
SSRG International Journal of Electronics and Communication Engineering                                        Volume 12 Issue 5, 363-378, May 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I5P130                                                          © 2025 Seventh Sense Research Group® 
 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

  Enhancing Multimodal Sentiment Prediction with 

Cross-Modal Attention and Adaptive Feature Weighting 

Prashant Adakane1, Amit Gaikwad2 

 
1,2Department of Computer Science and Engineering, G H Raisoni University, Amravati, Maharashtra, India. 

 
1Corresponding Author : prashantadakane2020@gmail.com 

Received: 20 March 2025 Revised: 21 April 2025 Accepted: 22 May 2025 Published: 27 May 2025 

 

Abstract - This study introduces a novel framework, Contextual Adaptive Cross-Modal Attention Fusion (CA-CMAF), designed 

to solve multimodal sentiment analysis’s difficulties. The framework leverages dynamic modality fusion and cross-modal 

attention mechanisms to effectually integrate textual and visual data, enabling a more nuanced understanding of sentiment in 

heterogeneous datasets. By focusing on the interplay between modalities, CA-CMAF aims to increase the accuracy and 

interpretability of the sentiment prediction system. The proposed approach combines textual features extracted through BERT, 

which has been both pre-trained and subsequently fine-tuned, with visual features derived from VGG-16. Through a cross-modal 

attention technique, these modalities are fused and aligned, capturing fine-grained interactions between text and images. The 

attention mechanism computes attention scores to prioritize the most relevant aspects of each modality, depending on the context 

provided by others. Additionally, an adaptive learning mechanism dynamically adjusts the contribution of each modality, 

ensuring optimal fusion for sentiment classification. The model is optimized using a blended loss approach. One part of this 

approach is based on cross-entropy principles for sentiment classification. Another component includes a regularization term 

to ensure balanced modality contributions. Experimental findings on MVSA-Single and MVSA-Multiple benchmark datasets 

indicate that CA-CMAF surpasses current baseline methods in state-of-the-art performance. The framework shows significant 

boosts in performance for metrics like accuracy, F1-score, precision, recall, with readings of 91%, 89%, 90%, and 90%, 

respectively, particularly in scenarios where one modality is more informative than the other. 

Keywords - Cross-Modal Attention, Adaptive learning, BERT, VGG-16, Dynamic modality integration. 

1. Introduction 
Sentiment analysis has become an essential technique for 

understanding content posted by users across many platforms, 

including social media, e-commerce, and review sites. [1, 2] 

By analyzing textual and visual data, sentiment analysis 

enables businesses and researchers may learn more about user 

opinions, preferences, and emotions. [3] However, the 

increasing prevalence of multimodal data, where information 

is conveyed through a combination of text and images, poses 

significant challenges. [4] While text provides explicit 

sentiment cues, images often convey implicit emotional 

context, making it essential to effectively integrate both 

modalities for accurate sentiment analysis. [5] Despite the 

potential of multimodal data, analyzing it remains a complex 

task. Traditional methods often treat text and Images 

independently, missing complex modalities’ interconnections. 

[6] Moreover, data types heterogeneity and the varying 

relevance of each modality to the sentiment task further 

complicate the analysis. These challenges highlight the need 

for advanced techniques that can seamlessly fuse and balance 

contributions from different modalities to improve sentiment 

analysis performance. [6-8] 

Existing methods for multimodal sentiment analysis often 

fall short when it comes to effectively combining and 

balancing the contributions of text and images. Most 

approaches use static fusion techniques, which assume that 

each modality contributes equally, regardless of the input. [5, 

9] This one-size-fits-all approach leads to suboptimal 

performance, especially when one modality (like text or 

visuals) is more informative than the other. [10]  

The research gap, therefore, lies in the absence of a 

flexible and context-aware framework that can (i) capture 

fine-grained interactions between modalities, and (ii) 

adaptively balance their contributions to sentiment prediction. 

Moreover, existing models often overlook the need for 

interpretability and the importance of aligning features across 

modalities in a context-sensitive manner. [11] 

To tackle these challenges, the proposed Contextual 

Adaptive Cross-modal Attention Fusion (CA-CMAF), a novel 

framework that dynamically fuses text and image features 

utilizing cross-modal attention. Novelty of this approach 

derives from its integrated use of cross-modal attention and 
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adaptive learning mechanisms, allowing the model to not only 

align multimodal features contextually but also dynamically 

adjust the contribution of each modality. Framework employs 

BERT, which is pre-trained for textual and VGG-16 for 

images-to extract high-quality features from each modality. 

[12]  

A cross-modal attention mechanism aligns and fuses 

these features, allowing the model to concentrate on the most 

pertinent aspects of each modality based on the context 

provided by the other. An adaptive learning mechanism 

further ensures that the contributions of text and visuals are 

dynamically adjusted, optimizing the fusion process for 

sentiment prediction. 

