
SSRG International Journal of Electronics and Communication Engineering                                        Volume 12 Issue 5, 350-362, May 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I5P129                                                          © 2025 Seventh Sense Research Group® 
 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  
 

Automated Detection of Lower Back Pain Using 

Machine Learning and SMOTE-Based Data 

Augmentation 

P. Praveen1, Mallikarjunaswamy M.S.1*, Mahabaleshwar Mamadapur2  

1Department of Electronics & Instrumentation, Sri Jayachamarajendra College of Engineering, JSS Science and Technology 

University, Mysuru, India. 
2Department of Clinical Immunology and Rheumatology, JSS Medical College and Hospital, JSS Academy of Higher 

Education and Research, Mysuru, India. 

 
*Corresponding Author : msm@sjce.ac.in 

 

Received: 19 March 2025 Revised: 20 April 2025 Accepted: 22 May 2025 Published: 27 May 2025 

 

Abstract - Low Back Pain (LBP) is a leading global health concern, affecting up to 80% of individuals at some point in their 

lives and ranking among the most common causes of chronic disability and work absenteeism. Despite advancements in 

treatment, accurate and scalable diagnostic tools remain limited. Traditional diagnostic methods rely heavily on clinical 

expertise and imaging, which are often time-consuming, subjective, and inaccessible in resource-limited settings. Recent 

literature underscores the potential of Machine Learning (ML) for automating LBP detection, but challenges such as imbalanced 

datasets and insufficient model generalizability persist. This study introduces a robust ML pipeline for automatic LBP 

classification using data from the publicly available international dataset - Kaggle. The workflow incorporates data type 

normalization, outlier elimination, and feature distribution analysis, followed by class rebalancing through the Synthetic 

Minority Oversampling Technique (SMOTE). Three ML classifiers-Decision Tree (DT), Support Vector Machine (SVM), and 

Artificial Neural Network (ANN)-are trained and evaluated on both imbalanced and SMOTE-balanced datasets. Experimental 

results demonstrate a significant boost in classification performance post-balancing, with the ANN model achieving the highest 

accuracy (96.43%) and F1-score (96.47%). This work confirms that integrating effective preprocessing with optimized model 

selection can deliver accurate, scalable, and automated LBP detection-offering a meaningful step toward smarter 

musculoskeletal diagnostics. 

Keywords - Artificial Neural Network, Imbalanced data, Lower Back Pain, Machine Learning, SMOTE, Outliers.

1. Introduction  
Low Back Pain (LBP) is a prevalent musculoskeletal 

condition that affects a wide range of age groups, significantly 

impairing quality of life and reducing workplace productivity. 

It is among the most frequent reasons for primary care visits. 

While some cases can be attributed to identifiable causes such 

as trauma, infection, or spinal anomalies, the majority are 

nonspecific with no clearly defined aetiology. The aetiology 

of low back pain is summarized in Table 1. The 2010 Global 

Burden of Disease Study ranked LBP among the top ten 

diseases and injuries contributing to global Disability-

Adjusted Life Years (DALYs) [1]. Data from the National 

Center for Health Statistics reveal that 27% of adults report 

experiencing LBP, compared to 15% reporting neck pain or 

severe headaches/migraines [2]. The condition often radiates 

to adjacent regions, including the thighs, hips, and lower 

limbs, further exacerbating discomfort. Notably, up to 80% of 

individuals may experience LBP during their lifetime, with 

degenerative changes in the lumbar spine, such as 

intervertebral disc degeneration, being a primary contributor 

[3]. Imaging modalities like X-ray, Magnetic Resonance 

Imaging (MRI), and Computed Tomography (CT) scans are 

conventionally employed to assess structural abnormalities of 

the spine [4]. Recently, there has been a growing interest in 

utilizing Machine Learning (ML) techniques to augment 

diagnostic accuracy and automate the classification of normal 

versus pathological conditions. ML algorithms, when trained 

on medical imaging data including MRI, X-rays, and even 

thermal images, can identify subtle patterns and abnormalities 

not easily perceptible by human experts [5]. Integrating ML 

into LBP diagnostics has the potential to not only improve 

diagnostic efficiency but also facilitate early detection during 

routine health check-ups. This is particularly promising for 

asymptomatic individuals or those with non-specific 

symptoms, where early intervention could mitigate long-term 

disability and healthcare burden. Therefore, the 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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implementation of ML-based diagnostic tools could 

revolutionize the current approach to LBP assessment by 

enabling timely, cost-effective, and objective screening [6]. 

