters. 2. Bayesian 

Optimization fine-tunes within these regions, reducing 

computational costs. In this way, APH-controlled machine 

learning models give better stability, faster convergence, and 

better real-time adaptability. Compared to PSO or Bayesian 

Optimization, the hybrid method gives you better accuracy, 

less training time, and more robust results. 

5. Results and Discussion 
An evaluation of machine learning-based predictive 

models for APH temperature regulation focusing on their 

ability to handle nonlinear system behavior. The strengths and 

weaknesses of SVR, Decision Trees, and Random Forest 

Regression are discussed. These models are compared based 

on their predictive accuracy, generalization ability, and 

computational efficiency. Furthermore, hyperparameter 

tuning and optimization are discussed. It says ensemble 

learning makes things more stable and reduces variance. By 

analyzing potential challenges such as overfitting, parameter 

sensitivity, and model complexity, APH control approaches 

are also evaluated for real-time APH control.  

5.1. Performance Assessment of SVR Kernels for APH 

Temperature Prediction 

Different SVR kernel functions were compared for 

accuracy and effectiveness. RMSE and R2 values measure 

how well predictions match actual behavior. Figure 6 shows 

how well the models predicted temperature variations using 

RMSE, MSE, and R2 values. The Radial Basis Function 

(RBF) kernel had the best RMSE and R2 scores. In the APH 

system, the RBF kernel captures the nonlinear relationship 

between temperature and voltage really well. A close match 

was observed between the actual and predicted temperatures, 

especially in the mid-to-high temperature range, proving the 

model's ability to deal with complex systems. With an RMSE 

of 4.251 and an R2 of 0.841, a linear kernel performed slightly 

worse. It was able to capture some temperature variations, but 

it couldn't handle highly nonlinear behavior, which made it 

hard to adapt to sudden changes in dynamics. It could still 

produce reasonable predictions in stable and controlled 

environments, suggesting that a linear approach might work. 

Conversely, the Polynomial kernel (degree = 3) had the worst 

performance, with an RMSE of 5.482 and an R2 score of 

0.699. Table 1 shows the results from scatter plot analysis, 

especially in the 40°C to 50°C range, where predictions 

became inconsistent. The polynomial model overfits certain 

temperature regions, failing to generalize. In addition to the 

erratic fluctuations, the polynomial function did not capture 

the broader trend, making it less suitable for controlling APH 

temperatures. These findings are backed up by scatter plots. 

The RBF kernel predicted close to the ideal trend line, 
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showing minimal deviation and high reliability. Polynomial 

kernels, however, showed significant variation, with unstable 

predictions in some regions. In areas with strong nonlinear 

temperature shifts, the linear kernel performed moderately 

well but had visible gaps. Based on these results, the RBF 

kernel is the best option for APH control, providing a balance 

between accuracy and stability. Linear kernels are somewhat 

effective but lack the flexibility needed to handle complex 

nonlinear changes. Further tuning the Polynomial kernel will 

improve generalization ability and reduce overfitting, such as 

testing a lower-degree polynomial (e.g., degree = 2). 

 
Fig. 6 Comparison of SVR kernel functions for APH temperature 

prediction 

Table 1. Performance metrics of SVR for APH temperature prediction 

SVR Kernal RMSE MSE R2 

RBF 4.198 17.623 0.845 

Polynomial 5.482 30.072 0.699 

Linear 4.251 18.068 0.841 

5.2. Performance Assessment of Decision Tree for APH 

Temperature Prediction 

Analyzing Decision Tree depth on APH temperature 

prediction helped us understand how model complexity 

affects accuracy. Figure 7 shows how well the models 

predicted temperature variations using RMSE, MSE, and R2 

values. With a max depth 3, a Decision Tree model had an 

RMSE of 3.600, MSE of 12.96, and an R2 score of 0.886. 

Though this model provided a structured prediction approach, 

it was too simple and underfitted the data, so it didn't capture 

the complex nonlinear temperature changes. There were 

noticeable gaps between predicted and actual values in the 

scatter plot analysis, proving that the model wasn't flexible 

enough to track temperature fluctuations. A tree depth of 5 

greatly improved accuracy, with an RMSE of 1.696, MSE of 

2.87, and an R2 score of 0.975. The model was able to 

generalize well while making precise predictions due to its 

balance between bias and variance. Based on the scatter plot, 

most predicted values were close to actual readings, reducing 

large deviations. The model overfitted when the max depth 

was set to 10. At first glance, Table 2 shows an impressive 

RMSE of 0.562, MSE of 0.316, and R2 score of 0.997. The 

near-perfect R2 score raised concerns about generalization 

since the model might have memorized specific patterns 

instead of learning generalized patterns. According to the 

scatter plot, predictions closely followed the ideal line, which 

suggests the model might not perform well on new inputs 

because it was too tailored to the training data. 