The primary contributions of this work are, 

 Cross-Modal Attention Mechanism - Proposed 

mechanism aligns text and visual features and enhances 

the model’s capability to understand complex data from 

diverse modalities by capturing fine-grained interactions. 

 Adaptive Learning for Modality Fusion - The Adaptive 

learning approach dynamically balances the influence of 

textual and visual according to their significance, 

ensuring robust performance across diverse datasets. 

 Comprehensive Evaluation - Comprehensive evaluations 

conducted on standard datasets show that the developed 

model achieves superior performance compared to 

current approaches, highlighting its proficiency in dealing 

with heterogeneous data and its applicability for practical 

use. 

 

The structure of the manuscript is - Review of recent 

studies given in Section 2, their methodologies, and associated 

challenges. Section 3 introduces the methodology for an 

efficient sentiment prediction model. Section 4 presents 

results obtained from applying the proposed model, and 

Section 5 presents the conclusion of the manuscript. 

2. Literature Review 
The growing interest in multimodal sentiment analysis is 

driven by the availability of content in both textual and visual 

formats. Early research in this domain employed independent 

feature extraction for each modality, followed by simple 

fusion techniques such as concatenation, averaging, or 

summation. Zadeh et al. [13] presented Tensor Fusion 

Networks (TFN) to interplay between modalities through 

tensor products. However foundational, outlined approaches 

often failed to capture the deep semantic interplay between 

modalities, especially in emotionally nuanced content.  

In this study, T. Zhu et al. [14] introduced a unique 

method for fine-grained image-text multimodal emotion 

categorization, MULSER - Multi-Level Semantic Reasoning 

network focuses on semantic links between words and objects. 

It employs graph attention modules for both image and text 

modalities to enhance feature extraction and 

interdependencies. The module for cross-modal attention 

fusion integrates these enhanced features for accurate emotion 

classification. Experimental outcomes reveal that MULSER 

outperforms cutting-edge methods, confirming its usefulness 

in the analysis of multimodal sentiment.  

Z. Liu et al. [15] suggested CMAFusion, a cross-modal 

attention-driven framework for fusing infrared and visible 

images to integrate pictures with multi-layered text features 

and object properties. A cross-modal feature aggregation 

mechanism is introduced to properly integrate infrared and 

visible pictures’ deep complementary features. Conversely, a 

composite loss function was developed to regulate similarity, 

texture, and structural properties. CMAFusion surpasses 

cutting-edge techniques in comprehensive comparison and 

generalization testing.  

In another paper, T. Zhu et al. [16] suggested the 

utilization of cross-modal attention through its innovative 

ITIN framework, which includes mechanisms for aligning and 

integrating features from both text and visual. This method 

aims to improve the accuracy of multimodal sentiment 

analysis by fully leveraging interactions between different 

modalities.  

In this study, X. Luo et al. [17] introduced attribute Word-

to-Face (W2F) hybridization, utilizing attribute-word patterns 

valuable in meaningful data as input. New Generative 

Adversarial Network, Cross-Modal Attention Fusion 

(CMAFGAN), was developed to create faces using 

descriptive facial trait words. CMAFGAN is built on two key 

mechanisms: transformation of Word-Level Features (WFT) 

and fusion through Cross-Modal Attention (CMAF). These 

components analyze the relationship between visual elements 

and corresponding textual attributes. Testing was performed 

using CelebA and LFW datasets. The results confirmed that 

CMAFGAN delivers notable enhancements in generating 

realistic synthesized faces.  

Y. Wang et al.  [18] developed a method for multi-label 

image classification that merges cross-modal fusion 

techniques with generalized convolutional neural networks, 

incorporating attention-based modules to effectively capture 

both local and global label relationships. Their approach 

consists of three primary components.  

The first is an attention-driven method for extracting 

relevant features. The second utilizes a Graph Convolutional 

Network (GCN) to capture relationships between labels 

through co-occurrence patterns. The third integrates 

information across modalities using a specialized fusion 

framework that employs factorized bilinear transformation for 

effective feature combination. Evaluations on MS-COCO and 

VOC2007 datasets demonstrate CFMIC’s improved efficacy 
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and superior classification performance over existing 

advanced methods.  

In this work, M. Xu et al. [19] presented a novel 

transformer-based framework, referred to as CMJRT, 

designed to learn joint representations for effective 

multimodal sentiment prediction. CMJRT leverages 

multilevel relationships among modalities to transfer 

combined projections from bimodal to unimodal frameworks. 

Cyclic transformation is utilized to generate bimodal 

combined projections, where one modality is transformed into 

another and back using encoders and decoders, ensuring 

alignment across modalities.  