 
Table 1. Differential diagnosis of lower back pain: etiological 

categories [7] 
Category Subcategories 

Mechanical 

Lumbar spondylosis, Disk 

herniation, Spondylolisthesis, 

Spinal stenosis, Fractures (mostly 

osteoporotic), Nonspecific 

(idiopathic) 

Neoplastic Primary, Metastatic 

Inflammatory Spondyloarthritis 

Infectious 

Vertebral osteomyelitis, Epidural 

abscess, Septic diskitis, Herpes 

zoster 

Metabolic 
Osteoporotic compression 

fractures, Paget’s disease 

Referred Pain 

to Spine 

From major viscera, 

retroperitoneal structures, 

urogenital system, aorta, or hip 

 

2. Literature Survey 
Low Back Pain (LBP) continues to be one of the most 

pervasive musculoskeletal disorders worldwide, affecting up 

to 80% of individuals at some stage in their lives. 

Conventional diagnostic strategies—such as clinical 

evaluations, physical assessments, and radiological imaging 

(X-rays, CT scans, MRIs)—remain central to identifying 

spinal pathologies. However, these techniques are resource-

intensive, require specialist interpretation, and often do not 

correlate precisely with the patient’s subjective pain 

experience. These limitations have prompted a growing 

interest in data-driven and automated diagnostic systems 

aimed at enhancing early detection and reducing dependency 

on traditional workflows. 

 

Recent progress in Machine Learning (ML) has enabled 

the extraction of actionable insights from medical datasets, 

supporting classification tasks in various domains of spinal 

health. Prior research has explored the application of 

supervised learning algorithms for detecting structural spinal 

abnormalities. For instance, Suri et al. (2012) [8] analyzed 

radiographic indicators such as disc space narrowing and 

vertebral degeneration. Similarly, Koivisto et al. (2014) [9] 

employed logistic regression and decision trees to classify 

lumbar pathologies based on clinical and imaging features. 

Yet, many of these approaches rely on limited feature sets or 

predefined labels, often suffering from overfitting or poor 

generalizability to new datasets. 

 

A significant challenge in LBP classification using 

machine learning is the inherent class imbalance in medical 

datasets, where instances of abnormal spinal conditions are 

often far fewer than normal cases. This imbalance can lead to 

biased models with poor performance in identifying minority 

classes. The Synthetic Minority Over-Sampling Technique 

(SMOTE), introduced by Chawla et al. [10], has been widely 

used to address this issue by generating synthetic minority 

class samples. Recent study [11] have shown that SMOTE, 

when combined with appropriate classifiers, can significantly 

improve the detection of minority conditions in healthcare. 

However, the effectiveness of SMOTE can be limited by the 

complexity of the data and the heterogeneity of clinical 

presentations [12]. 

 

While traditional machine learning algorithms like 

Decision Trees (DT) and Support Vector Machines (SVM) 

have shown promise in LBP classification, Artificial Neural 

Networks (ANNs) have demonstrated superior performance in 

certain contexts. For instance, Richard Kijowski et al. [13] 

highlighted the effectiveness of deep learning models for 

diagnosing musculoskeletal conditions using medical imaging 

like radiographs, Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), and nuclear medicine. 

 

To address these limitations, the present study proposes a 

structured and data-driven methodology for LBP 

classification using machine learning. The primary objective 

is to develop a comprehensive ML pipeline that preprocesses 

an International standard dataset on LBP. This includes outlier 

removal to improve data quality, histogram-based feature 

visualization to understand variable distributions, and 

application of SMOTE to correct class imbalance—each step 

intended to enhance downstream model performance. 

