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Abstract - Aloe Vera has been widely cultivated for medicinal and cosmetic purposes, but its productivity is affected by different 

leaf diseases. They need to be detected early and accurately to avoid crop loss and to keep plants healthy. Conventional disease 

identification techniques are based on manual inspection, which is both time-consuming and predisposed to errors. Therefore, 

to cope with this delinquency, this study presents an edge AI-based system architecture for real-time aloe vera plant disease 

detection, which leads to more efficient and accurate detection. An Aloe Vera disease dataset was employed to train a 

Convolutional Neural Network (CNN), which was then deployed on an edge device to perform real-time inference. 

Environmental monitoring using IoT sensors is also part of the architecture. Experimental results specify that the proposed 

system can perceive diseases with high accuracy while considerably reducing latency compared to cloud-based methods. The 

proposed Aloe Vera leaf disease classification model, based on ResNet50, achieved 99.15% accuracy, 99.20% precision, 99.21% 

recall, and a 99.20% F1 score, ensuring high classification performance. The deployment of the quantized TFLite model on 

Raspberry Pi 4 B enables real-time disease detection with an inference latency of 4,922 ms (~4.9s) and a reduced model size of 

23.4MB (INT8), making it suitable for edge computing applications in precision agriculture. Fine-grained deep learning with 

Edge AI empowers Real-Time Decision Making in Resource-Constrained Environments. This study provides a solution for Aloe 

Vera disease detection, characterized by low latency, energy efficiency, and scalability, emphasizing a tool for smart agriculture 

applications.  

Keywords - Edge AI, Aloe vera disease detection, Deep learning, Smart agriculture, IoT-based monitoring. 

1. Introduction  
Crop diseases have proven to be a stern hazard to 

agricultural productivity, and agriculture is very important for 

crops and the global economy. Diseases triggered by bacteria, 

fungi, viruses, and environmental stressors can wipe out 

plants and result in significant yield losses for smallholder 

farmers and even large-scale agricultural industries. Accurate 

and early detection of diseases is vital for reducing these 

losses and improving plant health and sustainable agriculture. 

Traditionally, plant disease detection has been performed by 

farmers and agricultural experts through manual inspection. 

Nonetheless, manual monitoring is time-consuming, requires 

specialist expertise, and is fragile, particularly in extensive 

farms. Delays in diagnosing plant diseases may lead to large 

outbreaks that reduce crop yield and escalate the use of 

chemical pesticides, which are environmentally harmful. 

Currently, the application of smart agriculture based on deep 

learning, computer vision, and the Internet of Things (IoT) is 

a current trend that has changed the process of plant disease 

recognition. Machine Learning (ML) and Deep Learning (DL) 

models may be utilized to annotate diseases on plant images, 

where very high levels of accuracy can be gained, and the fact 

that IoT sensors can measure environmental circumstances 

that lead to related diseases. 

Aloe Vera is an important species in sustainable 

agriculture, pharmaceuticals, and cosmetics due to its 

potential for drought resistance, medicinal effects, and 

commercial value [1]. Perfect for eco-friendly farming 

because of its drought tolerance and low maintenance 

requirements. Owing to its high concentration of bioactive 

constituents, aloe vera has been largely used in wound healing, 

skin care, and digestive management [2]. Many scientific 

studies have shown its various biological activities, such as 

antiviral, antimicrobial, antifungal, and antitumour activities. 

Moreover, aloe vera depicts significant antidepressant activity 

and masterfully stands for the management of several 

diseases, including skin disorders (e.g., psoriasis, acne) and 

prediabetes [3]. Global Aloe Vera Extract Market – By 

Application. The global A. vera extract market has been 
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categorized  into cosmetics, pharmaceutics, and food and 

beverages. The market is largely dominated by the cosmetics 

industry (48% of the share) (Precedence Research, 2023) , 

owing to the moisturizing, anti-inflammatory, and skin-

rejuvenating activities of aloe vera. The food and beverage 

industry has a 28% share and draws on the digestive and 

immunity-enhancing properties of aloe vera, which makes it 

one of the popular herbs used in health drinks and functional 

foods. Moreover, the pharmaceutical industry accounts for 

24% of the market and uses the wound-healing, anti-

microbial, and medicinal qualities of aloe vera in topical 

treatment and herbal medicine [4]. Increasing preference for 

natural and plant-based products is anticipated to bolster 

market growth across these industries over the coming years. 

The market revenue of aloe vera extract was worth over USD 

2.29 billion in 2024 and is estimated to grow at a rate of more 

than 9.22% CAGR to be worth above USD 5.07 billion in 

2033 [5].   Figure 1 illustrates the market share distribution of 

Aloe Vera extract by application in 2023 and highlights its 

usage across various industries, such as cosmetics, 

pharmaceuticals, and food & beverages, demonstrating its 

application in multiple sectors, including cosmetics, 

pharmaceuticals, and food & beverages.

 
Fig. 1 Aloe vera extract market share by application (2023) 

 
 This is because of the unique morphological structure of 

the plant, which contains gum lodged in  leaf tissue. Because 

of the small nature of the symptoms of the disease, it is 

tedious to identify infection in Aloe Vera leaves [6]. Fungal 

diseases are commonly diagnosed by the appearance of small 

spots of discoloration on leaves, which can easily resemble 

natural leaf aging or environmental stress. Of these, Aloe 

Rust is an important disease with yellow-orange spots on the 

leaf surface that prevent photosynthesis, weaken the plant, and 

make it vulnerable to nongenetic stress. If left unprocessed, 

this disease can cause unadorned leaf damage and hinder plant 

growth. 

 Aloe Vera plants are increasingly affected by leaf 

diseases that go undetected at early stages, leading to reduced 

yield and quality. Despite its economic importance, limited 

research exists on automated and accurate detection methods 

tailored specifically for Aloe Vera leaf diseases. Disease 

detection is also complicated by environmental factors such 

as humidity, temperature changes, and soil conditions. Current 

laboratory-based methods for disease identification are costly 

and time-consuming, making large-scale monitoring 

unrealistic. Although various AI-based disease detection 

systems have been introduced to the market, cloud-dependent 

models have some major limitations, such as latency, the 

requirement for an uninterrupted internet connection, and data 

security. These limitations emphasize the necessity of an 

automation-based real-time, rapid, and low-cost Aloe Vera 

crop health monitoring system. Such a system would allow the 

rapid diagnosis of plant diseases, which would facilitate early 

intervention and reduce the dependence on expensive 

laboratory-based approaches to diagnose plant diseases. One 

promising alternative is that by integrating edge computing 

with deep learning models, local on-device disease detection 

could be enabled without the need for persistent cloud 

connections [7]. Major Challenges in Detecting Aloe Vera 

Disease 

● Symptom Similarity: Disease Symptoms resemble 

natural plant aging or response to environmental stress. 

● Delayed Recognition: Pathogens may not produce 

noticeable symptoms in the early stages, which 

complicates timely intervention. 

● Limitations of Manual Inspection: Manual inspection is 

tedious, cumbersome, and impractical for large farms. 
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● Disease Factors: Disease progression is influenced by 

humidity, temperature, and soil health 

● Costly Lab Tests: Microbial testing and chemical 

analysis are costly and out of reach for small producers. 

● Limitations of cloud AI: Delays due to Internet 

connectivity, data privacy issues, and increased costs. 

● Insufficient Real-Time or On-Field Applications: There 

is a gap in developing real-time, on-field solutions for 

Aloe Vera disease detection, especially using edge 

devices for rapid diagnosis in remote agricultural settings.  

Laboratory testing and AI models on the cloud are current 

techniques, but in most cases, they are time-consuming, 

costly, and not practically suitable for real-time, on-site 

monitoring of remote farmlands. In addition, the applications 

of AI for the detection of diseases in Aloe Vera are still in their 

infancy, with no studies focusing on real-time on-device 

detection and decision-making. Existing methods, such as lab 

tests and cloud-based AI models, are slow, costly, and 

impractical for real-time on-field monitoring in remote 

farmlands. In addition, AI-based Aloe Vera disease detection 

research has not yet matured, and there are no studies on real-

time on-device detection and decisions. To address these 

challenges, this research aims to develop a novel, scalable, 

efficient, and intelligent Edge AI-based system for Aloe Vera 

leaf disease exposure. The proposed system integrates a real-

time, deep learning-based disease recognition model to enable 

rapid and accurate identification of plant diseases. IoT-

enabled environmental vision sensors are integrated to 

monitor critical factors influencing disease progression by 

capturing real-time images, and an energy-efficient Edge AI 

framework to facilitate climate-smart agriculture by 

processing data locally without relying on cloud-based 

infrastructures. By implementing this low-cost, high-accuracy 

system, this study aims to empower farmers with real-time 

insights, reduce crop losses, and promote sustainable Aloe 

Vera farming practices. The objective of this learning was to 

develop a strong and real-time Aloe Vera leaf disease 

diagnostics and prediction system based on Machine Learning 

& Edge AI. Divided broadly into four parts — Introduction; 

Literature Review; Methodology; Results & Conclusion — 

the research was undertaken to obtain and pre-process the 

images of Aloe vera leaves, training ML Models that could 

effectively learn to classify the diseases, and finally deploying 

the optimized model on an Edge AI device for its practical and 

real-time application. In addition, the study seeks to evaluate 

the system’s performance against conventional approaches in 

terms of accuracy, effectiveness, and computational cost.  