A cross-modal transformer further enhances unimodal 

representations by integrating insights from bimodality, 

exploring how modalities interact. Extensive testing on CMU-

MOSI and CMU-MOSEI datasets confirms CMJRT’s 

superior performance over existing methods.  

 H. Yu et al. [20] introduced a novel approach, Cross 

Attention for Cross-Modal Retrieval Method (CACRM). This 

novel approach is designed to achieve local alignment in 

image retrieval. CACRM utilizes a Cross Attention Model for 

capturing relational patterns. It focuses on linking different 

image regions with corresponding textual information. It 

constructs a similarity matrix, which is then pooled to derive 

global similarity. Evaluations on public datasets such as the 

dam inspection log, MS-COCO, and Flicker30k demonstrate 

CACRM’s notable advancements over prior techniques.  

T. Zhou et al. [21] introduced a multi-level model for 

cross-modality interactions, focusing on correlation and 

consistency between modalities for visual-textual sentiment 

predictions. The system utilizes a multi-level attention design. 

It captures semantic interactions and filters out noise, 

combined with a multimodal convolutional neural network. It 

improves joint representation. By incorporating transfer 

learning, the framework effectively handles noise in social 

data. Extensive experiments highlight its superior 

performance over existing methods. It underscores the 

significance of phrase-level text fragments in interacting with 

image regions.  

H. Wen, S. You, and Y. Fu [22] introduced a novel 

approach for emotion recognition that leverages multiple 

modalities through a technique known as cross-modal 

dynamic convolution. The method models the temporal 

dimension of emotion-related information, capturing useful 

interactions while minimizing unrelated information. It 

addresses challenges related to limited data density and 

mismatches in emotion-associated signals, making it easier to 

identify and utilize cross-modal interactions. The method is 

stackable, achieving competitive performance compared to 

existing approaches.  

S. Thuseethan et al. [23] introduced a deep learning-based 

approach for predicting sentiment across modalities, 

integrating key visual and high-attention textual cues to 

overcome limitations of indiscriminate modality fusion. The 

framework uses dual unimodal deep feature extractors to 

gather relevant features from images and text, coupled with a 

late fusion mechanism for sentiment prediction. It 

outperforms existing unimodal and basic multimodal 

methods, effectively utilizing interrelationships in multimodal 

web data to achieve precise prediction of sentiment.  

F. Huang et al. [24] proposed a technique called DMAF, 

which focuses on sentiment prediction by effectively 

modeling the underlying interactions between visual content 

and textual data through attentive fusion mechanisms. DMAF 

utilizes distinct attention mechanisms for images and text, 

followed by an intermediate-level fusion architecture with 

multimodal attention. A late fusion strategy integrates these 

models to improve sentiment prediction. Extensive 

experiments confirm DMAF’s effectiveness on partially 

labeled and expertly annotated corpus. It is showcasing 

superior performance in multimodal sentiment prediction.  

Z. Wang et al. [25] proposed method called CAMP, 

which dynamically manages how data is shared and integrated 

across various input types to improve cross-modal 

comprehension. CAMP addresses negative pairings and 

irrelevant data using an adaptive gating mechanism, alongside 

detailed and fine-grained cross-modal attention. It introduces 

a strongest negative twofold cross-entropy loss for model 

fitting. It infers matching scores based on fused features 

instead of traditional joint embedding techniques. Results on 

COCO and Flickr30k datasets highlight CAMP’s 

effectiveness, significantly outperforming existing methods.  

In this study [26], the author proposed using a 

multiplicative approach in cross-modal feature modeling. This 

method enables the system to learn both high-level abstract 

patterns and specific contextual features together. Effective 

representation learning for multimodal data is essential for 

cross-modal extraction efficiency. Extensive 

experimentations validate that the introduced framework 

efficiently matches images and text with complex content, 

achieving cutting-edge cross-modal extraction outcomes on 

the MSCOCO corpus. 

2.1. Motivation of Research 

Despite advancements in attention mechanisms and 

fusion techniques, the field still faces challenges in 

dynamically balancing and contextually aligning multimodal 

inputs. Many existing models either: 

• Employ static fusion, assuming equal modality relevance, 

• Rely on single-level or coarse-grained alignment, ignoring 

nuanced cross-modal relationships, or 

• Lack of mechanisms to adaptively adjust modality weights 

based on contextual informativeness. 
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These gaps reveal a need for a context-aware, adaptive 

framework that can: 

 

• Capture intricate interactions between text and image data, 

• Adjust fusion based on input-specific dynamics, and 

• Offer interpretability alongside performance. 

2.2. Problem Statement 

Existing literature lacks a unified framework that can 

simultaneously: 

 

 Capture fine-grained semantic alignment across text and 

image modalities, 

 Dynamically adapt to varying levels of modality 

informativeness, and 

 Maintain interpretability and generalizability across 

diverse datasets. 