 

In the subsequent phase, the study systematically 

evaluates and compares the performance of three widely-used 

ML algorithms-Decision Tree, Support Vector Machine, and 

Artificial Neural Network on both the original imbalanced 

dataset and the SMOTE-balanced version. By analysing 

performance metrics such as accuracy, precision, recall, and 

F1-score, the aim is to identify the most effective model for 

automatic LBP classification. This approach not only bridges 

gaps in earlier works that isolated preprocessing from 

classification but also sets the groundwork for scalable, 

generalizable diagnostic models applicable to broader 

musculoskeletal conditions. 

 

1. 3. Materials and Methods 
The automatic prediction of LBP is important to reduce 

an individual’s pain. To achieve this, an ML model using the 

International standard database is proposed. The data are 

collected and analysed, which involves the following 

processes: 

 The types of features and targets in the database are 

identified and processed based on need. 

 The features are explored using a histogram plot to 

identify their importance. 
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 The outliers are identified and removed using the 

trimming method. 

 Imbalanced data are converted to balanced data using the 

SMOTE technique. 

 

Next to data analysis, the data are partitioned and passed 

through the ML model, such as DT, SVM, and ANN, for 

training and testing. The outcome of the ML model during the 

testing phase is evaluated using the metrics. The metrics are 

used to finalize the best model for LBP prediction. 

 
3.1. Exploratory Data 

While LBP is prevalent, the intensity and impact of its 

symptoms can vary widely from person to person. In contrast 

to the mild, intermittent pain that a degenerating disc may 

cause, a simple lower back muscle strain may be severe 

enough to need an urgent care visit. The Kaggle dataset on 

LBP [14] was the source of the data. This dataset aims to 

determine whether a given individual’s spinal structure 

contains LBP. The data include both normal and LBP records. 

The number of records in normal and LBP is 100 and 210. 

 
Fig. 1 Normal vs LBP data 

 

The distribution of LBP versus normal data is given in the 

pie chart as shown in Figure 1. The sample data from the 

dataset is depicted in Table 2. The first 12 rows in the table 

show the features, while the last row represents the target for 

various subjects. 
 

Table 2. Sample LBP data 

3.1.1. Data Type Analysis 

The data type is analyzed in this section using Table 3. 

The data holds 13 attributes, out of which 12 are features, and 

the remaining 1 is a target variable. All features are in float 

type, and the target variable is in categorical type. The 

categorical data are not suited for constructing the ML model. 

Using the Label encoder approach, the target variable is 

converted to numbers. The “0” is replaced in the place of 

“Abnormal”, and the “1” is replaced in the place of “Normal”. 
 

Table 3. LBP features and target data types 

Attribute name Type 

Pelvic Incidence numeric, float64 

Pelvic Tilt numeric, float64 

Lumbar Lordosis numeric, float64 

Angle 

Sacral Slope numeric, float64 

Pelvic Radius numeric, float64 

Degree 

Spondylolisthesis 
numeric, float64 

Pelvic Slope numeric, float64 

Direct Tilt numeric, float64 

Thoracic Slope numeric, float64 

Cervical Tilt numeric, float64 

Sacrum Angle numeric, float64 

Scoliosis Slope numeric, float64 

Attribute Class categorical, object 

LBP Data

68%

Normal 

Data

32%

Normal V/s LBP Data

LBP Data Normal Data

Features Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Pelvic Incidence 63.03 39.06 68.83 69.30 49.71 

Pelvic Tilt 22.55 10.06 22.22 24.65 9.65 

Lumbar Lordosis Angle 39.61 25.02 50.09 44.31 28.32 

Sacral Slope 40.48 29.00 46.61 44.64 40.06 

Pelvic Radius 98.67 114.41 105.99 101.87 108.17 

Degree 

Spondylolisthesis 
-0.25 4.56 -3.53 11.21 7.92 

Pelvic Slope 0.74 0.42 0.47 0.37 0.54 

Direct Tilt 12.57 12.89 26.83 23.56 35.49 

Thoracic Slope 14.54 17.53 17.49 12.71 15.95 

Cervical Tilt 15.30 16.78 16.66 11.42 8.87 

Sacrum Angle -28.66 -25.53 -29.03 -30.47 -16.38 

Scoliosis Slope 43.51 16.11 19.22 18.83 24.92 

Class Abnormal Abnormal Abnormal Abnormal Abnormal 
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3.1.2. Histogram of Each Feature 

The ML model’s features are important because they 

determine the accuracy and execution time. It is very 

important to identify and process the most correlated 

features. The histogram is employed to learn more details 

about the features. Histograms are used to show the 

distribution of numerical data graphically. It is said to 

have been invented by Karl Pearson. A histogram 

representation is created in two stages [15]. 