2. Literature Review 
 Aloe Vera, widely used in pharmaceutical and cosmetic 

industries, remains underexplored in disease diagnostics 

compared to staple crops. The disease detection of aloe vera is 

crucial for several reasons, including preventing crop losses, 

improving quality, and enabling sustainable agricultural 

practices. The literature review section covers various aspects 

related to Aloe Vera disease detection, including the design of 

a real-time disease recognition model based on deep learning, 

IoT-enabled sensors for environmental tracking, and an 

energy-efficient Edge AI framework for climate-smart 

agriculture. Since very few studies are available specifically 

on Aloe Vera disease detection, this review also explored 

research on disease detection in other plants as well. This 

broader review helps to identify methodologies, technologies, 

and approaches that can be adapted and optimized for Aloe 

Vera farming.  

Recent advancements in IoT have enabled real-time plant 

health monitoring through the integration of sensors and edge 

devices conditions as well as possible early symptoms of 

disease are recorded using environmental sensors like 

DHT11 (for humidity and temperature), soil moisture sensors, 

and vision-based modules. Such systems help in making 

futuristic decisions in smart agriculture. In IoT-enabled 

agriculture, seamless communication between the edge and 

cloud is very important to ensure RT monitoring and decision-

making. Many RF connectivity protocols are used, such as 

MQTT, HTTP, LoRa, Wi-Fi, ZigBee, and M2M (Machine-to-

Machine) [8]. MQTT is very popular because it is lightweight 

messaging that has a low latency, and is also suitable for a 

limited resources environment. LoRa offers long-reach, low-

power connectivity ideal for large distances, able to support a 

variety of farming needs. Wi-Fi and ZigBee provide strong 

medium-range local area wireless communication, enabling 

the integration of sensors and actuators. Additionally, M2M 

communication facilitates direct data transmission among 

devices without human intervention, which contributes to the 

sense of autonomy and scalability of smart agriculture. It is 

therefore essential not only to choose and integrate suitable 

communication protocols but also to guarantee that the data 

flow is seamless, energy-efficient, and reliable in the 

agricultural IoT environment [9]. 

 For instance, the study [10] proposes an IoT-based smart 

arrangement for factual-time environmental nursing, 

automated irrigation, and plant disease prediction. It integrates 

microcontrollers, DHT-22 sensors, moisture sensors, rain 

sensors, water pumps, and VGA camera modules for 

continuous data collection. The OV7670 Camera Module 

captures plant images, which are processed using MATLAB 

and an AlexNet-optimised CNN for disease classification. The 

ML model predicts disease outbreaks based on temperature, 

humidity, and rainfall data, focusing on blister blight in tea 

plants. Implemented using an Arduino-based IoT prototype, 

the system enables early disease detection and precision 

agriculture to improve crop health.  

An MMF-Net, a multi-model fusion network combining 

IoT and deep learning for accurate corn leaf disease detection. 

By integrating image and environmental data, MMF-Net 

achieved 99.23% accuracy, outperforming traditional models. 
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An IoT-based Smart Node Hub (SNH) with Arduino, sensors, 

and Bluetooth collects real-time soil moisture, pressure, 

humidity data, and temperature, transmitting it via PLX-DAQ 

software for continuous monitoring and instant disease alerts. 

This system leverages edge computing and cloud integration 

for efficient, scalable, and precise agricultural management 

[11]. An IoT-integrated machine learning model is projected 

for envisaging blister blight disease in tea floras using 

environmental data. An Arduino-based prototype with DHT-

22 and rain sensors captured real-time temperature, humidity, 

and rainfall data. A Multiple Linear Regression (MLR) model 

predicts disease probability, validated through field 

observations from 2015 to 2019. The results showed improved 

prediction accuracy over time, reaching 91% in 2019. The 

model enables early detection, reduces pesticide use, and 

supports sustainable agriculture [12].  

An IoT-based plant disease recognition model, where 

sensor nodes capture leaf imageries and transmit data to a sink 

node for processing. The system applies a median filter for 

image enhancement, followed by segmentation to identify the 

diseased regions. Feature extraction techniques are then used 

to analyze the affected areas, and a Sine Cosine Algorithm 

(SCA)-based Rider Neural Network (RideNN) categorizes the 

disease presence with improved accuracy. Simulations 

conducted in 50-, 100-, and 150-node IoT environments 

demonstrated the system’s high performance, achieving 

0.9156 accuracy, 0.9404 sensitivity, and 0.9298 specificity, 

outperforming existing models. The SCA algorithm optimizes 

the rider optimization algorithm (ROA) for precise 

classification, improving the efficiency of plant disease 

detection. The system supports remote monitoring, reduces 

labour efforts, and ensures early disease identification to 

minimize crop losses [13]. 

On the other hand, researchers propose an IoT-based 

framework utilizing cameras, MY THINGS smart sensors, 

robotic arms, and Arduino Uno for real-time data collection. 

Proximal soil sensors (PSS), temperature sensors, water 

quality sensors, and GPS assess soil fertility and 

environmental conditions. The system employs IoT-based 

communication for automated monitoring and decision-

making, applying Local Binary Thresholding and Genetic 

Algorithm for Image Recognition to detect plant diseases. 

However, the system lacks disease-type classification and 

relies on farmer input for robotic arm control. The robotic arm 

automates harvesting, while GPS aids in crop spacing and 

irrigation [14].  

To monitor potato leaf diseases, an IoT-based system is 

to be developed to, early blight and late blight. This system 

combines eco-sensing technology, image processing, and 

deep learning models. DHT22 for temperature and humidity 

measurements, and an LDR for reporting on light conditions; 

the system includes IoT sensors. ESP32-CAM captures 

images of potato leaves that are processed locally with a fine-

tuned ResNet-50 model for the detection of diseases. 

Therefore, potato leaf diseases can be classified in real-time 

with an accuracy rate of 97%. The statistics from the sensors 

and image data are processed by the Arduino UNO 

microcontroller that sends SMS on the GSM/GPRS module 

(SIM900A) whenever the environmental parameters exceed 

the optimal range, for example, temperature (15-20°C) and 

humidity ≤ 90%. This enables farmers to receive timely alerts, 

thereby enhancing their ability to intervene early in disease 

management [15]. One study explored the feasibility of 

transmitting images over Low-Power Wide Area Networks 

(LP-WAN) using LoRa for grape leaf disease detection. 

Because LoRa has a low data rate and a 1% duty cycle, image 

transmission is challenging. The researchers optimized the 

image size by converting images to grayscale and tested a fine-

tuned CNN model to classify grape leaf diseases. Despite 

packet losses of up to 50%, the model successfully identified 

diseases. The study demonstrates that LoRa can be used for 

image transmission in agriculture, with future improvements 

involving multiple LoRa gateways to enhance data 

transmission and disease detection efficiency [16]. 

A low-cost and energy-efficient IoT platform (SAgric-

IoT) designed for real-time agricultural monitoring and leaf 

disease detection. It follows a five-layer architecture 

(gathering, communication, processing, security, and end-

user) and employs ZigBee (IEEE 802.15.4) and Wi-Fi for data 

transmission. A Raspberry Pi 3 Model B gateway collects 

sensor and image data and sends them to the cloud via cellular 

networks. The hardware included a PIC18LF46K22 

microcontroller managing AM2315, AM2302, and SHT-10 

sensors for environmental monitoring, while the ESP32-CAM 

captured images. XBee S2C radios enable ZigBee-based 

communication, optimizing power and coverage. A CNN 

model on the cloud analyzes images with an accuracy of 95% 

+ for disease detection. Challenges include adapting to real-

field conditions owing to lighting and background variations 

[17]. The study proposes a Wireless IoT-based Efficient 

Disease Detection System (WEDDS) using WMSN with 

camera capability for plant disease cataloguing. The system 

processes images of the diseased leaves by segmenting them 

using a threshold-based statistical approach. Features 

extracted via the GLCM matrix were classified using an SVM 

classifier with a linear kernel. Compressed Sensing (CS) is 

applied to minimize data transmission overhead, and the 

measurements are transmitted via Raspberry Pi 3 to the cloud 

using ThingSpeak, leveraging inbuilt Wi-Fi. MATLAB 

simulations showed a cataloguing accuracy of 98.4% and a 

discovery accuracy of 98.5%. The system employed OpenCV 

for image processing and Python for implementation [18]. The 

paper suggests that the amalgamation of IoT, cloud 

computing, and big data in the agriculture domain has opened 

the gateway for Farm-as-a-Service (FaaS) systems for real-

time monitoring, analysis, and disease prediction. FaaS takes 
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props from IoT devices, data analytics, from predictive 

models to forecast the data as precisely as possible. 