 

To address these issues, the proposed Contextual 

Adaptive Cross-Modal Attention Fusion (CA-CMAF) is a 

framework that integrates BERT and VGG-16 extracted 

features using cross-modal attention, complemented by an 

adaptive learning mechanism and a blended loss function. 

This design ensures modality-aware fusion and optimized 

sentiment prediction, surpassing the limitations of static or 

non-contextual models. 

3. Proposed Methodology 
This research is conducted with the intention to provide a 

remarkable improvement in the Multimodal Sentiment 

Predictions. Figure 1 shows the entire flow of suggested work. 

Proposed framework, Contextual Adaptive Cross-Modal 

Attention Fusion (CA-CMAF), is a deep learning model for 

multi-modal inputs designed to effectively integrate textual 

and visual information. It utilizes the BERT model for 

contextualized text feature extraction and the VGG-16 model 

for visual feature extraction from images. These are pre-

trained models. Both modalities are projected into a common 

dimensional space to ensure compatibility. The cross-modal 

attention technique is employed. This technique extracts 

interactions from textual and image features. It enables the 

model to emphasis pertinent parts of each modality. The 

framework further refines these features using an Adaptive 

Learning layer, which incorporates an Attention-Based Fusion 

Layer to dynamically compute attention weights and 

adaptively combine the attended features with the original 

visual features. This fusion process ensures that the final 

representation optimally balances the contributions of both 

modalities. Finally, class probabilities are produced by 

sending through combined features through a dense layer by 

means of softmax activation. Training of the model is 

performed utilizing sparse categorical cross-entropy loss and 

the Adam optimizer. This makes it highly effective for multi-

modal sentiment analysis tasks requiring joint understanding 

of text and images.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 The proposed system model 
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The problem of multimodal sentiment prediction is 

formulated as a categorization activity where the input 

consists of a pair of text and image data, and the output is a 

sentiment label. Specifically, given a textual input T (e.g., a 

sentence or paragraph) and an associated image I, the aim is 

to predict the sentiment label y (positive, negative, neutral). 

Introduced a framework designed to implement a deep 

learning model. This model efficiently merges textual and 

pictorial features. Its objective is to predict sentiment labels 

with high accuracy. This involves extracting meaningful 

features from both modalities, modeling their interactions, and 

fusing them into a unified representation for sentiment 

classification. 

3.1. Textual Feature Extraction using BERT 

Linguistic characteristic retrieval is performed using 

BERT, the transformer-based framework developed for 

natural language processing tasks. Figure 2 depicts BERT’s 

workflow for processing textual input. BERT captures 

contextual embeddings by considering the bidirectional 

sentence structure and word dependencies. Sentiment 

prediction greatly benefits from this capability. [27]  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 BERT’s workflow for processing textual input 

Input text, such as “Laureen Harper speaks at gathering 

hosted by MP Rona Ambrose this morning in Stony Plain, 

Alta. #elxn42 @RonaAmbrose” is first tokenized into words 

or subwords. Using BERT tokenizer, the input text is 

tokenized. Tokens such as [CLS] and [SEP] are included. 

These tokens mark the beginning and end of sequences. These 

tokens are then converted into embeddings in the Embedded 

Layer, where every token is encoded as a vector capturing its 

semantic interpretation. Between the Embedded Layer and the 

Transformer Encoder, BERT adds Positional Encoding and 

Segment Embeddings to incorporate positional and segment 

information, ensuring the model understands word order and 

sentence boundaries. The Transformer Encoder is BERT’s 

core component. Self-attention layers process embeddings 

first. Feed-forward layers then follow this step. The model 

uses self-attention to weigh the importance of each token 

relative to others. This creates contextualized feature vectors. 

These vectors capture bidirectional context. This process 

enables BERT to obtain contextual embeddings. For 

sentiment analysis, embedding associated with the CLS token 

is typically utilized as a textual feature representation. [28] 

Textual features are extracted using the Bert-base-uncased 

model, pre-trained and obtained via the HuggingFace 

Transformers library. The BERT model generates a pooled 

feature vector of size 768, which is further projected to 512 

dimensions using a dense layer with ReLU activation in all our 

multimodal fusion models. The input to BERT consists of 

tokenized text sequences, which include input IDs and 

attention masks, created using the BertTokenizer. 
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3.1.1. BERT Configuration 

In the proposed framework, BERT is implemented via the 

TFBertModel from the Hugging Face Transformers library. A 

custom wrapper, referred to as BertLayer, is employed to 

abstract the internal components and return the pooled output, 

which corresponds to the contextual embedding of a special 

classification (CLS) token.  

Model accepts two primary inputs: tokenized input IDs 

and corresponding attention masks, each defined with a 

flexible shape to accommodate variable-length sequences. 

