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Abstract - The paradox of the duck curve is that more solar and wind power entering the power grid means more duck curves. 

Efficient Unit Commitment (UC) is crucial for duck curve management, enabling stability and long-term sustainability of the 

power grid. In this paper, we analyze several approaches using UC to tackle the duck curve problem. After introducing the duck 

curve phenomenon and its influencing factors, the study reviews current UC strategies, identifying their pros and cons while 

discussing the conditions under which each strategy performs well. This approach combines Long Short-Term Memory (LSTM), 

One-Dimensional Convolutional Neural Network (1D-CNN), and a hybrid of both—LSTM-1D CNN and 1D CNN-LSTM—which 

are applied and compared to predict the day-ahead solar and wind power output. The results show that LSTM-1D CNN 

outperforms all other techniques, achieving maximum accuracy of 98.64% for solar and 98.87% for wind power. Additionally, 

three optimization algorithms are used and compared to plan the short-term performance of the power grid: Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), and a hybrid of both (GA-PSO). The results confirm that GA-PSO surpasses the 

other methods, achieving the lowest operating cost of $319,876.7. This research can aid researchers, policymakers, and power 

grid managers create a more efficient and sustainable energy system.  

Keywords - Unit commitment, Economic dispatch, Deep learning, Duck curve, Solar power. 

1. Introduction  
The growing use of renewable energy sources, including 

solar and wind power, has already created a number of 

impressive economic and environmental benefits. However, it 

introduces new challenges for electricity grid management 

[1]. A common problem that arises is something called the 

duck curve, which is the imbalance between the amount of 

power needed and the amount of renewable energy that is 

readily available. This is due to fluctuations in the availability 

of renewable energy sources. The duck’s back is indeed a bane 

for the power grid network to arrange sufficient flexible and 

reliable power generation capacity to meet the peak demand 

of night-time when the constraint on the supply of renewable 

energy is greater [2]. 

Unit Commitment (UC) solutions [3] have been adopted 

by utilities in the past few years to manage the duck curve and 

provide a constant supply of energy. That is because UC is 

what you use to decide what plants should be on and what 

plants should be off going forward to meet demand. The 

decision is somehow affected by various factors such as 

expected power demand, generation cost of that power, and 

availability of a range of power plants [4]. The challenge is 

that renewables have to be integrated into the power system 

through effective UC measures. 

Recent developments in machine learning and 

optimization algorithms have opened up new opportunities to 

enhance UC strategies, which were previously out of reach. A 

deep learning-based model has proved its efficacy in 

forecasting demand for electricity, as well as forecasting 

renewable energy generation. These contributions can inch 

towards making more informed decisions about UC by power 

grid operators. UC optimization algorithms can also be 

employed for discovering the cost-effective and most efficient 

UC techniques out of a large number of settings [5]. 

The duck curve results from daily swings in both 

renewable energy supply and demand. During the day, 

renewable energy sources like solar panels and wind turbines 
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can provide a considerable amount of electricity. Usually, the 

demand for power is low because the majority of people are 

engaged in work and are not consuming anything. As the sun 

goes down and people head indoors, the demand for electricity 

rises sharply, but the availability of green energy dwindles. As 

a result, more traditional power facilities, such as those that 

run on natural gas or coal, are needed to fulfill night-time peak 

demand. Power grid operators are increasingly concerned 

about the duck curve problem because of the strain it causes 

on conventional power plants. Power grid instability, 

including blackouts and other disruptions, can occur when 

electricity demand exceeds renewable energy supply [6]. 

Figure 1 illustrates the performance of the solar systems curve 

for the electrical grid that is more dependent on renewable 

energy sources. 

 
Fig. 1 Solar duck curve behavior [7] 

 

Daily net load reductions occur in a steep downward 

direction across the day in solar energy-intensive regions. 

Solar electricity has become commonly accessible throughout 

the power grid, so the demand for traditional power sources 

has decreased. The increase in solar energy output during 

sunrise leads to augmented electricity supply from solar 

sources. The difference between demand and renewable 

generation (net grid load) decreases because of this 

development [8]. During the daytime, the duck curve descent 

creates operational challenges for power grid operators, who 

must find ways to handle surplus solar power generation and 

adjust other generating sources. Some situations need the 

reduction of surplus energy or its transmission to adjacent 

energy regions. The duration requires flexible resources and 

effective unit commitment procedures to maintain reliable 

grid stability. The evening period shows a substantial upward 

trend on the duck curve. The day becomes darker as solar 

power production decreases, but increasing household use 

leads to fast conventional power generation increases. The 

fast-growing net load creates excessive strain on the power 

system because it needs quick corrective actions to meet 

elevated load requirements. The unsatisfactory management 

of fast ramp-up operations may trigger power grid instability, 

drive up costs, and sometimes force usage of either inefficient 

or environmentally detrimental backup power generators. 

Successfully managing the duck curve requires detailed 

execution of unit commitment solutions, which can effectively 

balance variable supply and demand [9]. Integrating 

renewable power requires a strategy that includes operating 

traditional unit schedules to match renewable variability, 

optimizing flexible resources and energy storage, and 

implementing consumer demand response programs for peak 

management [9]. 

Multiple UC strategies exist to handle the duck curve by 

maintaining sufficient reliable and flexible power generation 

capacities to satisfy evening peak load requirements when 

renewable energy levels drop. MILP serves as a typical UC 

optimization approach to help schedule power generation by 

considering power grid limitations and transmission capacity 

and predicted energy load patterns and renewable output [10]. 

MILP encounters two main drawbacks because it runs 

extensive computational processes while failing to adapt to 

alterations in power grid operations. 

Different optimization approaches for UC exist, including 

stochastic programming [5] and Dynamic Programming (DP) 

[11], as well as heuristic algorithms such as genetic algorithm 

(GA) [12] and Particle Swarm Optimization (PSO) [11] 

together with other approaches to handle these constraints. 

The power generation schedule becomes optimized through 

stochastic programming since it minimizes expected 

generation costs while handling uncertain conditions of 

renewable energy production and electricity consumption. 

The power system status evaluation through DP provides 

time-dependent assessments that allow optimization of power 

generation planning across all time intervals. Heuristics work 

as rule-based systems to produce UC choices through simple 

implementable heuristics. 

UC strategies have been proposed to handle the duck 

curve by ensuring sufficient flexible and dependable 

electricity production capacity is accessible to meet evening 

peak demand when renewable energy supplies are low. 

Conventional UC techniques, such as Mixed-Integer Linear 

Programming (MILP) [10], are frequently used to optimize the 

power generation schedule under different constraints, such as 

the availability of various types of power grids, the 

transmission capacity, and the forecasted demand and 

renewable energy generation. MILP has been faulted for its 

computational difficulty and inability to account for the 

dynamic nature of the power grid. 