The IoT-Hub network featuring oneM2M and LoRa 

ensures stable data transmission service in low-coverage 

districts, and business solutions based on mobile ensure 

scalability. Any risk value 1 is treatable by chemical 

application. Combining IoT and machine learning improves 

prediction performance and allows automatic, real-time 

disease alerts for sustainable farm management [19]. The 

amalgamation of edge and cloud platforms delivers a vigorous 

resolution for enhancing system responsiveness and 

scalability in agricultural monitoring structures. Cloud 

environments, such as Google Colab, are utilized for training 

and optimizing deep learning models due to their high 

computational capabilities. In contrast, real-time inference 

tasks are shifted to edge devices like the Raspberry Pi 4B to 

minimize latency and maintain operability in offline 

conditions. This hybrid model addresses inherent drawbacks 

of cloud-dependent architectures, notably high latency, 

continuous internet requirements, and data security 

vulnerabilities, thereby assembling it idyllic for deployment in 

remote farming. For instance, the author [20] proposes an IoT-

deep learning-based Automatic and Intelligent Data Collector 

and Classifier (AIDCC) framework to automate disease 

detection in pearl millet crops. The system integrates a 

Raspberry Pi, drone cameras, and environmental sensors to 

collect real-time data from ICAR, Mysore, India. Sensor and 

image data are transmitted to the cloud via Wi-Fi and MQTT, 

optimizing data transmission by storing up to 100 images on a 

Raspberry Pi before offloading. The Custom-Net deep 

learning model was deployed for disease cataloguing, and 

Grad-CAM was used for feature conception. The AI-SHES 

(Artificial Intelligence-based Smart Hydroponics Expert 

System) integrates IoT-connected sensors controlled by a 

Raspberry Pi to observe perilous constraints such as NPK 

levels, pH, turbidity, temperature, humidity, and water levels. 

Sensor data are continuously uploaded to an IoT cloud 

server, ensuring seamless data transmission and remote 

access. The AI-SHES system supports both manual and 

automated control modes via an Android application, allowing 

farmers to monitor and adjust farm conditions remotely. 

Actuators, such as pumps, motors, and climate control 

systems, autonomously regulate environmental factors based 

on AI-driven recommendations. The system achieved 99.29% 

accuracy in disease detection and 99.23% F-measure in 

classification [21]. AI A low-slung CNN model for plant 

disease exposure in smart hydroponics. The arrangement is 

positioned on edge devices such as Raspberry Pi, integrating 

an energy-harvesting technique to sustain the power supply 

and minimize battery depletion. The Knowledge Distillation 

(KD) technique is applied to compress the model, reducing 

parameters, computations, and, consequently, power 

consumption. Unlike previous models that required Internet 

access (e.g., Google Cloud Platform), the proposed model 

functions offline, significantly reducing energy consumption 

associated with network connectivity. The proposed model 

achieves 99.4% accuracy while consuming only 6.22W of 

power, demonstrating a 2.4% accuracy improvement and a 

30% power reduction compared to previous CNN models. For 

IoT integration, sensors and cameras capture real-time plant 

images, and MQTT communication optimizes data 

transmission to the Raspberry Pi for on-device inference [22]. 

This study [23] proposes crop monitoring and disease 

detection in a sustainable and low-cost way for smart farming 

by using deep learning models with IoT sensors. The system 

is designed to predict and detect diseases such as blast and rust 

in millet crops, which are essential for ensuring healthy yields. 

The framework employs an IoT model and device based on 

Raspberry Pi for disease detection and local processing, along 

with sensors to quantify several constraints such as 

temperature, humidity, and soil moisture in the field. In the 

results, the system performs with 98.8% accuracy, 98.2% 

precision, 97.4% recall, and 97.7% F-score. This framework 

provides a reliable and efficient model for early-stage disease 

detection of millet crops, which can be used to further develop 

sustainable farming practices, with little increase in training 

and testing times of 67s and 88s, respectively. 

The work [24] uses smart cameras, IOT sensors, and an 

IOT gateway (e.g., Raspberry Pi) to detect as well as recognize 

plant diseases. Powered by cameras and IoT sensors, the 

system is used to capture environmental and plant health 

information, which, subsequently, is communicated using 

protocols such as CoAP and MQTT. The obtained data are 

communicated by IoT communication protocols and 

processed locally using edge devices like the Raspberry Pi, 

before transferring to a cloud-based analytics server for more 

in-depth scrutiny. Deep learning models using Keras and 

TensorFlow, including Convolutional Neural Networks, are at 

the heart of the system that allows for semantic segmentation 

of plant images. Models used include U-Net, DeepLabv3+, 

SegNet,  and FCN-8s, with Conditional Random Fields (CRF) 

post-processing to smooth the segmentation and increase the 

accuracy of disease recognition. The SegNet model showed 

good performance with the MIoU of 79 % for the MIoU, and 

after CRF post-processing, the performance was improved. 

However, such a system has its constraints, and one of them is 

the requirement for additional dataset augmentation to 

enhance its generalization across multiple plant species and 

environments. The application of deep learning in smart 

agriculture has greatly improved the accuracy of plant disease 

diagnosis. However, classical deep learning models, such as 

CNNs and ViTs, tend to be computationally intensive and are 

not feasible for deployment on IoT devices directly, which 

generally have constrained processing, memory, and power 

constraints. This constraint has led to the requirement of 

lightweight regression models that can function efficiently 

without reducing the sensitivity of detection in low-resource 

settings. 
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Deep learning models such as CNNs and ViTs 

accomplish high accuracy in plant disease detection but are 

computationally intensive, assembly them unsuitable for IoT 

devices with inadequate processing power and memory. 

Several IoT-based studies have explored lightweight 

solutions, leveraging edge computing, optimized neural 

networks, and sensor-based data fusion to enable tangible-

time disease exposure in resource-inhibited situations. To 

address these challenges, a highly efficient meta-ensemble 

model combining MLP Mixer, LSTM, and SVM is proposed, 

significantly reducing parameters (~1M) and memory usage 

(~18.02 KB) while maintaining high classification accuracy 

(94.27% for Maize, 98.43% for Cotton, and 97.45% for TPP) 

[25]. Unlike prior IoT implementations using MobileNet, 

EfficientNet, and TinyML, this approach further optimizes 

computational efficiency with only 1.88 × 10⁴ FLOPS, 

ensuring seamless deployment on microcontrollers like 

Raspberry Pi 4 with inference times of 0.89–2.5 seconds. The 

integration of edge-based processing minimizes reliance on 

cloud computing, thereby reducing latency and power 

consumption. The Level 2 SVM classifier enhances 

classification accuracy, surpassing conventional CNNs and 

ViTs while maintaining real-time performance. High AUC 

values (up to 0.9993) validated its reliability. This research 

advances IoT-driven precision agriculture by offering a 

scalable, low-power, and accurate plant disease detection 

framework tailored for real-world deployment. 

 

Another work [26] presented an IoT-based automatic 

system for the classification of five varieties of leaf diseases. 

The platform utilizes a Raspberry Pi System on Chip (SoC) 

with a USB camera to take pictures of the leaves and transmit 

them to a host PC for analysis. An online web server allows 

for the real-time monitoring of images, which enables rapid 

and accurate disease detection. All leaf extraction is 

conducted on the host PC to enhance the classification quality 

by applying the methods of watershed and graph cutting on 

the collected images. Therefore, only the useful parts of the 

leaf were included in the extraction procedure. A Support 

Vector Machine (SVM) is applied in the second stage to 

diagnose the disease using the features extracted from GLCM. 

The system reached a classification accuracy of 97% on a 

specific dataset, which indicated that the approach used to 

identify diseases like Alternaria leaf disease, Bacterial Blight, 

Gray Mildew, Leaf Curl, and Myrothecium leaf disease was 

valid. More extensive testing with larger and more diverse 

datasets is required to determine the scalability of the system. 

TCropNet model [27] is a custom convolutional neural 

network(CNN) which uses some pre-trained models, such as 

ResNet50 and EfficientNet, and it was developed with 

TensorFlow and Keras frameworks. The images are resized 

to 256 × 256 pixels, and data augmentation, such as random 

rotation and horizontal/vertical shifts, is performed to 

enhance model robustness. The AI model developed helps to 

identify the wheat leaves and in diagnosing the diseases with 

the help of object detection, which helps it achieve a whopping 

99.80% classification accuracy for wheat leaf diseases. The 

study [28] explores shows that mobile phone CPUs and the 

Tesla P80 GPU have been discovered for detecting plant 

disease through Image analysis. The camera takes the image 

of plant disease, and the MobileNetV3 model is used, which 

is trained from Inception V3 architecture by adding separate 

branches to process achromatic (L channel) and chromatic 

(AB channels). The AI model performed ruthlessly, with a 

99.54% classification accuracy on the laboratory dataset. 

However, the performance of the model decreased when 

tested on more realistic datasets, with an accuracy of 77.71%. 

Additionally, accuracy suffered after model quantization, 

particularly when using lower-precision formats such as float-

16-bit and int-8-bit, with the most significant drop occurring 

after full int-8-bit quantization, which led to a 0.41% reduction 

in accuracy. 