These inputs are tokenized using the pretrained BERT 

tokenizer (e.g., bert-base-uncased). The output from BERT is 

a fixed-length dense vector representing the semantic content 

of the input text. The resulting vector is transformed using a 

dense ReLU-activated layer, projecting it into a 512-

dimensional latent space to align with the image feature 

dimensions. 

3.2. Visual Feature Extraction using VGG-16 

Extraction of visual features using VGG-16 is carried out, 

an architecture built upon CNN. This framework was 

produced by Visual Geometry Group, which is located at the 

University of Oxford. This is pre-trained on the ImageNet 

dataset. Convolutional layers are 13, and fully connected 

layers are 3 in VGG-16. [29] As shown in Figure 3, the model 

extracts high-level visual features from images. It removes the 

final fully connected layers. It utilizes output from the last 

convolutional layer. Input images are resized to 224x224 

pixels, with normalization applied to the range [0, 1]. A series 

of convolutional layers is applied to the network. ReLU 

activation functions follow each of these layers. This process 

extracts features like edges, textures, and complex patterns 

from the image.  

The network’s depth is expanded by accumulating these 

convolutional layers. This gives the network the ability to 

understand better sophisticated features. To refine feature 

maps, max-pooling layers are used following multiple 

convolutional layers. They help in adjusting spatial 

dimensions, ensuring effective feature representation. This 

helps manage computational complexity and prevents 

overfitting. The derived features are reshaped into a one-

dimensional vector for further processing. Subsequently, the 

data is processed using dense neural units to learn higher-level 

representations.  

This forms a high-level representation of the image. 

Finally, the output layer produces a vector. We utilized the 

VGG16 model from Keras applications, omitting the top fully 

connected layers by setting include_top=False, and leveraging 

pre-trained ImageNet weights for feature extraction. Final 

convolutional outputs of the model are passed through a 

GlobalAveragePooling2D layer to generate a fixed-length 

feature vector. This vector is subsequently projected to 512 

dimensions using a dense layer with ReLU activation. 

 
Fig. 3 Architecture of the modified VGG-16 model used for visual 

feature extraction 

 

3.2.1. VGG-16 Configuration 

For processing visual data, the model employs VGG-16 

architecture, initialized with weights learned from a large-

scale image classification benchmark and implemented using 

TensorFlow’s Keras library. The network is initialized 

without its top classification layers, focusing solely on feature 

extraction. Input images are resized to a uniform resolution of 

128×128 pixels with three color channels and normalized to 

fall within the [0, 1] range to standardize the input.  

The convolutional feature maps produced by VGG-16 are 

subjected to global average pooling to obtain a compact, fixed-

length feature vector. Following the approach used for textual 

features, the resulting vector undergoes transformation 

through a fully connected layer comprising 512 neurons and a 

ReLU function, ensuring alignment with text feature 

representation. This transformation enables seamless fusion of 

the two modalities. 

3.3. Dimensionality Projection 

Text features, extracted using BERT, are high-

dimensional contextualized embeddings, which are 768 

dimensions, while image features, extracted using VGG-16, 

are typically lower-dimensional, which are 4096 dimensions. 

To align these features, both are passed through separate dense 

layers (fully connected layers) that project them into a shared 

D-dimensional space where D = 512. This projection resolves 

the dimensionality mismatch and scales the features to a 

common representation, making them suitable for 

combination. Non-linearity is introduced by applying the 

ReLU activation function following the projection step, 

enhancing the representational capacity of features. The batch 

normalization technique is used to stabilize training and 

ensure consistent feature scaling. The output of this step is a 

pair of text and image features with the same dimensionality 

(D), which are now ready for further processing. This 

alignment is essential for the subsequent Cross-Modal 

Attention mechanism, which relies on the features being in the 

same space to compute meaningful interactions, and for the 

Adaptive Learning layer, which dynamically balances the 

contributions of both modalities. 
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Fig. 4 Cross-modal attention mechanism

3.4. Cross-Modal Attention 

Cross-modal attention supports the model to dynamically 

emphasis on most relevant measures of text and image, 

improving the representation of multi-modal data. As depicted 

in Figure 4, this mechanism models interactions between text 

and image features by taking two inputs, the Encoder Output, 

which is image features from VGG-16, and the Decoder 

Hidden State, which is text features from BERT. 

Encoder Output is used as Keys (WK) and Values (WV), 

while the Decoder Hidden State is used as Queries (WQ). The 

mechanism employs a multi-head attention layer, where the 

text features (projected as Queries) are used to “ask” which 

parts of the image features (projected as Keys and Values) are 

relevant. As shown in Equation 1, attention scores are 

quantified by means of the scaled dot-product attention 

formula: 

Attention(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉           (1) 

Here, Q represents the projected text features. These 

features are called Queries. K and V represent projected image 

features. K stands for Keys and V stands for Values.  𝑑𝑘  is the 

dimensionality of key vectors. The dot product is scaled by 

√𝑑𝑘  to stabilize gradients. This process is enhanced by a 

multihead attention layer, which applies attention mechanisms 

multiple times in parallel to capture diverse interactions 

between modalities. All attention head outputs are joined 

together by concatenation. They are then fed into a dense 

layer. This process produces the final attention output. 