Studies have proposed many alternative UC techniques, 

such as stochastic programming [5], Dynamic Programming 

(DP) [11], and heuristics algorithms, such as Genetic 

Algorithm (GA) [12], Particle Swarm Optimization (PSO) 

[11], etc., to address these constraints. For example, stochastic 

programming is a technique that optimizes the power 

generation schedule to minimize the expected cost of 

generation, taking into account the uncertainty of renewable 
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energy generation and electricity demand. DP is another 

strategy that optimizes the power generation plan by assessing 

the status of the power system over time and making the best 

choice at each time step. On the other hand, heuristics are rule-

based systems that use simple heuristics to make UC 

decisions. 

2. Research Contributions and Novelty  
The study significantly contributes to renewable energy 

integration science and UC technique investigations through 

original research outcomes. The research brings forward its 

main contributions together with the following findings: 

 The research evaluates innovative modifications to 

standard approaches for solving particular challenges 

related to the duck curve. The research team created 

predictive forecasting tools which optimize renewable 

energy supply and demand forecasting by processing 

real-time data and optimizing control systems. The 

research examines methods to improve control systems 

for flexible power generation equipment to reduce duck 

curve effects. 

 The research includes both a comprehensive review and 

performance assessments of UC techniques GA, PSO and 

their hybrid version, which focuses on solving duck curve 

challenges in power systems with high renewable energy 

penetration. Grid operators, along with policymakers, can 

use analyzed results to select the optimal UC strategies 

for implementation. 

 Deep learning techniques play an essential role 

throughout the primary research investigations in this 

work. The research examines how LSTM and 1D-CNN 

and their combination models with LSTM-1D CNN and 

1D CNN-LSTM improve solar power prediction abilities 

for optimized UC strategies. This methodology enables 

power grid operators to build better, cost-effective 

commitment strategies for managing unpredictable 

characteristics of renewable energy production. 

 The research establishes the necessity for power plants to 

have flexibility capabilities in managing the duck curve 

and incorporating renewable energy effectively into 

electrical grids. Grid operators, together with 

policymakers, can develop improved methods for 

improving power generation infrastructure flexibility 

with the acquired knowledge. 

 

3. Unit Commitment 
The operation and planning of power systems heavily 

depend on unit commitment as a fundamental operational 

issue. UC develops optimal procedures for starting and 

stopping generating units during time periods of one day or 

one week, subject to system limitations and operational 

requirements. The electricity scheduling process should fulfill 

power requirements through the lowest feasible production 

costs. The total operational expenses consist of fuel expenses 

together with startup expenses, shutdown expenses and 

pollution-related expenditures. 

The UC problem presents significant difficulty because it 

is difficult to foresee and accurately predict system demand 

and renewable energy production levels alongside other 

changing variables. There have been a number of methods and 

algorithms created to solve the UC problem. The following is 

the identification of the UC problem [13, 14]: 

𝑀𝑖𝑛 ∑ ∑ [𝐹𝑐𝑖(𝑃𝑖𝑡)𝑁𝑇
𝑡=1 ∗ 𝐼𝑖𝑡

𝑁𝐺
𝑖=1 + 𝑆𝑈𝐶𝑖𝑡 ∗ 𝐼𝑖𝑡 + 𝑆𝐷𝐶𝑖𝑡 ∗ 𝐼𝑖𝑡]  (1) 

Where: 𝐹𝑖(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2                                     (2) 

Such that:   

𝑃𝑖,𝑚𝑖𝑛 ∗ 𝐼𝑖𝑡 ≤ 𝑃𝑖𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥 ∗ 𝐼𝑖𝑡                                           (3) 

∑ 𝑃𝑖𝑡 ∗ 𝐼𝑖𝑡
𝑁𝐺
𝑖=1 + ∑ 𝑃𝑊,𝑖𝑡

𝑁𝑊
𝑖=1 + ∑ 𝑃𝑃𝑉,𝑖𝑡

𝑁𝑃ℎ
𝑖=1 = 𝑃𝐷,𝑡 + 𝑃𝐿,𝑡       (4) 

[𝑋𝑖(𝑡−1)
𝑜𝑛 − 𝑇𝑖

𝑜𝑛] ∗ [𝐼𝑖(𝑡−1) − 𝐼𝑖𝑡] ≥ 0                                   (5) 

[𝑋𝑖(𝑡−1)
𝑜𝑓𝑓

− 𝑇𝑖
𝑜𝑓𝑓

] ∗ [𝐼𝑖𝑡 − 𝐼𝑖(𝑡−1)] ≥ 0                                (6) 

𝑃𝑖𝑡 − 𝑃𝑖(𝑡−1) ≤ [1 − 𝐼𝑖𝑡(1 − 𝐼𝑖(𝑡−1))]𝑈𝑅𝑖 + 𝐼𝑖𝑡(1 −

𝐼𝑖(𝑡−1))𝑃𝑖,𝑚𝑖𝑛                                                                       (7) 

𝑃𝑖(𝑡−1) − 𝑃𝑖𝑡 ≤ [1 − 𝐼𝑖(𝑡−1)(1 − 𝐼𝑖𝑡)]𝐷𝑅𝑖 + 𝐼𝑖(𝑡−1)(1 −

𝐼𝑖𝑡)𝑃𝑖,𝑚𝑖𝑛                                                                             (8) 

∑ 𝑂𝑅,𝑖𝑡
𝑁𝐺
𝑖=1 ∗ 𝐼𝑖𝑡 ≥ 𝑂𝑅,𝑡                                                         (9) 

∑ 𝑆𝑅,𝑖𝑡
𝑁𝐺
𝑖=1 ∗ 𝐼𝑖𝑡 ≥ 𝑆𝑅,𝑡                                                        (10) 

∑  𝐵
𝑏=1 𝛤ℓ𝑏(∑  𝑖∈𝛬𝑏

𝑃𝑖𝑡𝐼𝑖𝑡 − (𝑃𝐷,𝑡 + 𝑃𝐸𝑉𝑆,𝑡)) ≤ 𝐹ℓ                 (11) 
 

Equation (1) is an optimization problem where the 

objective is to minimize the total cost of making and using 

power to as minimal as possible. It’s made up of three parts: 

The first part is the generation cost, where 𝐹𝑐𝑖(𝑃𝑖𝑡) is a 

quadratic cost function of the power output 𝑃𝑖𝑡  of a generator 

i at time t and 𝐼𝑖𝑡  is a binary variable that shows whether the 

generator is online (1) or offline (0) at time t. The second 

part is the cost of starting up( 𝑆𝑈𝐶𝑖𝑡). The third term is the cost 

of Shutting Down (𝑆𝐷𝐶𝑖𝑡). 