 

This review of existing research indicates a large need for 

the use of Internet of Things (IoT) technologies for Aloe Vera 

leaf disease detection. Although IoT-based plant disease 

detection is well-researched concerning crops such as 

tomatoes and potatoes, Aloe vera is underserved. Real-time 

disease monitoring in Aloe Vera using an amalgamation of 

IoT and deep learning models based on IoT is still very new. 

Previous studies mostly focused on the use of traditional 

image-based detection models that need to send images to the 

cloud for processing, which creates latency and dependence 

on external computing resources. Moreover, limited research 

has been conducted on IoT-enabled mechanisms using sensor 

networks, real-time analytics, and edge computing, providing 

a useful and economical solution for disease management in 

Aloe Vera farming.  

 

This gap provides an opportunity for an IoT-based system 

that can address real-time environmental monitoring, deep 

learning-based disease classification, and edge processing to 

improve precision agriculture in a merged/combined 

framework. The proposed system leverages the edge for real-

time disease diagnosis, reduces the response time, breaks free 

from dependency on cloud resources, and is more efficient and 

convenient for Aloe vera crops. Moreover, it will evaluate 

the consistency of the structure compared to classical methods 

in accuracy, efficiency, and computation time. Table 1 

provides a comparative analysis of the existing literature. This 

systematic review serves as a foundation for advancing IoT-

driven solutions for Aloe Vera disease detection. 

 

3. Proposed System Architecture 
 An IoT-enabled Edge AI system for Aloe Vera leaf 

disease detection is conceptualized through various 

interconnected components to allow data acquisition, 

processing, and storage in a related general architectu
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Fig. 2 General architecture 

 

The process starts with the aloe Vera plant, specifically 

its leaves, which are used as the main input for detecting 

diseases. Different sensors are used to capture the 

characteristics of the leaves, such as an RGB Camera for 

taking a regular image and a Multispectral Camera for taking 

images outside the visible spectrum, which improves 

detection accuracy. A Thermal Sensor that measures the 

temperature of the surrounding air (which if not connected) 

can use a Humidity Sensor to identify moisture in the 

environment (to determine healthy plant environmental 

levels), a Temperature Sensor for standardizing ambient 

conditions, and optionally a Soil Moisture Sensor that enables 

soil-based analysis to supplement leaf-based analysis. It then 

provides local computational capabilities through various 

edge devices that process the captured data. For small 

inference tasks, we will use cost-effective devices that require 

minimal assembly, such as the NVIDIA Jetson Nano,  

Raspberry Pi 4, ESP32-CAM, Google Coral’s Dev Board, 

Arduino with AI camera module, and Intel Movidius. Neural 

Compute Stick, Google Coral Dev Board, designed 

specifically for AI inference with edge TPU acceleration, 

Arduino with an AI camera module for lightweight processing 

and prototyping, and Intel Movidius Neural Compute Stick, 

which provides additional neural network acceleration for 

handling computationally intensive tasks. It is worth noting 

that any of these computational units can be employed based 

on the requirements of a specific application. For instance, if 

low power consumption and cost-effectiveness are critical, 

ESP32-CAM or Raspberry Pi 4 may be preferred [29]. In 

contrast, if high-performance deep learning inference is 

required, devices such as the NVIDIA Jetson Nano or Google 

Coral Dev Board would be more appropriate [30]. 

Once the data are processed at the edge, they are 

transmitted to cloud platforms for storage, monitoring, and 

further analysis through various communication protocols. 

These protocols include Wi-Fi, LoRa, 4G/5G Cellular, 

Bluetooth, RFID, and Zigbee, each offering distinct 

advantages in terms of range, power consumption, and data 

transfer rate. For instance, LoRa and 4G/5G provide long-

range connectivity suitable for large farmlands, whereas Wi-

Fi, Bluetooth, and Zigbee are more power-efficient but operate 

over shorter distances, making them ideal for localized 

monitoring [31]. Cloud platforms such as Microsoft Azure,  

Google Cloud, Oracle Cloud, AWS,  Alibaba Cloud, and Edge 

Impulse play a crucial role in enabling continuous monitoring, 

historical data analysis, and predictive analysis capabilities. 

The choice of cloud platform can also be tailored based on 

factors such as accessibility, computational resources, and 

cost. Furthermore, this proposed system also records 

important details such as the identified disease, time of 

detection, and area of the field in the form of a spreadsheet, 

which is saved in the cloud (for example, Google Sheets). This 

systematic logging scheme makes further analysis and 

visualization possible, massively increasing the usefulness of 

the system for precision agriculture use cases. The entire 

structure is scalable, reusable, and energy-efficient, which 
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makes it a building block for smart agriculture. This logging 

approach is represented in Figure 2, which shows how the 

class of the field, including the timestamp, detected disease, 

and field area, is systematically stored in the cloud’s 

spreadsheet for further analysis and monitoring. Table 2 

provides a comprehensive assessment of innumerable edge 

computing devices employed for Aloe Vera disease detection, 

highlighting their purpose, hardware specifications, 

connectivity options, transmission protocols, range, cost, and 

programming compatibility. 

Figure 3 illustrates a comprehensive framework for an 

Edge AI-powered Aloe Vera Plant Disease Detection System, 

which comprises two major components: real-time data 

acquisition and application of lightweight algorithms on a 

Raspberry Pi device, followed by communication and data 

flow management. The first part of the system focuses on data 

acquisition, where data are gathered from two distinct sources. 

The first source is a sensor-driven dataset collected through 

Edge Impulse, a development platform designed for edge AI 

and IoT applications. Edge Impulse enables real-time data 

acquisition from sensors integrated with end devices situated 

in the field. The second source of data is an image-based pre-

existing dataset provided in Kaggle, with different images 

related to Aloe Vera plant diseases. This dataset was used to 

train and improve the AI model, capturing diverse and labelled 

samples for both healthy and infested plants. The datasets 

collected from Edge Impulse and Kaggle were merged and 

used to create a machine-learning model. For that, this model 

is going to be trained using the TensorFlow model, as it is 

popularly known for deep learning and famous for its 

robustness as well as scalability. Training: An algorithm was 

built for accurately recognizing diseases in Aloe Vera plants 

based on image data and sensor readings. Once the model is 

trained, it undergoes a post-quantization process [32] to make 

it suitable for deployment on resource-inhibited devices such 

as the Raspberry Pi 4B. Then, by the end of the quantization 

process, the trained TensorFlow model is transformed into a 

TensorFlow Lite (TFLite) format, which creates a lightweight 

structure with the end goal of compatibility with edge 

devices. In this phase, two different versions of the model 

were produced. Non-quantized converted   model (Float32) 

and quantized converted model (Int8) [33]. To fully benefit 

from an advanced model (considering size and infrastructure), 

the same architecture must be provided with the desired 

variations (quantization) while maintaining the model’s state 

accuracy. To quickly send this model to the edge device, the 

same  quantized model file is zipped. This file is downloaded 

and then transferred to the local edge device, a Raspberry Pi 

4B, in the present setup. Raspberry Pi is set up to take input 

data from a vision-based end device like a camera/ image 

capturing module to enable real-time processing for the 

detection of diseases in the Aloe Vera plant. Cloud 

deployment permits the scheme to regularly monitor the health 

of the plant and detect diseases at an early stage anywhere, 

even in resource-poor environments. Comme logs show 

helpful information to diagnose in case of power supply 

uncertainty. 

Table 2. Comprehensive assessment of innumerable edge computing devices 

 

Edge Computing 

Device 

Connectivity

Transmission 

Protocol 

Range RAM Price IDE 
Programming 

Language 
Purpose 

Raspberry Pi 4 Wi-Fi, 4G/5G 
100m - 

30 km 
2-8 GB 

$35-

$75 

Raspberry 

Pi OS 
Python, C++ 

AI processing 

& image 

classification 

NVIDIA Jetson 

Nano 
Wi-Fi, 4G/5G 

100m - 

30 km 
4 GB $99 

Ubuntu, 

JetPack 
Python, C++ 

Edge AI 

processing, 

deep learning 

models 

ESP32-CAM 
Wi-Fi, 

Bluetooth 
100m 512 KB $5-$10 

Arduino 

IDE 
C, C++ 

Low-power 

image 

capturing 

Google Coral Dev 

Board 
Wi-Fi, 4G/5G 

100m - 

30 km 
1 GB $150 

Mendel 

Linux 
Python, C++ 

AI-based real-

time disease 

detection 

Arduino with AI 

Module 

LoRa, Zigbee, 

RFID 

1m - 15 

km 
2 KB 

$25-

$50 

Arduino 

IDE 
C, C++ 

Sensor data 

processing, 

IoT integration 

Intel Movidius 

Neural Compute 

Stic 

Wi-Fi, 4G/5G 
100m - 

30 km 

512 

MB 
$79 

OpenVINO 

Toolkit 
Python, C++ 

AI acceleration 

for Edge 

devices 
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The last part of the framework includes communication 

and data flow management, where processed data will be 

stored in the cloud to make them available and analyzed later. 