Attended features are then weighted and combined to create a 

cross-modal representation, which captures the most relevant 

interactions between text and image. This representation is 

passed to the Adaptive Learning Layer for further refinement, 

enabling the model to dynamically balance and integrate 

multi-modal information. By focusing on semantically related 

parts of text and image, the Cross-Modal Attention 

Mechanism improves the model’s capacity to analyze and 

manage multi-modal data in a meaningful way.   

3.5. Adaptive Learning with Attention-Based Fusion Layer  

This is an important component designed to refine and 

dynamically balance the contributions of text and image 

features. After the Cross-Modal Attention Mechanism 

generates a unified representation by capturing interactions 

between modalities, this layer further enhances the feature 

representation. It employs an Attention-Based Fusion 

approach, where attention weights are dynamically computed 

to decide the significance of each modality (text and image) 

for sentiment classification.  

These weights are used to adaptively combine the 

attended cross-modal features with the original visual features 

from VGG-16, ensuring that the final representation optimally 

balances the contributions of both modalities. The fusion 

process is guided by the model’s learning objective, allowing 

it to prioritize the most relevant features. The refined features 

are then passed to the next module for further processing, such 

as sentiment classification.  

3.6. Sentiment Classification 

The sentiment classification module in the CA-CMAF 

model takes the refined features from the Adaptive Learning 
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with Attention-Based Fusion Layer and maps them to 

sentiment classes. This module consists of one or more fully 

connected layers that transform the combined features into a 

format suitable for classification. Softmax activation function 

in the final layer generates a probability distribution across 

sentiment classes: positive, negative, and neutral.  

The model is trained by means of categorical cross-

entropy loss, which quantifies the difference between 

predicted and actual sentiment labels. Adam optimizer is used 

for gradient descent, ensuring efficient and stable training. To 

prevent overfitting, techniques such as dropout and L2 

regularization are applied, enhancing the model’s 

generalization ability. This module ensures that the CA-

CMAF model can effectively perform sentiment classification 

based on the integrated multi-modal features.  

3.7. Training Parameters 

The training parameters for the model are as follows: The 

image input size is set to 128 × 128 × 3, ensuring a manageable 

resolution for processing. The text sequence length is variable, 

with sequences dynamically padded, and no fixed maximum 

length is enforced. The batch size is 32, providing balance 

between computational efficiency and model performance. 

Training occurs over 50 epochs, allowing sufficient time for 

the model to learn.  

Adam optimization algorithm is employed with a 1e-4 

learning rate is chosen for effective weight updates. Model 

utilizes sparse categorical cross-entropy as a loss function, 

making it appropriate for addressing multi-class classification 

problems. To mitigate overfitting, the model applies a 0.3 

dropout rate, along with an L2 regularization factor of 1e-4.  

ReLU is utilized as an activation function within hidden 

layers, while the final layer uses softmax activation to produce 

probabilities for classification. The output dimension of the 

dense layer is set to 512, enabling the model to capture 

complex features. 

4. Results and Discussion 
4.1. Experimental Arrangement 

The model is developed using a Python script on a 

Windows 11 system with 8 GB RAM. 

 

4.2. Dataset Used 

MVSA datasets are utilized, which comprise two 

databases: MVSA-Single and MVSA-Multiple. [30] These are 

freely available. MVSA-Single includes 5,129 text-image 

pairings extracted from Twitter, each annotated by only one 

annotator who assigns any of the three sentiments: neutral, 

positive, or negative. Conversely, MVSA-Multiple includes 

19,600 text-image pairings, assessed by three separate 

annotators to guarantee variation in sentiment classification. 

[32, 33] 

For MVSA-Multiple, the actual label for individual 

modality is determined using majority vote among 3 

annotators, ensuring the text or image becomes credible if 

minimum 2 annotators share the same sentiment. To maintain 

data of excellent quality, excluded tweets where text and 

visual annotations are inconsistent, particularly when one.  

The annotation is positive, and the other is negative. If 

one annotation falls into the neutral category, while following 

one expresses either a positive or negative sentiment, the 

overall emotion polarity of the multimodal tweeter post is 

determined by the positive (or negative). This preprocessing 

step helps refine the MVSA-Single dataset, resulting in 4,511 

text-image pairs.  