Equation (2) defines the quadratic cost function. 𝐹𝑖(𝑃𝑖) 

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are coefficients that determine the shape 

of the curve. 

Equation (3) is a constraint that implies the power output 

of generator i at time t must be between the minimum and 

maximum power limits. 𝑃𝑖,𝑚𝑖𝑛 and 𝑃𝑖,𝑚𝑎𝑥 . 
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Equation (4) represents the power balance equation. It 

states that the total power produced by all generators, wind 

turbines 𝑃𝑊,𝑖𝑡, and photovoltaic panels 𝑃𝑃𝑉,𝑖𝑡, must equal the 

total power used by loads 𝑃𝐷,𝑡  and losses 𝑃𝐿,𝑡. 

Equation (5) ensures that in order for a generator to be 

switched on, both it must have been off in the preceding time 

step and the difference between its current and prior states 

must be positive. 

Equation (6) ensures that the thermal power source can be 

switched off if it is on at the end of the preceding time step 

and that the difference between the present and prior states is 

positive. 

Equations (7) and (8) are known as ramping limitations, 

which limit the rate at which a generator’s  output electrical 

power may vary between two-time steps,  

Minimum reserve is shown in Equation (9) where 𝑂𝑅,𝑖𝑡 is 

the reserve available from generator i at time t and 𝑂𝑅,𝑡 is the 

total reserve needed at time t. 

The necessary spinning reserve is shown in Equation (10), 

where 𝑆𝑅,𝑖𝑡 represents the spinning reserve of generation i at 

time t and 𝑆𝑅,𝑡  represents the total spinning reserve required 

at time t. 

Equation (11) represents the transmission line constraint, 

which ensures that the transmission lines’ power flows do not 

exceed their capacity limits. The constraint takes into account 

the power injections from various buses and units, which are 

weighted by the line flow distribution factors. This constraint 

assists in maintaining the reliability and stability of the power 

grid by comparing the total power flow to the transmission 

line’s capacity. Where b is the index for the number of buses, 

ℓ is the transmission lines index, Γℓb line flow distribution 

factor for transmission line ℓ due to the net injection at bus 

b, Fℓ the transmission capacity on the transmission line ℓ and 

Λb refers to the index set of units at bus b. 

4. Methodology 

The initiation of solving the duck curve problem through 

UC begins by precisely forecasting solar power generation 

levels. The UC system will deliver its best results when solar 

energy production forecasts show precise accuracy levels. 

Multiple deep learning methods, including Long Short-Term 

Memory (LSTM), 1D Convolutional Neural Networks (1D-

CNN) and hybrid LSTM-1D CNN, allow researchers to 

conduct accurate prediction testing. 

4.1. Forecasting Models 

4.1.1. Long Short-Term Memory for Solar Prediction 

The recurrent neural network structure known as Long 

Short-Term Memory (LSTM) proves effective at identifying 

time-based patterns in time series information. Research 

teams have widely applied LSTM for time series forecasting 

and use it to predict solar power production levels.  

The LSTM model effectively evaluates complex solar 

energy production relations between weather conditions, 

cloud cover, and daily time cycles [15]. 

The LSTM architecture includes three distinct gate types 

which are input gates alongside forget gates and output gates 

according to reference [16]. The system of gates within LSTM 

memory cells allows the model to make decisions about what 

information to remember or forget through the information 

flow, as illustrated in Figure 2.  

LSTM memory cells receive their new input quantities 

through the input gate mechanism. A sigmoid function uses 

current input together with previous output values of the 

LSTM memory cell to regulate the gate operations.  

The input gets discarded when the sigmoid output 

approaches zero values. When the sigmoid output approaches 

one the entire input becomes retained [16]. 

LSTM controls the preservation of the previous memory 

cell state through its forget gate, which determines the amount 

used in the current time step. The forget gate operates through 

a sigmoid function, which takes both the current input and 

prior output of the LSTM memory cell as its inputs.  

A near-zero sigmoid output result indicates that the entire 

previous state will be maintained. The previous state becomes 

fully deleted when the sigmoid output approaches one value 

[16]. 

The output gate decides which portions of the memory 

cell’s current state will be available at the following time step. 

The output gate of LSTM memory cells depends on two 

functions, sigmoid and hyperbolic tangent, which process both 

current inputs and previous outputs together.  

The hyperbolic tangent function transforms the LSTM 

output range, while the sigmoid function specifies the parts of 

the memory cell state that should be released [16]. 

Through these gates, the LSTM architecture controls the 

duration that data remains stored and forgotten when 

performing solar power forecasting. By implementing these 

gates, the model can detect complex data patterns, including 

multiple time frames from daily to weekly cycles and seasonal 

patterns together with nonlinear variable interconnections.  

 

The general principle behind LSTM gates works as a vital 

element of the LSTM network and demonstrates exceptional 

success in solar demand forecasting [17]. 
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Fig. 2 LSTM architecture [18] 

 

4.1.2. 1D Convolutional Neural Networks for Solar Prediction 

1D Convolutional Neural Networks (CNNs) demonstrate 

effective utilization for solar power forecasting, according to 

research [19]. These networks employ convolutional layers to 

extract features from time-series data instead of how LSTM 

models utilize memory cells for dealing with long-term 

dependencies.  
 

The convolutional layers generate a feature map with data 

regional patterns through their filter sliding operation on the 

input data. Pool layers reduce the data’s dimensionality while 

simultaneously boosting computational speed by 

downsampling the feature map [20]. The visual depiction of 

1D CCN architecture appears in Figure 3. 
 

The 1D CNN model employs solar power forecasting 

through the learning process of future energy production from 

historical solar energy output data coupled with weather 

observations. The 1D CNN architecture enables the detection 

of nonlinear variable relationships while identifying patterns 

that occur at daily, weekly, and seasonal time frames in the 

data. 
 

Among the advantages of 1D CNNs is their capability to 

operate on irregular time-series data sets that contain missing 

values and irregular time period measurements without 

requiring imputation or interpolation techniques. The effective 

training of big data sets through parallel computing makes 1D 

CNNs suitable for large-scale applications.  
 

The selection of hyperparameters requires greater 

attention during 1D CNN tuning because these models 

demonstrate sensitivity to the chosen parameters. One 

disadvantage of 1D CNNs is that they normally fail to 

duplicate the long-term dependency recognition capabilities 

of LSTM models. The use of 1D CNNs has delivered 

promising outcomes for solar power forecasting as the 

industry relies heavily on this technique for the foreseeable 

future [21]. 

 
Fig. 3 1D CNNs architecture [22] 

4.1.3. Hybrid LSTM-1D CNN for Solar Prediction 

The hybrid implementation of LSTM-1D CNN 

architecture in solar power forecasting allows the benefits of 

both architectures to work together effectively. The method 

utilizes strengths from different architectures to create 

dependable and accurate predictions because it addresses each 

design limitation [23]. 