Data are stored on the cloud, where information such as 

timestamps of humic acid and information about the detected 

disease and the area of the field are sent from the bot to the 

cloud. Google App Script is used to establish seamless 

communication between the Raspberry Pi and the cloud 

storage system. This script serves as a communication bridge 

by transmitting data to Google Sheets, where the results will 

then be recorded in a structured manner. This provides the 

necessary keys for authentication and authorization, enabling 

Raspberry. The data  are sent from the Raspberry Pi to the 

Google App Script via the URL. The Google App script 

processes the data and updates the Google Sheet by logging 

the data into their respective columns. This configuration 

provides the availability of raw data received from the field 

for future analytical purposes and decision-making, which is 

crucial for the proposed system. Specifically, the framework 

focuses on the implementation of Edge AI, lightweight 

algorithms, and cloud-based communication systems to 

enable the detection of diseases in Aloe Vera plants efficiently 

and reliably. By deploying a lightweight model on the 

Raspberry Pi, this system is energy efficient and can perform 

real-time monitoring, which is ideal for various applications 

in the field with limited computational resources.

Fig. 3 Comprehensive framework for an edge AI-powered aloe vera plant disease detection system 

 

4. Implementation of Real-Time Data Gathering 

and Implementation of the Lightweight 

Algorithm 
4.1. Image Acquisition  

Image acquisition takes place through an Arduino-based 

edge device comprising an OV7675 camera sensor to capture 

pictures of Aloe Vera plants, which are then sent to the Edge 

Impulse for dispensation. In this study, image-based data, 

along with sensor-driven data, is utilized to improve the 

accuracy of disease detection. This image dataset was 

obtained from Kaggle and contains 3495 high-quality JPEG 

images, which are divided into three classes: 1033 healthy leaf 

images, 1122 leaf spot images, and 1340 aloe rust images. In 

this way, by leveraging a labelled image dataset with real-time 

sensor data, the system allows for a more holistic method for 

Aloe Vera disease detection. To minimize overfitting and 

improve the generalization power [34]. The model was trained 

with data augmentation techniques. By using this technique, 

the model was exposed to more types of images, which meant 
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that it had a better chance of generalizing to new images that 

never appeared in the training set because Randomization was 

built into the training set. The dataset was split into 80% 

training data, 10% validation data, and 10% test data. The 

validation set is utilized to optimize training, fine-tune 

hyperparameters, and evaluate unbiased performance, 

whereas the test set is completely independent of both training 

and validation and is used to provide an objective evaluation. 

Such structured partitioning decreases the risk of overfitting 

the model which can then be used in a production 

environment. Figure 4 shows the sample real-time data 

acquisition.   

Fig. 4 Real-time data acquisition 

 

4.2. Model Training  

The proposed Aloe Vera leaf disease classification model 

was built on ResNet50, a deep convolutional neural network 

(CNN) with 50 layers, optimized for efficient feature 

extraction and classification. The model processed 

224×244×3 resolution images to maintain uniformity across 

the dataset. ResNet50, pre-trained on the ImageNet dataset 

(which contains 1.28 million images across 1,000 classes), 

serves as the backbone, incorporating skip connections to 

mitigate vanishing gradients and enhance learning stability 

[35]. The architecture includes 16 residual blocks, structured 

as 3 blocks with 64 filters, 4 blocks with 128 filters, 6 blocks 

with 256 filters, and 3 blocks with 512 filters, all utilizing a 

3×3 kernel size for effective feature extraction [36]. In this 

study, two architectures were employed: a baseline ResNet50 

model and an improved Enhanced ResNet50 model 

specifically tailored for the task. The base ResNet50 model 

architecture consisted of an input layer, the ResNet50 

backbone (pre-trained on ImageNet), a Global Average 

Pooling (GAP) layer, followed by two fully connected dense 

layers (512 and 256 neurons respectively), and a final dense 

output layer with three neurons for multi-class classification 

(Healthy, Leaf Spot, and Aloe Rust), comprising a total of 

24,768,899 parameters, with 1,181,187 trainable parameters 

and 23,587,712 non-trainable parameters. To further enhance 

performance and generalization, the Enhanced ResNet50 

model was proposed by modifying the base architecture 

through the addition of Batch Normalization (BN) and 

Dropout layers after each dense block [37]. This adjustment 

resulted in a slight increase in parameters (24,771,971 total 

parameters with 1,182,723 trainable parameters) but offered 

improved model robustness and faster convergence. The 

models were developed and trained in Google Colab, a cloud-

based platform that provides free GPU acceleration and 

supports large-scale deep learning experiments efficiently. 

TensorFlow, an open-source deep learning framework, was 

utilized for model implementation, training, and evaluation, 

enabling flexible architecture customization and effective 

integration of advanced training strategies. The dataset was 

partitioned into 80% for training, 10% for validation, and 10% 

for testing, ensuring a balanced and unbiased learning process. 

Training for both models was conducted using mini-batch 

gradient descent with a batch size of 32 and the Adam 

optimizer, applying a learning rate decay schedule with decay 

steps of 1000, a decay rate of 0.96, and staircase=True, 

ensuring stable and efficient learning over 20 epochs. Sparse 

Categorical Cross-Entropy loss was utilized, and the final 

classification output was achieved through a softmax 

activation function over three classes. The inclusion of Batch 

Normalization layers standardized the inputs to each layer, 

thereby accelerating training and improving model stability, 

while Dropout layers introduced regularization by randomly 

omitting neurons during training, effectively reducing 

overfitting and enhancing generalization to unseen data [38]. 
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Together, these architectural modifications made the 

Enhanced ResNet50 more robust and better suited for 

handling variability in real-world scenarios compared to the 

original base model. The optimized hyperparameter values are 

presented in Table 3, which provides configuration 

information on image size, number of epochs, batch size, 

optimizer, learning rate schedule, loss function, and kernel 

size. 

Table 3. Hyperparameter values for proposed study 

Hyperparameters Values 

Image Size (224 * 224 * 3) 

Number of Epochs 20 

Number of Batches 32 

Optimizer 
Adam (using learning rate 

schedule) 

Learning Rate 

Decay Schedule 

Decay Steps: 1000  

Decay Rate: 0.96  

Staircase: True 

Loss Function  
Sparse Categorical Cross-Entropy 

 

Kernel Size 3 × 3 

 

4.3. Model Integration to the Raspberry Pi 4B 

In this study, the Raspberry Pi 4 B was employed for edge 

deployment owing to its finest trade-off between cost, 

performance, and power proficiency. Compared to other edge 

devices, it provides a versatile connectivity range (Wi-Fi, 

4G/5G) spanning 100m to 30 km, making it ideal for real-time 

plant disease monitoring in agricultural fields. Possessing 

between 2-8GB of RAM, you will find that even AI training 

models like deep learning are not a problem for this board, as 

is the case with lower-end machines like ESP32-CAM and 

Arduino, which have much less memory and performance. 

Also, it is being priced cheaper than higher-end competitors 

such as the Google Coral Dev Board ($150) and the NVIDIA 

Jetson Nano ($99), and also somehow manages to deliver 

sturdy AI processing capabilities. Due to all these reasons, 

Raspberry Pi 4 B is an ideal solution for scalable, low-cost, 

and low-power edge computing in precision agriculture. The 

Raspberry Pi 4 Model B is the latest version of the low-cost 

Raspberry Pi computer that is about the size of a credit card 

with the power of a desktop computer. It is a development of 

the previous Raspberry Pi 3 Model B, offering improved 

speed and functionality. Specifications It has built-in Wi-Fi, a 

full HDMI port, 4 USB ports and an Ethernet port It also 

features a display interface (DSI) and a 3.5 mm audio jack It 

comes with 40 GPIO pins and a camera interface (CSI) 

Additionally it also has a microSD card slot for storage 

Attached with USB HD camera that realizes 1080p, accessible 

to Windows or Linux (with USB 2.0), this system can provide 

real-time imaging of aloe vera for measurement. Software-

wise, the Raspberry Pi uses the Raspbian GNU/Linux OS and 

runs Python scripts to implement automation and image 

analysis, with libraries like NumPy and OpenCV used to 

facilitate the analyzing of captured images in a fast and 

efficient manner. Figure 5 depicts the Raspberry Pi 4 B, 

which is a small and smart edge-computing mechanism 

integrated into the system. 

 
Fig. 5 Raspberry Pi 4B 

 
Following training, the suggested model must be used in 

an edge setting. Their conversion into a format that can be 

easily disseminated is necessary before they can be integrated 

with Raspberry Pi. During the training phase with 

TensorFlow, the proposed model underwent post-training 

quantization to optimize its performance for deployment on 

edge devices [39]. This process involves converting the 

trained TensorFlow (Keras) model into the TensorFlow Lite 

(TFLite) format using the TensorFlow Lite Converter 

(TFLiteConverter) [40]. The conversion is crucial for enabling 

the model to run efficiently on resource-inhibited devices, 

such as microcontrollers, mobile phones, and Raspberry Pi. As 

part of this transformation, quantization was pragmatic to 

diminish the model size and boost its computational 

efficiency. This is achieved by lowering the correctness of 

model weights from 32-bit floating point to 8-bit integers [41], 

assembly is predominantly advantageous for edge, where 

power and dispersion capabilities are limited. A TFLite model 

is a self-contained file that encapsulates both the floating-point 

and quantized parameters, including optimized weight and 

bias values. This format allows the model to perform inference 

independently without requiring the full TensorFlow 

framework. Additionally, quantized models offer faster 

inference speeds, tumbling latency, and power consumption, 

which are decisive for real-time applications on edge devices. 