Similarly, the MVSA-Multiple input dataset is refined to 

contain 17,024 text-image pairs. Preprocessing steps, as 

described by Xu and Mao [31], removed image-text pairs 

where the images are entirely unrelated to the text labels, 

further enhancing dataset quality. Table 1 summarizes the 

statistical details of preprocessed MVSA-Single and MVSA-

Multiple datasets. 

Table 1. Distribution of datasets based on sentiment categories 

Dataset 

Type 
Positive Neutral Negative 

Total 

Samples 

MSVA-

Single 
2,683 470 1,358 4,511 

MSVA-

Multiple 
11,318 4,408 1,298 17,024 

 

4.3. Comparative Analysis 

In comparative evaluation, the effectiveness of the CA-

CMAF model is assessed in comparison to other models, 

including Text-only (BERT), Image-only (VGG-16), Early 

Fusion (Concatenation), Late Fusion (Averaging), Cross-

Modal Attention (CMA), State-Of-The-ART (SOTA), and 

Adaptive Learning (AL) model. 

Figure 5 displays the comparative analysis of the CA-

CMAF model on the MVSA-Single dataset across different 

Training Percentages (TP). When comparing the proposed 

CA-CMAF framework with other SOTA models across all TP 

values 40, 50, 60, 70, and 80, it is observed that CA-CMAF 

consistently surpasses all competing methods.  

As shown in Figure 5(a), at TP of 40, CA-CMAF achieves 

an accuracy of 78%, surpassing SOTA by 2%. CA-CMAF 

reaches an accuracy of 83% at TP of 80, outperforming SOTA 

by 2% and CMA by 3%. Compared to Text-only (BERT) and 

Image-only (VGG-16), CA-CMAF demonstrates a substantial 

improvement, achieving 10% and 18% higher accuracy, 

respectively. 
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(d) 

Fig. 5 Comparative analysis on MVSA-single dataset across various TP values, illustrating a) Accuracy, b) F1-score, c) Precision, and d) Recall. 

 

This indicates that CA-CMAF is the most effective in 

integrating multimodal data for accurate predictions. As 

shown in Figure 5(b), at TP of 40, CA-CMAF achieves an F1-

Score of 76%, surpassing SOTA by 3%. F1-Score of 81% at 

TP of 80, outperforming SOTA by 3% and CMA by 3%. 

Compared to Text-only (BERT) and Image-only (VGG-16), 

CA-CMAF demonstrates a significant improvement, 

achieving 10% and 18% higher F1-Score, respectively.  

When compared to Early Fusion (Concatenation) and 

Late Fusion (Averaging), CA-CMAF outperforms them by 

7% and 5%, respectively. As shown in Figure 5(c), at TP of 

80, CA-CMAF reaches a precision of 82%, outperforming 

SOTA by 2% and Cross-Modal Attention (CMA) by 3%. 

Compared to Text-only (BERT) and Image-only (VGG-16), 

CA-CMAF demonstrates improvement, achieving 10% and 

18% higher precision, respectively.  

This indicates that CA-CMAF is the most effective in 

minimizing false positives and maximizing true positives. 

When compared to fusion-based methods like Early Fusion 

(Concatenation) and Late Fusion (Averaging), CA-CMAF 

outperforms them by 7% and 5%, respectively. As shown in 

Figure 5(d), at TP of 80, outperforming SOTA by 3% and 

Cross-Modal Attention (CMA) by 4%. CA-CMAF 

demonstrates a substantial improvement, achieving 9% and 

16% higher recall, compared to Text-only (BERT) and Image-

only (VGG-16), respectively. When compared to Early Fusion 

(Concatenation) and Late Fusion (Averaging), CA-CMAF 

outperforms them by 6% and 5%, respectively. 
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(b) 
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(d) 

Fig. 6 Comparative analysis on MVSA-multiple dataset across various TP values, illustrating a) Accuracy, b) F1-score, c) Precision, and d) Recall.
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Figure 6 displays a systematic comparison of the 

presented CA-CMAF model on the MVSA-Multiple dataset 

across different TP. After comparing the proposed CA-CMAF 

framework with other SOTA models across all TP values 40, 

50, 60, 70, and 80, it is observed that CA-CMAF consistently 

surpasses all competing methods. As shown in Figure 6(a), at 

TP of 80, CA-CMAF achieves an accuracy of 81%, surpassing 

SOTA by 2% and CMA by 3%. Compared to Text-only 

(BERT) and Image-only (VGG-16), CA-CMAF achieves 9% 

and 18% higher accuracy, respectively. This indicates that 

CA-CMAF is the most effective in integrating multimodal 

data for accurate predictions. 