The hybrid LSTM-1D CNN methodology accepts 

historical solar power production data combined with weather 

data along with relevant additional details as its input. 

Preprocessing techniques working on this data sequence 

normalize values while cleaning up information and 

eliminating noise and untypical points. The hybrid model 

accepts preprocessed data for processing and prediction 

functions. 

The hybrid model contains two essential components: the 

LSTM network and the 1D CNN network. The LSTM network 

processes data dependencies and time-based information 

within the dataset. The LSTM network contains memory cells 

that receive input data and use their data to process 

information through selective remembering and forgetting 

methods over time. The LSTM network transforms learned 

temporal characteristics from the input data into hidden states, 

which become part of its output sequence [24]. 

The identification of local patterns and nonlinear 

relationships in the collected data makes use of the 1D CNN 

network. After receiving hidden states from the LSTM 

network, the 1D CNN network applies convolutional and 

pooling layers multiple times to extract local features. An 

array of feature maps that display the learned input data 

patterns and nonlinear relationships produces the 1D CNN 

network’s output [24]. 

In the last prediction step, both LSTM network outputs 

and 1D CNN network outputs are sent to a fully connected 

layer. The fully connected layer forecasts future solar power 

production through the acquired features from the integrated 

networks [24]. 

Multiple advantages exist for the hybrid LSTM-1D CNN 

architecture compared to individual LSTM or 1D CNN 

systems. Both the 1D CNN network extracts local patterns 
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from nonlinear data, while the LSTM network demonstrates 

expertise in detecting long-term dependencies in temporal 

information. Implementing both network types within a single 

hybrid model enables accurate forecasting because both short-

term and long-term data patterns are detected by the merged 

networks. The hybrid model functions effectively by 

managing unpredictable time-series data without requiring 

imputation or interpolation, and it is less impacted by 

hyperparameter tuning than solitary models [24]. Figure 4 

illustrates hybrid LSTM-1D CNN architecture. 

 

 

 

 

 

 

Fig. 4 Hybrid LSTM-1D CNN architecture [25] 

 

4.1.4. Hybrid 1D CNN-LSTM for Solar Prediction 

The hybrid 1D CNN-LSTM model demonstrates proven 

effectiveness, according to [25]. The model incorporates both 

CNNs and LSTM network benefits. The transformation of 

solar data series into a time series allows 1D convolutional 

operations to enhance CNN performance in spatial pattern 

extraction. The CNN module running in the hybrid model 

detects local patterns and features embedded within solar data. 

The capability of LSTM networks extends to the exact 

identification of extended patterns while recognizing patterns 

based on time sequence information. The hybrid model uses 

CNN outputs to link them with its LSTM components. The 

model achieves greater task complexity through this design. 

The link between these network types functions through two 

methods: feeding CNN output values directly to LSTM inputs 

or merging CNN features with LSTM initial data for 

processing. The description of these methods is as follows 

below. Solar data analysis becomes more effective using the 

hybrid model that integrates CNN spatial feature extraction 

capabilities with LSTMs time modeling abilities, according to 

[25]. The hybrid 1D CNN-LSTM model demonstrates proven 

effectiveness, according to [25]. The model incorporates both 

CNNs and LSTM network benefits. The transformation of 

solar data series into a time series allows 1D convolutional 

operations to enhance CNN performance in spatial pattern 

extraction. The CNN module running in the hybrid model 

detects local patterns and features embedded within solar data. 

The ability to detect both lengthy patterns and temporal 

dependencies makes LSTM networks highly expert at their 

task. The hybrid model uses CNN outputs to link them with 

its LSTM components. The model achieves greater task 

complexity through this design. The link between these 

network types functions through two methods: feeding CNN 

output values directly to LSTM inputs or merging CNN 

features with LSTM initial data for processing. The 

description of these methods is as follows below. Solar data 

analysis becomes more effective using the hybrid model that 

integrates CNN spatial feature extraction capabilities with 

LSTMs time modeling abilities, according to [25]. 

 

 

 

 

 

 

 

 

Fig. 5 Hybrid 1D CNN- LSTM architecture [25] 
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4.2. Optimization Models 

Using UC theory, metaheuristic optimization methods 

like Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO) can be applied to the duck curve problem. 

Combining GA and PSO in a hybrid GA-PSO algorithm uses 

their distinct mechanisms for searching the solution space to 

increase the likelihood of better optimization results [26]. 

Here is a rundown of how UC methodology can be 

applied to GA, PSO, and GA-PSO to solve the duck curve 

problem: 

 Initialization: Create a random set of UC schedules to 

start with. 

 Fitness Evaluation: Use the solar power forecast and 

energy demand to figure out how well each unit’s 

commitment schedule fits. 

 Select the best UC schedules from the population to be 

the parents of the next generation. 

 Reproduction: Use genetic operators to make new 

UC schedules for the next generation in GA. In PSO, the 

speed and location of particles should be changed based 

on the best solution found so far. 

 Mutation: Change at random some of the genes in the unit 

commitment schedules in GA. To encourage exploration 

in PSO, make random changes to the speed and location 

of particles. 

 Replace: Replace the worst-performing UC schedules 

with the new ones. 

 Termination: Repeat steps 2–6 until a termination 

criterion is met, such as a maximum number of 

generations, convergence to a good solution, or running 

out of computing resources. 

Since GA and PSO each have their own unique set of 

advantages and disadvantages when it comes to solving 

optimization problems, a hybrid GA-PSO algorithm may take 

advantage of these differences for enhanced efficiency. PSO 

excels at capitalizing on the search space around promising 

solutions, while GA excels at exploring the space and 

discovering various solutions [26]. The hybrid algorithm, a 

combination of GA and PSO, can strike a balance between 

exploration and exploitation and, perhaps, prevent becoming 

trapped in local optima. However, the performance of the 

hybrid algorithm is problem- and setting-specific and requires 

careful evaluation and tuning. 

4.3. Working Structure 

The working structure of this study can be summarized as 

follows: 

Step 1: Data collection and preprocessing: The first step is to 

gather the data required for solar power generation, 

demand, and wind power. This data is then 

preprocessed and cleaned to ensure it is in an 

analysis-ready format. 

Step 2: Solar power forecasting: The next step is to forecast 

solar power generation using deep learning 

techniques such as LSTM, 1D-CNN, hybrid LSTM-

1D CNN and 1D CNN-LSTM. Based on past data, 

these models are trained on the collected data and can 

accurately predict future solar power generation. 