Moreover, the smaller model size enables efficient storage and 

deployment, making it ideal for IoT and embedded AI 

solutions. 

 

5. Results and Discussion 
The Results and Discussion section presents the key 

findings of the study, supported by relevant data, figures, and 

tables. This section presents the evaluation metrics and 

detailed analysis of model performance. It further discusses 

the efficiency of the proposed approach in Edge AI 

environments and its effectiveness when applied to real-world 

scenarios. 
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5.1. Performance Evaluation Metrics 

The performance of the projected model was assessed 

using numerous metrics, including accuracy, precision, recall, 

and F1-score. These metrics are consequent from the 

confusion matrix, which comprises true-positive (T.P.), true-

negative (T.N.), false-positive (F.P.), and false-negative 

(F.N.) predictions. In this study, the classification task 

involves three classes: Aloe Rust, Leaf Spot, and Healthy 

Leaf. The following mathematical formulas use TF, TN, FP, 

and FN to calculate accuracy, Precision m, and recall F1 

measure: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+True Positive + Trueegative

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒  
   (1)  

 

The percentage of correctly predicted positives to all 

positive predictions for a particular class can be used to define 

the precision in divergence(2). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
                          (2) 

                                               

Recall is a dimension assigned to the portion of all 

positive trials that are correctly expected to be positive. It is 

computed by(3) 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒  
           (3)  

 

For the F1-score, the weighted mean of Precision and 

Recall is used, as shown in (4):  
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙  
          4)                                                            

 

5.2. Model Performance Analysis 

Table 4 compares the performance of ResNet50 with and 

without batch normalization and dropout layers, showing 

improvements in model accuracy and loss metrics. The 

baseline ResNet50 attained a training accuracy of 99.40% 

with a low training loss of 0.0093; however, its validation 

accuracy (96.88%) and testing accuracy (97.08%) were 

slightly lower, indicating potential overfitting. In contrast, the 

enhanced ResNet50 with batch normalization and dropout 

improved the training accuracy to 99.57%, reduced the 

training loss to 0.0090, and significantly boosted the 

validation accuracy to 98.30% while lowering the validation 

loss to 0.0595. The most notable improvement was observed 

in testing accuracy (99.15%) and testing loss (0.0508), 

confirming that adding batch normalization and dropout layers 

effectively mitigates overfitting, enhances generalization, and 

improves overall model robustness for real-world 

applications. The Baseline ResNet50 model demonstrates 

rapid convergence, with training accuracy reaching nearly 

99% within the first 5 epochs, but the validation accuracy 

fluctuates significantly between 1 to 20 epochs, indicating 

overfitting. The training loss decreased steadily, whereas the 

validation loss remained inconsistent, suggesting poor 

generalization. 

 

In contrast, the Improved ResNet50 model, which 

incorporates batch normalization and dropout layers, shows a 

more stable training process across 1 to 20 epochs. While the 

validation accuracy exhibits some oscillations, it follows a 

more consistent upward trend, and the validation loss remains 

more controlled.  

 

This suggests that additional layers help mitigate 

overfitting and enhance the aptitude of the model to generalize 

efficiently across unseen data. Figure 6 illustrates a 

comparison of the training and validation performance 

between the baseline and improved ResNet50 models. 
 

 

Table 4. Performance metrics of different models including training, validation, and testing accuracy and loss 

Models Training Accuracy 
Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

Testing 

Accuracy 

Testing 

Loss 

Resnet50 0.9940 0.0093 0.9688 0.1011 0.9708 0.1659 

Resnet50 + Batch layer + 

Dropout layer 
0.9957 0.0090 0.9830 0.0595 0.9915 0.0508 

The performance evaluation of the Improved ResNet50 

model, incorporating batch normalization and dropout layers, 

demonstrates significant improvements over the baseline 

model in classification accuracy, as reflected in both 

confusion matrices and statistical performance metrics. The 

confusion matrices in Figure 7 reveal that while the Baseline 

ResNet50 model misclassified several images particularly 5 

Leaf Spot images as Aloe Rust and 3 Healthy Leaf images as 

Leaf Spot the Improved ResNet50 model significantly 

reduced these error, achieving near-perfect classification with 

only 1 misclassification in Aloe Rust and 2 in Leaf Spot, while 

correctly classifying all Healthy Leaf images. In terms of 

statistical performance, the improved model achieved a 

precision of 0.9920, recall of 0.9921, and an F1-score of 

0.9920, significantly outperforming the baseline model’s 

precision of 0.9708, recall of 0.9688, and F1-score of 0.9698, 

with an overall accuracy improvement from 97.08% to 

99.15%, as shown in Table 5. Over 20 training epochs, the 

improved model demonstrated faster convergence, lower 

validation loss, and higher validation accuracy, highlighting 

its ability to generalize better while avoiding overfitting, 

which was more prominent in the baseline model. These 

enhancements, driven by batch normalization and dropout 

layers, result in a more stable and robust model capable of 

delivering highly reliable Aloe Vera disease classification, 

making it well-suited for real-world agricultural applications.
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(a) Base Resnet50 model 

 

 
(b) Improved ResNet50 model  

Fig. 6 Comparison of training and validation performance between baseline and improved ResNet50 

 

 
(a) Base Resnet50 mode 

 
(b) Improved ResNet50 model 

Fig. 7 Confusion matrix (a) Baseline ResNet50, and (b) Improved ResNet50.  
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Fig. 8 Performance measure between baseline and improved ResNet50 

 
Table 5. Performance measures 

Models Precision Recall 
F1 -

measure 

ResNet50 0.9708 0.9688 0.9698 

ResNet50 

+ Batch layer 

+ Dropout 

layer 

0.9920 0.9921 0.9920 

 
5.3. Edge AI Performance 

Microcontrollers (MCUs) and microprocessors (MPUs) 

are widely used for positioning deep learning models on edge 

devices, but they differ significantly in computational power 

and memory utilization. MCUs, designed for low-power 

applications, exhibit high latency and limited RAM (2.5MB–

2.7MB), making them suitable only for small-scale AI tasks, 

whereas MPUs like the CPU and GPU on Raspberry Pi 4 

provide significantly higher computational power and 

memory, enabling efficient deep learning inference. The 

performance evaluation of the quantized ResNet50 model 

(INT8, 23.4MB) on different edge devices highlights the 

significant differences between microcontrollers (MCUs) and 

microprocessors (MPUs) in terms of latency, RAM, and ROM 

usage. MCUs, designed for low-power applications, exhibit 

extremely high latency, with low-end MCUs taking ~2.88 

hours (10.3 million ms) for inference, while high-end MCUs 

with AI accelerators reduce latency to ~133 seconds but 

remain slow. In contrast, MPUs like the Raspberry Pi 4 CPU 

process inference in just ~4.9 seconds, and a GPU/AI 

accelerator further improves it to 0.8 seconds, demonstrating 

the efficiency of microprocessors in real-time tasks. Memory 

constraints are another key challenge—MCUs have strict 

RAM limitations (2.5MB–2.7MB), restricting their capability 

to run deep learning models, whereas MPUs have significantly 

higher RAM availability, enabling smoother execution. The 

original ResNet50 model (FP32) was 102.4MB, which is 

impractical for edge deployment, but quantization (INT8) 

reduced it to 23.4MB, allowing it to fit within embedded 

systems’ memory constraints with minimal precision loss. 

Although MCUs struggle with deep learning workloads, 

MPUs, especially with GPU acceleration, provide a practical 

solution for deploying AI models on edge devices in real-time 

applications, making them ideal for Aloe Vera disease 

classification and other agriculture-based edge AI tasks. 

Table 6. Performance comparison of model deployment on different devices, including raspberry Pi 4 

Device Latency (ms) RAM ROM 
Quantized Model 

Size (INT8) 

Original Size 

Model (FP32) 

Low-end MCU 
10,373,618 ms 

(~2.88 hrs) 
2.5MB 23.2MB 23.4MB 102.4 MB 

High-end MCU 
133,472 ms (~133 

sec) 
2.7MB 23.2MB 23.4MB 102.4 MB 

High-end MCU + AI 

Accelerator 

133,472 ms  (~133 

sec) 
2.7MB 23.2MB 23.4MB 102.4 MB 

CPU (Raspberry Pi 

4) 
4,922 ms (~4.9 sec) Higher 23.4MB 23.4MB 102.4 MB 

GPU / AI 

Accelerator 
821 ms (~0.8 sec) Higher 23.4MB 23.4MB 102.4 MB 

0.9708 0.9688 0.9698

0.992 0.9921 0.992

0.95

0.96

0.97

0.98

0.99

1

Precision Recall F1-measure

Performance Measures 

Resnet50 Resnet50 + Batch layer + Dropout layer
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5.4. Effectiveness in Real-World Scenarios 

Figure 9 presents examples of accurately classified 

images from the test dataset, displaying both the predicted and 

actual classes along with their respective confidence scores. 