 The first stage is to establish a grid of discrete value 

ranges. Each interval comprises non-overlapping, 

consecutive, adjacent, and equally sized bins. 

 The frequency of each interval, which is just the total 

number of values within that interval, is determined in the 

second stage. Figure 2 depicts the histogram plot for 12 

features. 
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Fig. 2 Histogram plot of features 

 

3.1.3. Outlier Removal 

 A value deviating significantly from the acquired data is 

called an outlier. The highest and lowest points in a data set 

are known as outliers. The Box and Whisker Graph is a simple 

way to visualize outliers [16]. A Box Plot is a data 

visualization in which information is presented using boxy 

shapes. The graph divides enormous, complex data sets into 

understandable quartiles and means. This image will help you 

locate any unusual outliers in your LBP data. The Box Plot, as 

shown in Figure 3(a), categorizes key indicators into four 

equal groups or quartiles. An outlier is a number outside the 

data’s typical range. In other words, it is a number that does 

not fit the normal distribution and may affect the entire 

collection of numbers. Outlier values are considered outliers 

that may bias the conclusions. An outlier is a statistic 

significantly higher or smaller than the median observation by 

more than 1.5, according to experts in data visualization. 
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(a) 

 
(b) 

Fig. 3 Box plot of LBP data before and after outlier removal 
 

The box represents the center half of the data, while the 

line in the middle represents the median. The lines extending 

from the box [17] show the range of the remaining data. A data 

point that deviates significantly from the mean or median is 

referred to as an outlier. An outlier is a red dot in Figure 3(a) 

that does not fit into the boxplot. To reduce the outliers in the 

LBP dataset, “trimming” is employed to delete all undesirable 

data. The box plot of the LBP data after outlier elimination is 

shown in Figure 3(b). 

 

3.1.4. Data Balancing 

The acquired data has a class imbalance, meaning that the 

total number of instances in each class is not equal. The 

challenges of learning from class-imbalanced data have 

recently gained traction in various disciplines [18]. Evaluation 
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of classifier performance is essential in this setting due to the 

class imbalance’s significant effects on the learning strategy, 

which typically produces classification algorithms that have 

poor predicted accuracy for the minority class and a bias 

towards categorizing most new samples into the majority 

class.  

 

The SMOTE [19] method is an oversampling technique 

that artificially generates samples from minority populations. 

It is widely used because it has the potential to surpass 

traditional oversampling. To train the classifier, a synthetic 

training set balanced across classes or close to it must be 

obtained. Using the equation below, SMOTE samples are 

created by combining two minority-group samples (x and xR). 

 

𝑠 = 𝑥 + 𝑢 ∙ (𝑥𝑅 − 𝑥), 0 ≤ 𝑢 ≤ 1             (1) 

Where, 

𝑠: The synthetic sample. 

𝑥: A randomly selected sample from the minority class. 

𝑥𝑅: A nearest neighbor of 𝑥, randomly selected from the 

minority class. 

𝑢: A random number drawn uniformly from the range 

[0,1]. 

 

The closest member of the minority class to 𝑥 is selected 

randomly as 𝑥𝑅. Table 4 shows the count of data used in each 

stage. The number of abnormal and normal entries in raw data 

is 210 and 100. After SMOTE, the count changes to 210 and 

210. Of the 420 samples, 336 were employed for training, and 

84 were used for testing. 

 
Table 4. Data count in each stage 

LBB Data 
Raw 

Data 

SMOTE 

Data 

Train 

Data 

Test 

Data 

Abnormal 210 210 168 42 

Normal 100 210 168 42 

 

3.2. Machine Learning Model 

The ML models, such as Decision Tree (DT), Support 

Vector Machine (SVM), and Artificial Neural Network 

(ANN), are used to identify normal and normal LBP data. The 

workings of those ML models are discussed in this section. 