Step 3: Once the forecasts for solar power, wind power, and 

load demand have been finalized, the UC can be 

optimized so that it can meet the anticipated demand 

at the lowest possible cost. The goal is to find the 

most cost-effective way to meet customer needs, and 

GA, PSO, and GA-PSO are three algorithms that can 

help with that. 

Step 4: Lastly, it is critical to test and evaluate the 

performance of the improved UC strategy. To do so, 

we need to examine the plan’s efficacy, efficiency, 

and cost-effectiveness. If the initial results are not 

satisfactory, it may be necessary to try again using 

different parameters or models. 

 

Follow these steps to apply the proposed methodology to 

the IEEE 39 Bus Test System to solve the duck curve problem 

using UC, deep learning techniques for solar power 

forecasting, and GA, PSO, and GA-PSO for optimization.  

This can be done by applying the proposed methodology 

to the IEEE 39 Bus Test System. The case study has the 

potential to offer useful insights into the efficacy of the 

proposed methodology and can also be used to identify areas 

for further research and improvement. 

5. Case Study 
The IEEE 39-bus test system is a renowned power system 

test case that has garnered significant utilization among power 

system researchers. The system is a model of a real-world 

power system with 39 buses, ten generators, and 46 

transmission lines, as shown in Figure 6.  

In this study, five thermal generators are utilized on buses 

30, 31, 32, 33, and 39. In addition to two wind farms on buses 

34 and 37 and three solar farms on buses  35, 36, and 38. 

As illustrated in Table 1, the data for unit commitment in 

the IEEE 39 Bus Test System typically includes information 

on the generators, such as their capacities, minimum and 

maximum power limits, ramp-up and ramp-down rates, and 

startup and shutdown costs.  

Moreover, the historical load demand, wind power, and 

solar power used for training the forecasting models were 

taken from [27].
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Fig. 6 IEEE 39 bus test system 

 

Table 1. Thermal generators data [28] 

Unit 

NO. 
Bus 

Pmin 

(MW) 

Pmax 

(MW) 

Min 

ON 

Min 

Off 

Ramp 

Limits 

Cost Coefficients Startup 

Costs 

Shut 

Down 

Costs a b c 

1 30 15 120 2 2 50 370 22.26 0.712 350 150 

2 31 15 120 2 2 80 480 27.74 0.079 400 170 

3 32 10 100 3 3 100 660 25.92 0.412 500 500 

4 33 10 100 4 4 80 665 27.27 0.22 60 0 

5 39 5 70 3 3 50 670 27.79 0.00173 60 120 

 
Table 2. A Comparison between the forecasting techniques 

Model Accuracy MSE RMSE MAPE 

LSTM 97.26 % 0.00070925 0.026633 0.037516 

1D CCN 94.04 % 0.00023565 0.015349 0.058924 

LSTM-1D CNN 98.64 % 0.00021643 0.014713 0.016136 

1D CNN-LSTM 67.32 % 0.02184616 0.033650 0.078592 

6. Results and Discussions 
6.1. Day Ahead Solar Power Forecasting 

The findings, which are presented in Table 2, offer a 

comprehensive comparison of the four used deep 

learning methods of forecasting with regard to the particular 

solar prediction task. The LSTM model achieves low values 

of MSE, RMSE, and MAPE, which indicates that its 

predictions are accurate and precise. The LSTM model’s 

accuracy is high, coming in at 97.26%. The accuracy of the 

1D CNN model is slightly lower at 94.04%, but it performs 

very well in terms of MSE and RMSE. The LSTM-1D CNN 

hybrid model outperforms the others with an accuracy of 

98.64% and the lowest values for MSE, RMSE, and MAPE. 

These results indicate that the model’s predictions are accurate 

to a higher degree and with fewer errors than the others. 

On the other hand, when compared to the other 

techniques, the 1D CNN-LSTM model demonstrates 

relatively poorer performance overall, with lower accuracy 

and higher error metrics. These findings shed light on the 

efficacy of LSTM-based models, particularly the hybrid 

LSTM-1D CNN model, in accurately forecasting solar 

variables. This, in turn, contributes to the optimization of the 

integration of solar energy and provides support for the 

decision-making processes involved in renewable energy 

systems.  
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Figures 7 - 10 show the forecasting model’s accuracy 

performance, representing the difference between the actual 

and forecasted values of the tested sets. Moreover, table 3 

represents the day-ahead forecasted values of the solar system 

in addition to the load demand and wind energy, which will be 

used for the UC optimization model as explained in section 

6.2. 

The same forecasting techniques were applied to the load 

demand and wind power. The results show that the hybrid 

LSTM-1D CNN outperforms the other methods in terms of 

accuracy and the other metrics with an accuracy level of 

98.35%  and  98.87%, respectively. 

Table 3 displays the projected power values for 24 hours, 

broken down by hour. The load values indicate the entire 

power demand on the grid, whilst the wind and solar power 

values represent the expected power output from those 

sources. 

Figure 11 depicts the net load (load minus wind power 

minus solar power) over the course of the day, revealing a 

distinct duck curve form. The curve’s lowest point comes in 

the middle of a sunny day when solar power is strongest and 

load is lowest. This is because solar electricity can meet a 

considerable amount of the power demand during this time. 

The peak of the curve occurs in the evening when the load 

is at its peak, and solar power is no longer accessible. At this 

time, the grid must rely on alternative power sources to supply 

demand, such as natural gas or coal-fired power plants. 

 
Fig. 7  LSTM accuracy performance in forecasting the solar power 

 

 
Fig. 8 1D CCN accuracy performance in forecasting the solar power 
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Fig. 9 Hybrid LSTM-1D CNN accuracy performance in forecasting the solar power 

 
Fig. 10 Hybrid 1D CNN-LSTM accuracy performance in forecasting the solar power 

 
Fig. 11 The duck curve problem representation 



Diaa Salman et al. / IJECE, 12(5), 271-284, 2025 

 

281 

Table 3. Day ahead predicted power values 

Hour Load  (MW) Wind  Power (MW) Solar Power (MW) 

1 426.18 58.48 0 

2 409.68 37.32 0 

3 380.32 53.79 0 

4 359.88 39.27 0 

5 355.10 72.55 0 

6 351.26 34.40 0 

7 353.82 53.91 8.2 

8 371.19 65.53 36.0 

9 399.34 46.22 80.2 

10 423.91 49.59 123.6 

11 442.12 24.69 172.8 

12 462.72 66.39 200.2 

13 463.38 50.94851 224.4 

14 434.20 78.26047 239.6 

15 414.34 75.25145 241.8 

16 399.26 87.02105 232.0 

17 394.24 77.29366 193.4 

18 406.50 71.91527 73.0 

19 430.33 74.05596 21.8 

20 435.84 61.79108 0 

21 440.95 48.95232 0 

22 453.60 46.22508 0 

23 482.36 36.92015 0 

24 467.60 24.83013 0 

 

6.2. UC Optimization Models 

To deal with the duck curve problem, the input powers of 

the load, wind, and solar power are predicted and shown in 

Table 3. Three different optimization techniques, GA, PSO, 

and a hybrid GA-PSO are used on the IEEE 39 Bus test system 

to solve the UC problem and figure out the best way to 

schedule the generating units.  