The results indicated that the model successfully identified the 

class of each image with 100% confidence in all cases. The 

first image corresponds to the Leaf Spot, while the second and 

third images are categorized as Healthy Leaf. The latency 

values for each classification were also recorded, with times 

of 0.0867s, 0.0667s, and 0.0663s, respectively. Predictions 

with higher confidence values suggest that the model is highly 

certain regarding its classification, reducing the need for 

additional verification. The ability to make quick and accurate 

predictions is crucial in real-time applications, such as plant 

disease monitoring, where immediate decision-making can 

significantly impact agricultural productivity. These outcomes 

determine the efficacy of the projected edge-based deep 

learning model in accurately detecting plant health conditions 

with minimal latency. 

 
Fig. 9 Result 

 

 
Fig. 10 Logged data from google sheet 

The Google Sheet shown in Figure 10 in the image 

represents real-time logging of leaf classification results 

transmitted from the Raspberry Pi using Google App Script. 

The Date_Time column records the timestamp of each entry, 

while the Class_of_leaf_Identified column logs the detected 

leaf class, which in this case is consistently “Class_A: 

Healthy_leaf.” The Field Name column categorizes the data 

under Field_F1, possibly indicating a specific sensor or 

dataset classification. The Raspberry Pi captures leaf images, 

processes them using a deep learning model, and securely 

transmits the classification results to Google Sheets via a pre-

configured Google App Script URL with authentication keys. 

This setup ensures structured, real-time data collection for 

efficient plant health monitoring, enabling future analysis and 

informed decision-making in agricultural applications. 

 

6. Conclusion 
The proposed Aloe Vera leaf disease classification model, 

based on ResNet50, achieved high classification performance 

with an accuracy of 99.15%, precision of 99.20%, recall of 

99.21%, and an F1-score of 99.20%. The integration of batch 

normalization and dropout layers effectively reduces 

overfitting, thereby improving the generalization capability of 

the model. The deployment of the quantized TFLite model on 

Raspberry Pi 4 B ensures efficient edge computing, enabling 

real-time disease detection with reduced latency and 

computational overhead. The model achieves an inference 

latency of 4,922 ms (~4.9s) on Raspberry Pi 4, utilizing higher 

RAM with a quantized model size of 23.4MB, significantly 

reducing memory usage from 102.4MB (FP32) to 23.4MB 

(INT8) while maintaining classification accuracy. These 

advancements have contributed to the growing field of AI-

driven precision farming, offering practical and scalable 

solutions for farmers. These conclusions highlight the 

potential of edge-based deep learning for scalable and cost-

effective plant disease detection, paving the way for further 

advancements in smart precision farming. Future work can 

focus on hardware optimization by integrating AI accelerators 

or low-power GPUs to improve inference speed, expanding 

the dataset to enhance model robustness across diverse 

environmental conditions, and developing a hybrid cloud-

edge architecture to balance latency, computational 

efficiency, and scalability in agricultural applications.
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Appendix 
Table 1. Summary of Previous Study 

Refere

nce 
Hardware Sensors 

Communica

tion 

Protocol 

Data 

Transmission 

Optimization 

Cloud 

Platform 

Edge 

Processing 

Software 

Used / 

Platform 

Functional

ity 

&AI 

Model 

Result Limitation 

[10] 

Microcontrol

lers 

(Arduino), 

VGA camera 

module 

(OV7670), 

DHT-22 

(Temperatu

re & 

Humidity), 

Moisture 

Sensor, 

Rain 

Sensor 

Wireless 

Communicati

on 

IoT-based 

hardware 

prototype 

for 

environment

al data 

collection 

Not 

specified 
NA MATLAB 

Image pre-

processing, 

Image 

segmentati

on, K-

Means 

clustering 

algorithm, 

Feature 

extraction, 

Alex 

Netoptimiz

ed CNN 

architectur

e 

NA 

Utilizing 

cloud AI 

models for 

remote 

disease 

classificati

on 

 

[11] 

Arduino-

based Smart 

Node Hub 

(SNH) with 

sensors and 

Bluetooth 

module 

Soil 

moisture, 

temperatur

e, 

atmospheri

c pressure, 

and 

humidity 

sensors 

Bluetooth for 

data 

transmission 

to external 

devices 

PLX-DAQ 

software for 

real-time 

data logging 

and 

transmission 

to Excel 

(CSV) 

Cloud-

based 

computin

g for 

scalable 

disease 

detection 

and 

monitori

ng 

Edge 

computing 

for real-

time 

environme

ntal data 

analysis 

and 

disease 

alerts 

PLX-DAQ, 

Arduino IDE, 

sklearn 

MMF-Net: 

A 

Convolutio

nal Neural 

Network 

(CNN) 

based 

multi-

model 

fusion 

architectur

e that fuses 

multiple 

contextual 

features 

(RL-block, 

PL-blocks) 

for 

accurate 

plant 

disease 

classificati

on. 

Achieved 

99.23% 

accuracy 

Limited 

environme

ntal 

factors, no 

real-time 

edge 

computing, 

and 

internet 

dependenc

y 
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[12] 

 

 

Arduino-

based IoT 

prototype 

DHT-22 

(Temperatu

re & 

Humidity), 

Rain 

Sensor 

NA NA NA NA 

Scikit-Learn 

(Python), 

Regression 

Models 

NA NA 

Limited 

environme

ntal factors 

considered

; no real-

time 

internet or 

edge 

computing 

integration 

 

[13] 

IoT nodes, 

(Cameras) 

Sink node 

High-

specificatio

n cameras 

 

nodes to 

sink node 

RPL 

Protocol 

(IoT-nodes 

to sink Node 

) 

Image 

collection 

and 

transmission 

through IoT 

Not 

mentione

d 

Yes (sink 

node 

processes 

images) 

SCA-based 

RideNN 

classifier 

Median 

filter for 

image pre-

processing, 

segmentati

on, and 

feature 

extraction, 

SCA-based 

RideNN, 

optimizing 

neural 

network 

weights. 

Accuracy: 

91.56%, 

Sensitivity: 

94.04%, 

Specificity: 

92.98%, 

Energy 

efficiency: 

0.1734 

Detects 

only 

diseased 

vs. healthy 

plants, 

does not 

classify 

disease 

type 

 

[14] 

IoT Nodes 

(Cameras, 

MY 

THINGS 

Smart 

Sensor, 

Robotic 

Arm, 

Arduino 

Uno) 

Proximal 

Soil Sensor 

(PSS), 

Temperatur

e Sensors, 

Water 

Quality 

Sensors, 

GPS 

Wifi 

Automated 

data 

collection 

Not 

mentione

d 

Yes 

(image 

processing 

& 

decision-

making) 

NA 

Local 

Binary 

Thresholdi

ng, Genetic 

Algorithm 

for Image 

Recognitio

n 

NA 

Does not 

classify 

disease 

type, 

requires 

farmer 

input for 

robotic 

arm 

control. 

 

 

[15] 

Arduino 

UNO 

ESP32-

CAM, 

DHT22 

Temperatur

e and 

Humidity 

Sensor, 

GSM/GPR

S Module 

(SIM900A)

GSM/GPRS 

(SIM900A) 

for sending 

SMS alerts 

Not 

mentioned 

Arduino 

UNO 

processe

s the data 

from 

sensors 

and 

image 

data. 

Local 

Arduino 

IDE: Used 

for 

programmi

ng the 

Arduino 

UNO. 

NA 

ResNet-50: 

leaf 

disease 

classificati

on 

Temperatu

re and 

Humidity 

Monitoring

: The 

97% 

accuracy in 

recognizing 

early and late 

blight 

diseases 97% 

accuracy in 

recognizing 

early and late 

blight 

May 

require 

internet 

connectivit

y for real-

time 

feedback 

and more 

accurate 

monitoring
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: detection 

of 

diseases 

(early 

blight, 

late 

blight) is 

done 

using the 

ResNet-

50 

model. 

system 

tracks 

environme

ntal 

parameters 

and alerts 

farmers 

when 

conditions 

diseases . 