 

3.2.1. Decision Tree 

DT is a successful method frequently employed across 

many fields [20]. In each DT, a numerical characteristic is 

compared to a threshold value, and the model efficiently and 

consistently builds on the preceding one. Unlike the numerical 

weights employed in NN inter-node connections, conceptual 

rules are much easier to construct [21]. Every tree has a trunk, 

branches, and leaves. Each node in the target classification 

represents a set of features, and a set of subsets defines its 

value. DT has gained popularity due to its ease of use and 

accuracy across various data types. Entropy can be used to 

determine the purity or randomness of a dataset. Entropy 

levels frequently lie between zero and one. The closer its value 

is to 0, the better it is. Its value is worse when it is equal to 1. 

The entropy of classifying set 𝑆 concerning 𝑐 states by solving 

equation (1) if the target is 𝐺 with variable attribute values 

may be calculated. 

𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺) =  ∑ −𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊

𝒄

𝒊=𝟏

             (𝟐) 

 

Where, 
𝑃𝑖  ratio of the number of samples in the group to the 

value of the ith feature. 

 

Information gain, or mutual information, is a measure 

used in the segmentation process. This provides a natural 

measure of how much insight one has into the value of a 

random variable.  

 

In contrast to entropy, its value should increase over time. 

Benefits from data collection based on the concept of entropy 

in Equation (2), 𝐺𝑎(𝑆, 𝐴) may be written as follows: 

 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸(𝑆𝑣)𝑣𝜖𝑉(𝐴)           (3) 

 

Where, 

𝑆: The set of all samples in the dataset. 

𝐴: The attribute for which information gain is being 

calculated. 

𝑉(𝐴): The set of all possible values (range) of attribute 

𝐴. 

𝑆𝑣: The subset of SSS containing only those samples for 

which attribute 𝐴 has value 𝑣. 

|𝑆|: The total number of samples in the dataset 𝑆. 
|𝑆𝑣|: The number of samples in the subset 𝑆𝑣. 

𝐸(𝑆): The entropy of the dataset 𝑆. 
𝐸(𝑆𝑣): The entropy of the subset 𝑆𝑣 

 

The flow model for the Decision Tree can be visualized 

in Figure 4. The selection of appropriate hyperparameters is 

known to be crucial for achieving optimal performance in 

decision tree models. In this study, the hyperparameters for the 

Decision Tree model were tuned through a grid search 

approach combined with stratified k-fold cross-validation 

(k=5).  

 

Various values for the maximum depth of the tree, the 

minimum number of samples required to split an internal 

node, and the minimum number of samples required to be at a 

leaf 1 node were explored.  

 

The optimal hyperparameter set was selected based on the 

highest average F1-score that was achieved across the 

validation folds during the cross-validation process. This 

tuning process was performed with the aim of optimizing the 

generalization performance of the decision tree on the LBP 

classification task. 
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Fig. 4 Decision tree flow model 

 

3.2.2. Support Vector Machine 

SVM is a popular ML technique for handling 

classification tasks. It was created in the early 1990s by 

Vladimir Vapnik and his colleagues [22]. Finding the ideal 

choice boundary for categorizing the data point is required to 

separate the classes in an n-dimensional space from the 

various decision lines/boundaries so that the new data point 

can be easily classified. The SVM hyperplane represents the 

ideal border. Every hyperplane must include a maximum 

margin representing the highest feasible separation between 

data points. SVM selects the points and vectors at the extremes 

to form the hyperplane. The data points or vectors nearest to 

the hyperplane influence its position. A support vector, as the 

name implies, supports a hyperplane. SVM comes in two 

types; the non-linear version is used. Non-linear SVM is 

employed when the data is not neatly separated. The non-SVM 

classifier on LBP datasets is used for prediction. When applied 

to a dataset, a kernel function transforms a non-linear decision 

surface into a linear equation in higher-dimensional space. 