Table 4 compares the operational costs of resolving the 

UC problem using the GA, PSO, and GA-PSO hybrid 

optimization techniques. The results are presented for each 

hour and the overall cost for the entire 24-hour period. The 

costs are expressed in dollars ($) for the 24 hours. 

The GA-PSO hybrid technique, followed by the PSO 

technique and the GA technique, has the lowest operational 

cost for solving the UC problem, according to the results 

shown in the table. The total cost of the GA-PSO hybrid 

technique is $319,876.7, which is lower than the total costs of 

$324,099.07 and $327,739.2693 for the PSO and GA 

techniques, respectively. 

The fluctuation in electricity demand regularly leads to 

predictable changes in operational costs over the course of the 

day. As a result, the prices are at their peak in the wee hours 

of the morning (between 1-4) and late at night (between 17-

23) and their lowest in the middle of the day (between 12-16). 

In addition, the hourly costs decrease (between 7-17) as a high 

percentage of renewable sources is integrated with the grid. 

However, all three methods share the same basic cost 

structure. 

Table 4. A comparison between the operational costs of  different 

optimization techniques in solving the UC problem 

Hour GA PSO GA-PSO 

1 19174.09 18961.13 18714.1 

2 18583.93 18377.52 18138.1 

3 15620.75 15447.25 15246.0 

4 15282.12 15112.38 14915.5 

5 12989.32 12845.05 12677.7 

6 15230.79 15061.62 14865.4 

7 13546.48 13396.02 13221.5 

8 12235.12 12099.23 11941.6 

9 12344.75 12207.64 12048.6 

10 11195.07 11070.73 10926.5 

11 10864.95 10744.28 10604.3 

12 8302.17 8209.96 8103.0 

13 7974.92 7886.34 7783.6 

14 4770.34 4717.36 4655.9 

15 4144.94 4098.90 4045.5 

16 3584.49 3544.68 3498.5 

17 4706.61 4654.34 4593.7 

18 11222.12 11097.48 10952.9 

19 15496.77 15324.65 15125.0 

20 18825.33 18616.23 18373.7 
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21 20172.85 19948.79 19688.9 

22 21387.19 21149.64 20874.1 

23 25158.56 24879.13 24555.0 

24 24925.57 24648.72 24327.6 

Total 

Costs ($) 
327739.2693 324099.07 319876.7 

 

The outcomes of the UC problem for the IEEE 39-Bus 

test system using the PSO-GA hybrid approach are shown in 

Table 5. The units of wind and solar power that were 

committed for a 24-hour period are shown in the table, along 

with the hourly units of the five generators (P1-P5). The 

values in the table represent the optimization problem’s 

decision variables, i.e., the number of units committed for 

each generator in each hour to meet demand while minimizing 

cost. 

In Table 5, during hours 19-20, the UC fixed the duck 

curve problem by committing all five available units to 

generate electricity. This ensured that there was enough 

generation capacity to meet the sudden surge in demand for 

electricity during this period. By continuously adjusting the 

number of committed units based on the demand and 

availability of different generation sources, the UC can help 

address the challenges posed by the duck curve and ensure a 

reliable and stable electricity supply. Moreover, the best 

description of the committed units can be shown in Figure 12 

and how the duck problem was fixed. 

Table 5. UC for IEEE 39-bus test system using PSO-GA 

Hour 
Committed Units  

P1 P2 P3 P4 P5 

U1 U2 U3 U4 U5 Wind Solar  

1 1 1 1 1 1 1 0 32.7 120.0 52.0 94.3 70.0 

2 1 1 1 1 1 1 0 33.6 120.0 53.7 97.4 70.0 

3 1 1 1 1 1 1 0 26.1 120.0 40.7 73.2 70.0 

4 1 1 1 1 1 1 0 25.2 120.0 39.1 70.1 70.0 

5 1 1 0 1 1 1 0 25.5 120.0 0 71.0 70.0 

6 1 1 0 1 1 1 0 33.5 120.0 0 97.0 70.0 

7 1 1 0 1 1 1 1 27.6 120.0 0 77.9 70.0 

8 1 1 0 1 1 1 1 22.4 120.0 0 61.0 70.0 

9 1 1 0 1 1 1 1 22.8 120.0 0 62.5 70.0 

10 1 1 0 1 1 1 1 17.6 120.0 0 45.7 70.0 

11 1 1 0 1 1 1 1 16.8 116.7 0 43.0 70.0 

12 1 1 0 0 1 1 1 16.2 111.6 0 0 70.0 

13 1 1 0 0 1 1 1 15.5 105.2 0 0 70.0 

14 0 1 0 0 1 1 1 0 49.1 0 0 70.0 

15 0 1 0 0 1 1 1 0 31.2 0 0 70.0 

16 0 1 0 0 1 1 1 0 15.0 0 0 68.6 

17 0 1 0 0 1 1 1 0 47.3 0 0 70.0 

18 0 1 0 1 1 1 1 0 120.0 0 65.3 70.0 

19 1 1 1 1 1 1 1 25.8 120.0 40.1 72.1 70.0 

20 1 1 1 1 1 1 0 34.2 120.0 54.6 99.2 70.0 

21 1 1 1 1 1 1 0 40.3 120.0 65.2 100.0 70.0 

22 1 1 1 1 1 1 0 45.5 120.0 74.2 100.0 70.0 

23 1 1 1 1 1 1 0 59.4 120.0 98.3 100.0 70.0 

24 1 1 1 1 1 1 0 

 

 

 

58.6 120.0 96.9 100.0 70.0 
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Fig. 12 Units dispatch integrated with solar and wind power 

 

7. Conclusion  
Integrating renewable energy sources into the power grid 

poses a significant challenge in managing the duck curve. 

Combining unit commitment strategies with techniques for 

deep learning and metaheuristic optimization can provide 

effective solutions to this issue. Accurate solar energy 

production forecasting is crucial for optimal results, and the 

Hybrid LSTM-1D CNN model has been demonstrated to be 

exceptionally accurate in this regard when compared to 

LSTM, CNN, and 1D CNN-LSTM. In addition, the GA-PSO 

hybrid technique has been determined to be the most cost-

effective solution, providing invaluable insights into the 

optimization of unit commitment strategies for renewable 

energy integration when compared to GA and PSO. The case 

study utilizing the IEEE 39 bus test system demonstrates the 

potential of this methodology and identifies areas for future 

investigation. The hybrid LSTM-1D CNN model achieves the 

highest accuracy of 98.64%. The GA-PSO hybrid technique’s 

total cost is $319,876.7, which is less than both the PSO and 

GA techniques. The UC can help mitigate the effects of the 

duck curve by adjusting the number of committed units in real 

time in response to changes in electricity demand and the 

availability of various types of generation. Successfully 

managing the duck curve is critical to ensuring a stable and 

reliable power supply while reducing greenhouse gas 

emissions. 