[16] 

LoRa-

enabled IoT 

nodes 

Camera 

(low-

resolution 

grayscale) 

LoRa 

Image size 

reduction, 

grayscale 

transformati

on, packet 

loss 

handling 

Not 

mentione

d 

NA 
Not 

mentioned 

CNN, 

Grad-CAM 

(XAI) 

 

Limited 

bandwidth, 

low duty 

cycle 

(1%), 

reduced 

image 

quality 

 

[17] 

Microchip 

PIC18LF46

K22, 

Raspberry Pi 

3 Model 

BRaspberry 

Pi 3 Model 

B 

ESP32-

CAM 

module, 

temperatur

e, 

humidity, 

soil 

moisture, 

pH sensors, 

ZigBee 

(sensor 

nodes), Wi-

Fi (camera 

nodes), 

Cellular 

(gateway 

node to 

cloud) 

Low-power 

D2D 

communicat

ion, 

optimized 

radio 

technologies 

for efficient 

networking, 

multi-hop 

communicat

ion for 

extended 

range 

Cloud-

based 

processin

g and 

storage, 

accessibl

e via 

web and 

mobile 

applicati

ons 

Gateway 

node 

processes 

images 

using a 

trained 

CNN 

model for 

real-time 

disease 

detection 

before 

transmittin

g results to 

the cloud 

IoT platform 

(SAgric-IoT), 

Deep 

Learning 

(CNN for 

disease 

detection), 

web and 

mobile 

applications 

CNN 

model 
95% 

potential 

connectivit

y issues in 

remote 

areas 

[18] 

Raspberry Pi 

3 with built-

in Wi-Fi 

Wireless 

Multimedia 

Sensor 

Networks 

(WMSN) 

with 

camera 

capability 

Wi-Fi (via 

Raspberry Pi 

3) 

Compressed 

Sensing 

(CS) to 

reduce data 

overhead 

ThingSp

eak 

Raspberry 

Pi 3 for 

initial 

image 

processing 

before 

cloud 

transmissio

n 

OpenCV (for 

image 

processing), 

Python (for 

implementatio

n)/ MATLAB 

Image 

capture, 

segmentati

on, feature 

extraction, 

classificati

on, and 

cloud-

based 

NA 

Needs 

real-field 

deploymen

t and 

testing for 

practical 

validation 
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monitoring 

 

[20] 

Drone 

cameras, 

digital 

cameras, and 

Raspberry Pi 

Environme

ntal sensors 

(pH, 

temperatur

e, 

humidity, 

etc.), 

Imaging 

sensors 

Wi-Fi  

MQTT 

Transfers 

only 

relevant 

data to the 

cloud  

- Stores up 

to 100 

images on 

Raspberry 

Pi before 

offloading 

to the cloud 

AWS 

Cloud 

(Amazon 

Web 

Services) 

Yes, using 

Raspberry 

Pi 

TensorFlow/K

eras  

- Python  

- Custom-Net 

Model  

- Grad-CAM 

for feature 

visualization 

Custom-

Net deep 

learning 

mode 

98.78% 

classification 

accuracy, 

VGG-19 

achieved 

99.39% 

accuracy but 

required 

higher 

training time 

High 

training 

time for 

VGG-19, 

Custom-

Net has 

lower 

accuracy 

than VGG-

19, Higher 

computatio

nal cost for 

deep 

models 

[21] 

Raspberry 

Pi, IoT 

Sensors, 

Actuators, 

Camera 

Module 

NPK, pH, 

Water 

Level, 

Turbidity, 

Temperatur

e, 

Humidity, 

Sunlight, 

Camera 

IoT Cloud, 

Wireless 

Communicati

on 

Real-time 

sensor data 

transmission 

via IoT 

cloud, 

optimized 

by 

Raspberry 

Pi 

processing 

IoT 

Cloud 

Server 

es, real-

time edge 

processing 

via 

Raspberry 

Pi 

Agri-

Hydroponic 

Android App, 

Deep 

Learning 

Convolutional 

Neural 

Network (DL-

CNN) 

Prediction-

DLCNN 

for nutrient 

level 

estimation, 

Classificati

on-

DLCNN 

for disease 

detection 

Accuracy: 

99.29%, F-

Measure: 

99.23%; 

Automated 

nutrient 

supply and 

disease 

control 

diverse 

environme

ntal 

conditions 

[22] Raspberry Pi Cameras MTT 

Energy 

harvesting 

for edge 

device 

power 

supply  

- Offline 

operation 

for reduced 

energy 

consumptio

n 

None 

Yes, using 

Raspberry 

Pi 

NA 

Low-

power 

CNN 

model for 

plant 

disease 

detection 

in smart 

hydroponic

s  

- 

Knowledge 

Distillation 

to reduce 

model size 

and power 

consumpti

on 

9.4% 

accuracy  

- Power 

consumption

: 6.22W 

(30% 

reduction)  

- 2.4% 

accuracy 

improvement 

compared to 

previous 

models 

Limited to 

diseases 

trained on  

- Offline 

model, no 

network 

connectivit

y for 

updates or 

additional 

processing 

 Raspberry Temperatur NA NA Cloud Raspberry PyTorch Customize Accuracy: Drone 
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[23] Pi, IoT 

Sensors, 

NVIDIA 

GeForce 

GTX 1650ti 

GPU 

e Sensors, 

Humidity 

Sensors, 

Soil 

Moisture 

Sensors 

server Pi 

performs 

local 

processing 

and 

disease 

detection 

using the 

Customize

d-CNN 

model. 

Local 

alerts are 

triggered if 

abnormal 

sensor 

readings 

are 

detected. 

1.9.1: Deep 

learning 

framework for 

model 

development.  

- CUDA 12.1 

and cuDNN 

8.9.0: Utilized 

for GPU 

acceleration 

during model 

training. 

d-CNN 

Model 

98.8%  

- Precision: 

98.2%  

- Recall: 

97.4%  

F-score: 

97.7%.  

The system 

performed 

efficiently 

with minimal 

training and 

testing 

delays (67s 

and 88s, 

respectively). 

Customized-

CNN Model 

services 

for better 

precision 

and 

extending 

the system 

to mobile 

platforms 

[24] 

IoT-Hub, 

IoT Devices, 

Actuators, 

Controllers. 

Temperatur

e, 

Humidity, 

CO₂, 

Illuminatio

n. 

RS-485, 

CAN, LoRa, 

oneM2M, 

IPSO, HTTP 

LoRa-based 

wireless 

transmission

, cloud-

based 

processing. 

FaaS 

Yes, 

sensor data 

is 

processed 

at the edge 

before 

cloud 

upload. 

OneM2M-

based IoT 

platform. 

General 

Infection 

Model 

(GIM) 

predicts 

infection 

risks based 

on 

temperatur

e and 

wetting 

duration. 

Infection 

probabilities 

below 0.8 are 

managed via 

ventilation, 

humidity 

control, and 

plant 

removal; 

above 0.8 

requires 

chemical 

treatment 

Adoption 

of AI 

models to 

varying 

environme

ntal 

conditions. 

 

[25] 

Raspberry Pi 

4 Model B 

(4GB RAM) 

Image 

Sensors 

(RGB) 

Wi-Fi, 

MQTT 

Optimized 

data 

compression 

 

Yes (MLP 

Mixer + 

LSTM + 

SVM on-

device) 

Python, 

TensorFlow, 

Scikit-learn 

Lightweigh

t meta-

ensemble 

for plant 

disease 

detection 

using MLP 

Mixer, 

LSTM, and 

SVM 

Overall 

Accuracy: 

96.72%Infer

ence time: 

0.89–2.5s, 

Memory: 

18.02KB, 

FLOPS: 1.88 

× 10⁴ 

Limited to 

small-scale 

IoT 

devices, 

may need 

retraining 

for new 

disease 

types 

 

[26] 
Raspberry Pi 

SoC 

USB 

Camera 

NOT 

Mentioned 

Images 

processed 

Online 

Web 

Image 

acquisition 
MATLAB 

Full leaf 

extraction 

97% 

classification 

Requires 

further 
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on the host 

PC after 

transmission 

from the 

Raspberry 

Pi 

Server and 

classificati

on on the 

host PC 

using 

watershed 

& graph 

cut  

- Disease 

classificati

on using 

SVM with 

features 

from 

GLCM 

accuracy testing 

with larger 

datasets 

 

[28] 

IoT-based 

system, 

Nvidia 

Jetson Nano 

Cameras 

Various IoT 

protocols 

(e.g., Wi-Fi, 

Zigbee) 

Optimizatio

n through 

edge 

processing 

(minimal 

data 

transfer) 

Not 

specified 

Real-time 

on Nvidia 

Jetson 

Nano 

TensorFlow, 

Keras (custom 

CNN, 

pretrained 

models like 

ResNet50, 

EfficientNet) 

CropNet 

for  disease 

detection 

with data 

preprocessi

ng 

(256×256 

pixels) and 

data 

augmentati

on 

(random 

rotation, 

shifts, etc.) 

Achieved 

99.80% 

classification 

accuracy 

Performan

ce may 

decrease in 

distinguish

ing closely 

related 

diseases; 

dataset 

limitations 

may affect 

real-world 

application 

accuracy. 

 

[29] 

Mobile 

phone CPUs, 

Tesla P80 

GPU 

Camera Not specified 
Not 

specified 

Not 

specified 
 

MobileNetV3 

model for 

edge devices, 

Achieved 

99.54% 

accuracy 

for the 

laboratory 

dataset and 

77.71% for 

the 

realistic 

dataset 

using 

MobileNet

V3 

Accuracy 

drops after 

quantization, 

with a 

significant 

decrease 

when using 

float-16-bit 

and int-8-bit 

formats. Full 

int-8-bit 

quantization 

reduces 

accuracy by 

0.41%. 

May 

struggle 

with real-

world data 

compared 

to 

controlled 

environme

nts. 

 