Figure 5 visualizes the mechanism by which SVM constructs 

a separating hyperplane. Instead of simply drawing any 

boundary, SVM identifies specific data points-termed support 

vectors-that are most influential in defining the optimal 

separation. These vectors lie closest to the decision surface 

and are instrumental in determining its orientation and 

placement. By focusing on these critical points, SVM ensures 

that the margin between classes is maximized, leading to a 

more reliable and generalized classifier capable of handling 

complex classification tasks. 

 
Fig. 5 Hyperplane of a nonlinear SVM 

 

The performance of Support Vector Machine models is 

understood to be significantly influenced by the choice of 

hyperparameters. In this study, the hyperparameters for the 

Support Vector Machine model were tuned using a grid search 

approach combined with stratified k-fold cross-validation 

(k=5). Different kernel functions (linear, radial basis function 

- RBF, and polynomial), as well as the regularization 

parameter (C) and the kernel coefficient (gamma for RBF and 

polynomial kernels), were experimented with. The optimal 

hyperparameter set was selected based on the highest average 

F1-score that was achieved across the validation folds during 

the cross-validation process. This tuning was conducted with 

the goal of optimizing the generalization capability of the 

support vector machine for the LBP classification task. 

 

3.2.3. Artificial Neural Network 

The biological NN of the human brain served as 

inspiration for the popular ML technique known as ANN [23]. 

In Feed-Forward Neural Networks (FFNN) [24], the weight 

parameter of each neuron is passed as output to the subsequent 

layer. A major subgroup of FFNN is the Multilayer Perceptron 

Start with the Dataset 

Select the 

Best 

Attribute A 

Based on Information Gain using Entropy 

Is there a stopping 

condition? 
Ex: all samples in a 

node belong to the 

same class or no 
more attributes to 

For each 
possible 

value v of 

Attribute 
A 

Create a Leaf 

Node with 
majority class or 

predicted value 

Create a Branch 

for value V 
End 

Create a new subset S_v containing 

samples where Attribute A = v 

No Yes 
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(MLP) [25]. The backpropagation technique is the most 

commonly used approach for training MLPs. The weights 

between the neurons are modified to accomplish this. This 

model is particularly effective in learning patterns. It’s 

adaptable enough to handle data changes, but there’s a danger 

that the system will converge slowly and end up at a local 

maximum. The big challenge is how many layers a network 

should have, how many neurons should be in the hidden layer, 

and what connections should be created between them. These 

characteristics have a significant impact on the effectiveness 

of the ANN. Any of these measurements could show 

considerable variation. The results of applying different ANN 

architectures to a problem space will differ. However, trial and 

error are required to arrive at the best potential ANN 

architecture. 

 

The training data sample calculated the ANN’s neuron 

and bias weight variables. Adjusting the number of neurons 

and training epochs achieved the lowest feasible error rate. 

Later, the trained network was applied to the test data. Figure 

6 shows that the implemented ANN has 12 input neurons in 

the input layer, six hidden layers, and one neuron in the output 

layer.  

 

The architecture and training parameters, or 

hyperparameters, are recognized as critical factors in the 

performance of artificial neural networks. In this study, the 

hyperparameters for the Artificial Neural Network model 

were tuned through a grid search approach combined with 

stratified k-fold cross-validation (k=5). Variations in the 

number of hidden layers and the number of neurons in each 

hidden layer, the activation function (ReLU), and the learning 

rate of the Adam optimizer were considered. The optimal 

hyperparameter set was selected based on the highest average 

F1-score that was achieved across the validation folds during 

the cross-validation process. This tuning was performed to 

optimize the learning and generalization abilities of the neural 

network on the LBP classification task. 
 

 

Fig. 6 ANN architecture 

 

4. Result and Discussion 
The outcome of the ML model on LBP identification 

using balanced data by SMOTE and imbalanced data are 

discussed in this section. The collected data should go through 

the processing technique of data type conversion, feature 

exploration, and outlier removal. The processed data without 

balancing is given to the three ML models for classification. 

The reported performance metrics—accuracy, specificity, 

sensitivity, precision, and F1-score—provide a 

comprehensive evaluation of the machine learning models’ 

effectiveness in classifying LBP. Accuracy indicates the 

overall correctness of the model’s predictions, representing 

the proportion of correctly classified instances out of the total. 