Funding Statement 
This study was performed with the support of Jamhuriya 

University of Science and Technology, Mogadishu, Somalia.  

Acknowledgements  
The authors would like to extend their gratitude to the 

engineering faculty of Jamhuriya University of Science and 

Technology for their invaluable assistance and support 

throughout this research. Special thanks to the Department of 

Electrical Engineering for their guidance and contributions. 

The authors also appreciate the cooperation and 

encouragement from their colleagues and peers. 

 

References  
[1] Qi Wang et al., “Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power 

Station,” Energies, vol. 12, no. 18, pp. 1-16, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Qingchun Hou et al., “Probabilistic Duck Curve in High PV Penetration Power System: Concept, Modeling, and Empirical Analysis in 

China,” Appied Energy, vol. 242, pp. 205-215, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Harun Or Rashid Howlader et al., “Optimal Thermal Unit Commitment for Solving Duck Curve Problem by Introducing CSP, PSH and 

Demand Response,” IEEE Access, vol. 6, pp. 4834-4844, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Shubham Tiwari et al., “Unit Commitment Problem in Renewable Integrated Environment with Storage: A Review,” International 

Transactions on Electrical Energy Systems, vol. 31, no. 10, pp. 1-27, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Idriss Abdou, and Mohamed Tkiouat, “Unit Commitment Problem in Electrical Power System: A Literature Review,” International 

Journal of Electrical and Computer Engineering, vol. 8, no. 3, pp. 1357-1372, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Richard Schmalensee, “Competitive Energy Storage and the Duck Curve,” The Energy Journal, vol. 43, no. 2, pp. 1-16, 2022. [CrossRef] 

[Google Scholar] [Publisher Link] 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
M

W
)

Hour

Solar

Wind

P5

P4

P3

P2

P1

https://doi.org/10.3390/en12183521
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mitigation+Strategy+for+Duck+Curve+in+High+Photovoltaic+Penetration+Power+System+Using+Concentrating+Solar+Power+Station&btnG=
https://www.mdpi.com/1996-1073/12/18/3521
https://doi.org/10.1016/j.apenergy.2019.03.067
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Probabilistic+duck+curve+in+high+PV+penetration+power+system%3A+Concept%2C+modeling%2C+and+empirical+analysis+in+China%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S0306261919304763
https://doi.org/10.1109/ACCESS.2018.2790967
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+thermal+unit+commitment+for+solving+duck+curve+problem+by+introducing+csp%2C+psh+and+demand+response&btnG=
https://ieeexplore.ieee.org/abstract/document/8249786
https://doi.org/10.1002/2050-7038.12775
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unit+commitment+problem+in+renewable+integrated+environment+with+storage%3A+A+review%2C&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/2050-7038.12775
http://doi.org/10.11591/ijece.v8i3.pp1357-1372
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unit+commitment+problem+in+electrical+power+system%3A+A+literature+review&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/9675
https://doi.org/10.5547/01956574.43.2.rsch
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Competitive+Energy+Storage+and+the+Duck+Curve&btnG=
https://journals.sagepub.com/doi/abs/10.5547/01956574.43.2.rsch


Diaa Salman et al. / IJECE, 12(5), 271-284, 2025 

 

284 

[7] Everything you Need to know about the Duck Curve, Synergy, 2023. [Online]. Available: 

https://www.synergy.net.au/Blog/2021/10/Everything-you-need-to-know-about-the-Duck-Curve  

[8] Harsh Wardhan Pandey, Ramesh Kumar, and Rajib Kumar Mandal “Ranking of Mitigation Strategies for Duck Curve in Indian Active 

Distribution Network using MCDM,” International Journal of System Assurance Engineering and Management, vol. 14, pp. 1255-1275, 

2023. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Ali Raza Kalair et al., “Duck Curve Leveling in Renewable Energy Integrated Grids using Internet of Relays,” Journal of Cleaner 

Production, vol. 294, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Issoufou Tahirou Halidou et al., “Unit Commitment in the Presence of Renewable Energy Sources and Energy Storage System: Case 

Study,” Journal of Energy and Power Engineering, vol. 12, pp. 322-328, 2018. [CrossRef] [Google Scholar] [Publisher Link]  

[11] Dominik Putz et al., “A Comparison between Mixed-Integer Linear Programming and Dynamic Programming with State Prediction as 

Novelty for Solving unit Commitment,” International Journal of Electrical Power & Energy Systems, vol. 125, 2021. [CrossRef] [Google 

Scholar] [Publisher Link] 

[12] Divya Ananthan, and Nishanthinivalli, “Unit Commitment Solution Using Particle Swarm Optimisation (PSO),” IOSR Journal of 

Engineering (IOSRJEN), vol. 4, no. 3, pp. 1-9, 2014. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Jianhui Wang, Mohammad Shahidehpour, and Zuyi Li, “Security-Constrained Unit Commitment with Volatile Wind Power Generation,” 

IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1319-1327, 2008. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Chung-Li Tseng et al., “A Transmission-Constrained Unit Commitment Method in Power System Scheduling,” Decision Support Systems, 

vol. 24, no. 3-4, pp. 297-310, 1999. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Chun-Hung Liu, Jyh-Cherng Gu, and Ming-Ta Yang, “A Simplified LSTM Neural Networks for One Day-Ahead Solar Power 

Forecasting,” IEEE Access, vol. 9, pp. 17174-17195, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[16] B. Brahma, and R. Wadhvani, “Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data,” Symmetry, 

vol. 12, no. 11, pp. 1-20, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Dhananjay Kumar et al., “Forecasting of Solar and Wind Power using LSTM RNN for Load Frequency Control in Isolated Microgrid,” 

International Journal of Modelling and Simulation, vol. 41, no. 4, pp. 311-323, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Xuan-Hien Le et al., “Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting,” Water, vol. 11, no. 7, 

pp. 1-19, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Andri Mulyadi, and Esmeralda C. Djamal, “Sunshine Duration Prediction Using 1D Convolutional Neural Networks,” 2019 6th 

International Conference on Instrumentation, Control, and Automation (ICA), Bandung, Indonesia, pp. 77-81, 2019. [CrossRef] [Google 

Scholar] [Publisher Link] 