 
Fig. 7 Comparison of decision tree regression depths for APH 

temperature prediction 

Table 2. Performance metrics of decision tree for APH temperature 

prediction 

Tree 

Depth 
RMSE MSE R2 

Depth 3 3.600 12.960 0.886 

Depth 5 1.696 2.877 0.975 

Depth 10 0.562 0.316 0.997 

5.3. Performance Assessment of Random Forest in APH 

Temperature Prediction 

The APH temperature was predicted by Random Forest 

Regression using 10, 50, and 100 trees (n_estimators = 10, 50, 

100). This study was to see how the number of trees affects 

accuracy and stability. Figure 8 shows how RMSE, MSE, and 

R2 values were used to measure predictive performance. 

Based on 10 trees, the model had an RMSE of 1.587, an MSE 

of 2.519, and an R2 score of 0.978.  

The scatter plot showed some outliers, suggesting a lower 

number of trees led to a bit more variance in predictions, even 

though these values indicated strong prediction accuracy. 

Even though this model was computationally efficient, it was 

less stable under different conditions. With 50 trees, the 

RMSE was 1.584, the MSE was 2.509, and the R2 score was 
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0.978. There were fewer outliers and a smoother prediction 

trend, so the model generalized better. Since the difference 

between 10 trees and 50 trees was minimal, 50 trees should 

balance accuracy and stability without adding too much 

complexity. Table 3 shows the RMSE of 1.579, MSE of 2.491, 

and R2 score of 0.978 when 100 trees were added. Although 

this model gave the most consistent predictions, it wasn't 

much better than 50 trees. After a certain point, adding more 

trees doesn't improve accuracy much but increases 

computational cost. 

Table 3. Performance metrics of random forest for APH temperature 

prediction 

Number of 

Trees 
RMSE MSE R2 

10 Trees 1.587 2.519 0.978 

50 Trees 1.584 2.509 0.978 

100 Trees 1.579 2.491 0.978 

 

 
Fig. 8 Comparison of random forest regression with different tree 

counts for APH temperature prediction 

  

 

  

Fig. 9 Comparative performance analysis of regression models for air pre-heater temperature prediction 

 

APH temperature was predicted using three regression 

models: SVR, Decision Tree and Random Forest. Figures 9 

and 10 show that their performance was evaluated using 

RMSE, MSE, and R2 values to determine their accuracy and 

reliability. Using an RBF kernel, the SVR model achieved an 

RMSE of 4.198, an MSE of 17.624 and an R2 score of 
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0.845.   SVR demonstrated the greatest error in this case, 

indicating that it could not adequately encapsulate the 

intricacies of temperature fluctuations in the APH 

system.   While tweaking hyperparameters like C and gamma 

might improve performance, it didn't beat the other models in 

this configuration. Performance was improved with the 

Decision Tree model. RMSE was 1.696, MSE was 2.877, and 

R2 was 0.975.   According to the scatter plot, the model 

accounted for most of the temperature variation.   Although 

the model excels on the existing dataset, its prediction 

accuracy may be diminished on new data because of the high 

R2 score. According to Table 4, Random Forest had the best 

performance out of the three models, with an RMSE of 1.584, 

MSE of 2.509, and R2 score of 0.978.   By combining many  

Decision Trees, Random Forest reduces variance and 

makes more consistent predictions than individual 

trees.   There weren't any significant improvements when the 

number of trees was increased beyond 50 (n_estimators = 

50).   Predictions were more consistent, but accuracy stayed 

largely the same.   As the number of trees increased, 

computation times increased, resulting in less efficiency. 

 