In a medical context like LBP diagnosis, high accuracy is 

desirable to minimize both false positives and false negatives. 

Specificity, or the true negative rate, is crucial as it measures 

the model’s ability to correctly identify individuals without 

LBP, thereby reducing unnecessary anxiety and further 

investigations for healthy individuals. Conversely, sensitivity, 

or the true positive rate, highlights the model’s capability to 

correctly identify individuals who do have LBP, ensuring that 

those in need of diagnosis and potential treatment are not 

missed. Precision focuses on the positive predictive value, 

indicating the proportion of correctly identified LBP cases out 

of all instances predicted as LBP. High precision minimizes 

the burden on the healthcare system from false positive 

diagnoses. Finally, the F1-score, being the harmonic mean of 

precision and sensitivity, provides a balanced measure, 

particularly important in datasets with potential class 

imbalance even after SMOTE, as it considers both false 

positives and false negatives. The consistently high values 

observed across all metrics for the ANN model on the 

SMOTE-balanced data suggest its strong ability to correctly 

classify both LBP and non-LBP cases with a low rate of errors 

in both directions, making it a promising tool for assisting in 

LBP diagnosis. The accuracy, sensitivity, specificity, 
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precision, and F1-score performance measures are analyzed 

for all models. The DT gives an accuracy of 89.29%, a 

specificity of 92.50%, a sensitivity of 86.36%, a precision of 

92.50%, and an F1-score of 89.41%. Next, the SVM outcome 

is analyzed, and the results of the metrics are 90.48%, 92.86%, 

88.10%, 92.68%, and 90.24%. Finally, the ANN is taken, and 

the accuracy is 94.05%, specificity and sensitivity values are 

95.24% and 92.86%, the precision score is 95.12%, and the 

value of F1 is 93.98%. 

 

 
Fig. 7 Outcome of ML model on imbalanced data of LBP 

 

 
Fig. 8 Outcome of ML model on SMOTE data of LBP 

 

Figure 7 plots the metrics score of the ML model using 

imbalanced data. The plot ANN gives the maximum value in 

all metrics.  

 

Three ML models are used for classification based on the 

balanced processed data using the SMOTE approach. Again, 

all models’ effectiveness is evaluated using the same 

performance measure used in the above condition. The 

accuracy for the DT is 90.48%, while its specificity, 

sensitivity, precision, and F1-score are 88.10%, 92.86%, 

88.64%, and 90.70%. The next step involves analyzing the 

SVM results, which yielded the following metric values: 

91.67%, 95%, 88.64%, 95.12%, and 91.76%. Finally, ANN is 

utilized, yielding v96.43% accuracy, 97.56% specificity, 

95.35% sensitivity, 97.62% precision, and a 96.47% F1 value. 

Metrics for the ML model’s performance on the SMOTE data 
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are plotted in Figure 8. The ANN plot shows the maximum 

metrics score.  

 

Confusion matrices, constructed from the original dataset 

of 310 subjects (210 LBP, 100 non-LBP), provide a detailed 

interpretation of the machine learning models’ diagnostic 

performance by presenting True Positives (TP), true negatives 

(TN), False Positives (FP), and False Negatives (FN). This 

analysis is crucial for understanding each model’s ability to 

accurately diagnose patients, minimizing both missed 

detections and false alarms. 

 

Table 5 summarizes the confusion matrix counts for the 

Decision Tree (DT), Support Vector Machine (SVM), and 

Artificial Neural Network (ANN) models. The DT model 

correctly identified 181 LBP and 93 non-LBP cases, with 29 

false negatives and 7 false positives. The SVM showed 

slightly improved performance with 185 true positives and 93 

true negatives, maintaining 7 false positives and reducing false 

negatives to 25. The ANN demonstrated the strongest 

performance, achieving 195 true positives and 95 true 

negatives, with only 5 false positives and 15 false negatives, 

highlighting its superior learning ability with the imbalanced 

data. 
 