[20] B. Benson et al., “Forecasting Solar Cycle 25 Using Deep Neural Networks,” Solar Physics, vol. 295, pp. 1-17, 2020. [CrossRef] [Google 

Scholar] [Publisher Link] 

[21] Abraham Kaligambe, and Goro Fujita, “Short-Term Load Forecasting for Commercial Buildings Using 1D Convolutional Neural 

Networks,” 2020 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, pp. 10-14, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Vishakha Pareek, and Santanu Chaudhury, “Deep Learning-Based Gas Identification and Quantification with Auto-Tuning of Hyper-

Parameters,” Soft Computing, vol. 25, pp. 14155-14170, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[23] A. Mellit, A. Massi Pavan, and V. Lughi, “Deep Learning Neural Networks for Short-Term Photovoltaic Power Forecasting,” Renewable 

Energy, vol. 172, pp. 276-288, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Mario Tovar, Miguel Robles, and Felipe Rashid, “PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of 

Study: Temixco-Morelos, México,” Energies, vol. 13, no. 24, pp. 1-15, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Fachrizal Aksan et al., “CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of 

Northeast Germany,” Sensors, vol. 23, no. 2, pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Sahbi Marrouchi, Moez Ben Hessine, and Souad Chebbi, “Combined Use of an Improved PSO and GA to Solve the Unit Commitment 

Problem,” 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Yasmine Hammamet, pp. 1264-1270, 2018. 

[CrossRef] [Google Scholar] [Publisher Link] 

[27] Wanjun Huang, Datasheet, Historical Data in Simulation(Data in France), Figshare, France, 2019. [CrossRef]  [Google Scholar] 

[Publisher Link] 

[28] Allen J. Wood, Bruce F. Wollenberg, and Gerald B. Sheblé, Power Generation Operation and Control, Wiley, pp. 1-656, 2014. [Google 

Scholar] [Publisher Link] 

 

https://doi.org/10.1007/s13198-023-01929-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ranking+of+mitigation+strategies+for+duck+curve+in+Indian+active+distribution+network+using+MCDM&btnG=
https://link.springer.com/article/10.1007/s13198-023-01929-w
https://doi.org/10.1016/j.jclepro.2021.126294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Duck+curve+leveling+in+renewable+energy+integrated+grids+using+internet+of+relays&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S095965262100514X
http://dx.doi.org/10.17265/1934-8975/2018.06.004%5d
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unit+Commitment+in+the+Presence+of+Renewable+Energy+Sources+and+Energy+Storage+System%3A+Case+Study+&btnG=
https://www.davidpublisher.com/index.php/Home/Article/index?id=37432.html
https://doi.org/10.1016/j.ijepes.2020.106426
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comparison+between+mixed-integer+linear+programming+and+dynamic+programming+with+state+prediction+as+novelty+for+solving+unit+commitment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comparison+between+mixed-integer+linear+programming+and+dynamic+programming+with+state+prediction+as+novelty+for+solving+unit+commitment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0142061520315131
https://doi.org/10.9790/3021-04310109
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unit+Commitment+Solution+Using+Particle+Swarm+Optimisation&btnG=
https://iosrjen.org/pages/volume4-issue3(part-1).html
https://doi.org/10.1109/TPWRS.2008.926719
https://scholar.google.com/scholar?q=Security-Constrained+Unit+Commitment+With+Volatile+Wind+Power+Generation&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/4556639
https://doi.org/10.1016/S0167-9236(98)00072-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+transmission-constrained+unit+commitment+method+in+power+system+scheduling%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167923698000724
https://doi.org/10.1109/ACCESS.2021.3053638
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Simplified+LSTM+Neural+Networks+for+One+Day-Ahead+Solar+Power+Forecasting&btnG=
https://ieeexplore.ieee.org/abstract/document/9333638
https://doi.org/10.3390/sym12111830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solar+irradiance+forecasting+based+on+deep+learning+methodologies+and+multi-site+data&btnG=
https://www.mdpi.com/2073-8994/12/11/1830
https://doi.org/10.1080/02286203.2020.1767840
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forecasting+of+solar+and+wind+power+using+LSTM+RNN+for+load+frequency+control+in+isolated+microgrid&btnG=
https://www.tandfonline.com/doi/abs/10.1080/02286203.2020.1767840
https://doi.org/10.3390/w11071387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Long+Short-Term+Memory+%28LSTM%29+neural+network+for+flood+forecasting&btnG=
https://www.mdpi.com/2073-4441/11/7/1387
https://doi.org/10.1109/ICA.2019.8916751
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sunshine+Duration+Prediction+Using+1D+Convolutional+Neural+Networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sunshine+Duration+Prediction+Using+1D+Convolutional+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/8916751
https://doi.org/10.1007/s11207-020-01634-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forecasting+Solar+Cycle+25+Using+Deep+Neural+Networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forecasting+Solar+Cycle+25+Using+Deep+Neural+Networks&btnG=
https://link.springer.com/article/10.1007/s11207-020-01634-y
https://doi.org/10.1109/PowerAfrica49420.2020.9219934
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Short-Term+Load+Forecasting+for+Commercial+Buildings+Using+1D+Convolutional+Neural+Networks%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/9219934
https://doi.org/10.1007/s00500-021-06222-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning-based+gas+identification+and+quantification+with+auto-tuning+of+hyper-parameters&btnG=
https://link.springer.com/article/10.1007/s00500-021-06222-1
https://doi.org/10.1016/j.renene.2021.02.166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+neural+networks+for+short-term+photovoltaic+power+forecasting&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0960148121003475
https://doi.org/10.3390/en13246512
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PV+power+prediction%2C+using+CNN-LSTM+hybrid+neural+network+model&btnG=
https://www.mdpi.com/1996-1073/13/24/6512
https://doi.org/10.3390/s23020901
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CNN-LSTM+vs.+LSTM-CNN+to+Predict+Power+Flow+Direction%3A+A+Case+Study+of+the+High-Voltage+Subnet+of+Northeast+Germany&btnG=
https://www.mdpi.com/1424-8220/23/2/901
https://doi.org/10.1109/SSD.2018.8570514
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combined+use+of+an+improved+PSO+and+GA+to+solve+the+unit+commitment+problem&btnG=
https://ieeexplore.ieee.org/abstract/document/8570514
https://doi.org/10.6084/m9.figshare.11341727.v1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=W.+Huang+Historical+Data+in+Simulation%28Data+in+France%29&btnG=
https://figshare.com/articles/dataset/Historical_Data_in_Simulation_Data_in_France_/11341727?file=20119142
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%98Power+Generation+Operation+and+Control&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%98Power+Generation+Operation+and+Control&btnG=
https://www.google.co.in/books/edition/Power_Generation_Operation_and_Control/JafyAAAAQBAJ?hl=en&gbpv=0