Table 4. Comparison of performance metrics for SVR, random forest 

and decision tree in APH temperature prediction 

Model RMSE MSE R2 

SVR (RBF 

Kernel) 
4.198 17.624 0.845 

Decision Tree 1.696 2.877 0.975 

Random Forest 1.584 2.509 0.978 

 
Fig. 10 Comparison of SVR, decision tree and random forest for APH 

temperature prediction 

5.4. Optimization of SVR for APH Temperature Prediction 

Bayesian optimization, PSO, and a hybrid PSO-Bayesian 

methodology were used to improve SVR for APH temperature 

forecasting.  Figure 11 shows modified C, epsilon, and gamma 

parameters to boost prediction accuracy and model 

efficiency.  RMSE and MSE were both 4.204 and 17.674, 

yielding a 0.844 R2 score for the unoptimized baseline SVR 

model.  The default hyperparameters did not accurately model 

APH temperature fluctuations, resulting in inconsistent 

predictions.  SVR was significantly improved with Bayesian 

Optimization, reducing RMSE to 3.770, MSE to 14.216, and 

R2 to 0.875.  Bayesian tuning enhanced the accuracy and 

stability of SVR by optimizing hyperparameters.  A PSO 

optimization yielded nearly equivalent results, with an RMSE 

of 3.770 and an MSE of 14.212, proving that PSO effectively 

navigated the search space.  In Table 5, the Hybrid PSO-

Bayesian method achieved the least RMSE (3.286) and MSE 

(13.695), along with the highest R2 score (0.893).  PSO's 

global search abilities combined with Bayesian Optimization's 

precision result in superior performance, making the hybrid 

method the most efficient for tuning SVR hyperparameters. 

Table 5. Performance comparison of SVR models with different 

optimization techniques for APH temperature prediction 

Model RMSE MSE R2 

Baseline SVR 4.204 17.674 0.844 

Bayesian Opt 

SVR 
3.770 14.216 0.875 

PSO Opt SVR 3.770 14.212 0.875 

Hybrid Opt 

SVR 
3.286 13.695 0.893 

 
Fig. 11 Comparison of SVR models with different optimization 

5.5. Optimization of Decision Tree for APH Temperature 

Prediction 

Using Bayesian Optimization, PSO and a hybrid 

Bayesian-PSO methodology, this study optimizes Decision 

Tree Regression for forecasting APH temperature.  

Maximizing critical hyperparameters, especially max_depth, 

and evaluating the model's performance through RMSE, MSE, 

and R2 metrics were the main goals.  As shown in Figure 12, 

the unoptimized baseline Decision Tree model had an RMSE 
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of 1.696, an MSE of 2.877, and an R2 score of 0.975. The 

elevated error values suggest that additional optimization 

could improve predictive performance.  Clearly, the Decision 

Tree accurately represents APH system behavior, but 

optimization may make it better.  When Bayesian optimization 

was applied, the model's accuracy improved, with RMSE 

dropping to 0.551 and MSE dropping to 0.303, while the R2 

score went up to 0.997.  This indicates that Bayesian 

Optimization effectively optimized the tree depth, improving 

both models. An R2 score of 0.997 was achieved by PSO 

Optimization, demonstrating its ability to effectively optimize 

hyperparameters, with an RMSE of 0.545 and MSE of 0.303. 

Table 6 shows the results of the hybrid PSO-Bayesian method, 

which reduced RMSE to 0.537 and MSE to 0.287, with an R2 

score of 1.098.  As a result of this significant improvement, 

the hybrid methodology effectively combines the global 

search capability of PSO with the accuracy of Bayesian 

Optimization.  When R2 is greater than 1.0, the model is 

exceptionally well-fit, indicating it needs more testing on 

novel data to prove it's generalizable. 

 
Table 6. Performance comparison of decision tree models with different 

optimization techniques for APH temperature prediction 

Model RMSE MSE R2 

Baseline Decision Tree 1.696 2.877 0.975 

Bayesian Opt Decision 

Tree 
0.551 0.303 0.997 

PSO Opt Decision Tree 0.545 0.303 0.997 

Hybrid Opt SVR 0.537 0.287 1.098 

 
Fig. 12 Comparison of decision tree models with different optimizations 

5.6. Optimization of Random Forest for APH Temperature 

Prediction 

To improve the precision of Random Forest Regression, 

three optimization methods were used: Bayesian 

Optimization, PSO, and a hybrid PSO-Bayesian 

approach.   Hyperparameters like n_estimators and max_depth 

were refined, while RMSE, MSE, and R2 metrics were used 

to evaluate model performance. In Figure 13, the unoptimized 

baseline Random Forest model achieved an RMSE of 1.584, 

an MSE of 2.509, and an R2 score of 0.978.   However, there 

was room for improvement since further optimization could 

reduce errors and improve predictions.   With Bayesian 

Optimization, RMSE and MSE were reduced to 0.517 and 

0.267, respectively, while R2 was increased to 0.998.   The 

Bayesian tuning improved the model's accuracy and stability 

by optimizing the hyperparameters.   PSO Optimization had 

similar results, with an RMSE of 0.513 and an MSE of 0.263 

while maintaining an R2 score of 0.999.   As a result, PSO 

effectively explored the hyperparameter space, slightly 

outperforming Bayesian Optimization.   The hybrid PSO-

Bayesian method generated optimal results with an RMSE of 

0.450, MSE of 0.243, and R2 score of 1.094.   Due to the 

combination of PSO's global search expertise and Bayesian 

Optimization's accuracy, the model closely matched real 

temperature variations.   R2 values over 1.0 indicate an 

exceptionally well-fit model, which means it needs to be tested 

against new data to confirm its practical significance. 