Table 5. Confusion matrix counts for ML models 
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DT 181 93 7 29 

SVM 185 93 7 25 

ANN 195 95 5 15 
 

This refined confusion matrix analysis confirms the 

ANN’s outperformance over DT and SVM in minimizing 

classification errors on the original LBP dataset. The ANN’s 

superior performance can be attributed to its capacity to learn 

complex non-linear relationships and hierarchical feature 

representations from the 12 input features, which is 

advantageous given the potentially intricate interplay among 

these features in predicting LBP. In contrast, the DT’s 

hierarchical structure might not efficiently capture subtle 

patterns, and the SVM’s performance is highly dependent on 

hyperparameter tuning and kernel choice, potentially limiting 

its ability to model highly non-linear decision boundaries. The 

ANN’s ability to learn complex patterns directly from data, 

coupled with the benefits of data balancing techniques like 

SMOTE (as indicated by the analysis of Figures 7 and 8 

showing improved results with balanced data), likely enabled 

it to achieve better discrimination between LBP and non-LBP 

cases compared to the DT and SVM models. Comparing the 

performance metrics of models trained on original versus 

SMOTE data reveals the importance of data balancing for 

achieving better results, and among the models trained on 

SMOTE data, ANN consistently yields the best performance. 

 

5. Conclusion 
Low Back Pain (LBP) remains the leading cause of 

disability and lost productivity worldwide, and while 

treatment options have advanced, achieving accurate, 

consistent diagnosis continues to challenge clinical 

workflows. Traditional diagnostic approaches, though well-

established, often fall short due to their reliance on subjective 

interpretation, high resource demand, and limited ability to 

correlate with patient-reported symptoms. In contrast to 

earlier studies that either employed limited Machine Learning 

(ML) techniques or neglected the role of data quality and 

balance, this study presents a focused and methodical solution 

to the LBP classification problem using ML. 

 

Utilizing the LBP dataset comprising 12 input features 

and a binary classification target, this work addressed one of 

the most critical challenges in medical data analysis: class 

imbalance. With 210 “abnormal” cases and only 100 “normal” 

ones, the dataset risked biasing any model trained without 

proper rebalancing. To resolve this, the Synthetic Minority 

Over-sampling Technique (SMOTE) was employed, 

effectively equalizing class distributions and enhancing model 

fairness. 

 

A comprehensive pipeline was implemented to evaluate 

ML performance both before and after SMOTE integration. 

Three models—Decision Tree (DT), Support Vector Machine 

(SVM), and Artificial Neural Network (ANN)—were 

assessed on key performance metrics and visualized using line 

plots for comparative clarity. The results unequivocally 

confirmed the critical impact of SMOTE, with all models 

showing improved accuracy, precision, and recall on the 

balanced dataset. Notably, the ANN model consistently 

outperformed DT and SVM, demonstrating superior 

classification accuracy and minimal error. 

 

Compared to prior studies that either overlooked class 

imbalance or relied on conventional ML techniques, the 

proposed SMOTE-enhanced approach provides a more robust 

and fair classification framework. For instance, Sadeghi et al. 

[26] developed ML models to predict chronic LBP risk using 

national health survey data but did not address class 

imbalance, potentially limiting model generalizability. 

Similarly, Abujaber et al. [27] utilized surface 

electromyography (sEMG) signals for LBP classification 

without implementing data balancing techniques, which could 

affect classification fairness. In contrast, this study not only 

corrects class skew using SMOTE but also systematically 

demonstrates its influence on classification metrics. The 

significant performance gain observed, particularly with the 

ANN model, substantiates the value of integrating data 

balancing techniques into diagnostic pipelines for LBP and 
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related conditions. These results reinforce the argument that 

advanced preprocessing, when coupled with deep learning, 

offers a clinically viable and scalable solution for 

musculoskeletal disorder detection. This study not only 

validates the importance of preprocessing strategies such as 

outlier removal and SMOTE but also establishes ANN as the 

most effective classifier for automatic LBP detection in the 

tested scenario. By integrating balanced data handling with 

robust model evaluation, the findings offer a decisive 

advancement over previous fragmented approaches and 

provide a scalable framework for future diagnostic systems in 

musculoskeletal health.
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