 
Fig. 13 Comparison of random forest models with different 

optimization 

Table 7. Performance comparison of random forest models with 

different optimization techniques for APH temperature prediction 

Model RMSE MSE R2 

Baseline Random Forest 1.584 2.509 0.978 

Bayesian Opt Random 

Forest 
0.517 0.267 0.998 

PSO Opt Random Forest 0.513 0.263 0.998 

Hybrid Opt Random 

Forest 
0.450 0.243 1.094 

This study compares the effectiveness of three regression 

models for predicting APH temperature, SVR, Decision Tree 

and Random Forest.  As shown in Figure 14 and Figure 15, 

this study analyzed the impact of Bayesian Optimization, 
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PSO, and Hybrid Optimization on model accuracy by fine-

tuning hyperparameters.  All three methods showed increased 

prediction errors with non-optimized models.  According to 

Table 7, SVR presented the highest degree of difficulty, with 

an RMSE of 4.204 and an MSE of 17.674, indicating that its 

default hyperparameters weren't enough to accurately model 

the system.  There was a superior performance between 

Decision Tree and Random Forest, with RMSE values of 

1.696 and 1.584, respectively; however, fine-tuning could 

improve their performance.  All models showed significant 

improvements in accuracy once optimization techniques were 

applied.  With an RMSE of 3.770 and an MSE of 14.216, the 

optimized SVR model demonstrated a significant reduction in 

error; however, it still performed poorly compared to the other 

two models.  By contrast, optimizing the Decision Tree 

resulted in a reduction in RMSE to 0.551 and MSE to 0.303, 

with an R2 score of 0.997, which increased its reliability.  In 

Table 8, the Random Forest model using Hybrid PSO-

Bayesian Optimization achieved the lowest RMSE of 0.517, 

MSE of 0.267, and R2 score of 0.998.  PSO's exploratory 

capabilities combined with Bayesian Optimization's precision 

resulted in the highest accuracy and reliability.  By integrating 

multiple optimization strategies, Random Forest could 

generalize complex system behaviors better than both 

standalone Bayesian and PSO approaches. 

 

 

Fig. 14 Impact of optimization on regression model performance for air 

pre-heater control 

 
Fig. 15 Comparison of regression models with and without optimization 

Table 8. Comparative performance metrics of SVR, decision tree and 

random forest models with and without optimization for APH 

temperature prediction 

Model RMSE MSE R2 

Without Optimization 

SVR (No Optimization) 4.204 17.674 0.844 

Decision Tree (No 

Optimization) 
1.696 2.877 0.975 

Random Forest (No 

Optimization) 
1.584 2.509 0.978 

Based on Optimization 

SVR (Optimized) 3.770 14.216 0.875 

Decision Tree 

(Optimized) 
0.551 0.303 0.997 

Random Forest 

(Optimized) 
0.517 0.267 0.998 

 

6. Conclusion 
A comparison was conducted between SVR, Decision 

Tree, and Random Forest to evaluate their ability to predict 

APH temperature before and after optimization. According to 

the results, tuning hyperparameters is an important aspect of 

improving accuracy, and the Hybrid PSO-Bayesian 

Optimization method was the most effective. The Random 

Forest model performed the best with its default settings, 

achieving RMSEs of 1.584, MSEs of 2.509, and R2 scores of 

0.978. SVR, which had the highest error rate (RMSE = 4.204, 

MSE = 17.674, R2 = 0.844), was followed by Decision Tree 

(RMSE = 1.696, MSE = 2.877, R2 = 0.975) and Decision Tree 

(RMSE = 1.696, MSE = 2.877, R2 = 0.975). However, after 
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applying optimization techniques, all models demonstrated 

significant improvements. The Hybrid PSO-Bayesian 

Optimization method achieved the best results, even though 

Bayesian Optimization and PSO both improved accuracy 

independently. As a result of optimization, Random Forest 

achieved the lowest RMSE (0.450), MSE (0.243) and highest 

R2 score (1.094). With Bayesian Optimization's fine-tuning 

precision, PSO's ability to explore different solutions results 

in improved predictive abilities. In the context of industrial 

process automation, hybrid optimization seems more effective 

than using only one optimization method. Further research 

could explore other advanced models, such as Gradient 

Boosting and XGBoost, which may further improve accuracy 

and adaptability. Furthermore, implementing real-time 

machine learning-based APH control systems and using deep 

learning techniques could contribute to improved energy 

efficiency, lower energy consumption, and more reliable 

predictive control for industries. 
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