 

As shown in Figure 6(b), F1-Score of CA-CMAF reaches 

79% at TP of 80, outperforming SOTA by 3% and CMA by 

3%. CA-CMAF achieves 9% and 18% higher F1Score, 

compared to Text-only (BERT) and Image-only (VGG-16), 

respectively. When compared to Early Fusion (Concatenation) 

and Late Fusion (Averaging), CA-CMAF outperforms them 

by 7% and 5%, respectively. As shown in Figure 6(c), CA-

CMAF reaches a precision of 80% at TP of 80, outperforming 

SOTA by 2% and CMA by 3%. Compared to Text-only 

(BERT) and Image-only (VGG-16), CA-CMAF achieves 10% 

and 18% higher precision, respectively. When Early Fusion 

(Concatenation) and Late Fusion (Averaging), CA-CMAF 

outperforms them by 7% and 5%, respectively.

Table 2. Comparative analysis of various methods at TP of 90 

Method 
MVSA-Single MVSA-Multiple 

Acc. F1-Score Precision Recall Acc. F1-Score Precision Recall 

Text-only (BERT) 78% 76% 77% 78% 76% 74% 75% 76% 

Image-only (VGG-16) 70% 68% 69% 70% 70% 66% 68% 68% 

Early Fusion 

(Concatenation) 
81% 79% 80% 81% 79% 77% 78% 79% 

Late Fusion (Averaging) 83% 81% 82% 83% 81% 78% 80% 81% 

Cross-Modal Attention 

(CMA) 
85% 83% 84% 85% 84% 82% 83% 83% 

Adaptive Learning (AL) 84% 82% 83% 84% 82% 80% 81% 82% 

State-of-the-Art (SOTA) 86% 84% 85% 86% 84% 82% 83% 84% 

CA-CMAF 92% 90% 91% 91% 91% 89% 90% 90% 

As shown in Figure 6(d), CA-CMAF reaches a recall of 

81% at TP of 80, outperforming SOTA by 2% and CMA by 

3%. CA-CMAF achieves 9% and 18% higher recall, compared 

to Text-only (BERT) and Image-only (VGG-16), respectively. 

This indicates that CA-CMAF is the most effective in 

capturing true positives and minimizing false negatives. When 

compared to fusion-based methods like Early Fusion 

(Concatenation) and Late Fusion (Averaging), CA-CMAF 

outperforms them by 7% and 5%, respectively. 

As shown in Table 2, a comparison of the performance 

metric for various models on two different datasets, i.e., 

MVSA-Single and MVSA-Multiple, for a training percentage 

of 90. Across all metrics - Accuracy, F1-Score, Precision, and 

Recall- the CA-CMAF model consistently outperforms other 

SOTA methods, demonstrating its superiority in integrating 

and leveraging multimodal data. This makes CA-CMAF the 
most effective and reliable model for tasks requiring high 

performance in multimodal data integration. 

The confusion matrix presented in Figure 7(a) shows the 

classification performance of the proposed CA-CMAF model 

on the MVSA-Single dataset across three sentiment 

categories: Positive, Neutral, and Negative. The model 

demonstrates strong predictive performance for the Positive 

and Negative classes, with 2,450 and 1,218 correct 

predictions, respectively. The Neutral class also shows 

reasonable accuracy, with 420 correct classifications. 

Misclassifications are relatively low, indicating the model’s 

effectiveness in discerning sentiment polarity in multimodal 

data. The matrix highlights the model’s capability to handle 

class imbalances while maintaining high precision and recall 

across sentiment categories. 

 
Fig. 7(a) Confusion matrix for MVSA-single dataset 
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The confusion matrix depicted in Figure 7(b) presents the 

sentiment classification performance of the CA-CMAF model 

on the MVSA-Multiple dataset. The model accurately 

identifies a majority of Positive instances (10,400), followed 

by Neutral (3,800) and Negative (1,108) sentiments. 

Misclassifications are relatively minimal, with some overlap 

between Neutral and Positive classes, indicating the inherent 

ambiguity in sentiment interpretation for certain samples. 

Despite the larger and more diverse MVSA-Multiple dataset, 

the proposed CA-CMAF model maintains strong 

generalization across all sentiment categories, reflecting its 

robustness and adaptability to complex multimodal data. 

 
Fig. 7(b) Confusion matrix for MVSA-multiple dataset 

 

Fig. 8(a) ROC curves for MVSA-single dataset 

The ROC curves plotted in Figure 8(a) for the MVSA-

Single dataset illustrate the model’s classification 

effectiveness across the three sentiment categories. Each 

sentiment class, positive, neutral, and negative, exhibits strong 

discriminative performance, achieving AUC scores of 0.95, 

0.92, and 0.94, respectively. These scores indicate that the 

model performs with high accuracy, particularly for the 

positive sentiment category. The curves ascend steeply toward 

the ideal region of the plot, indicating effective sentiment 

prediction with minimal classification errors and strong 

detection accuracy. 

ROC analysis depicted for MVSA-Multiple dataset in 

Figure 8(b) reflects strong classification capabilities across all 

three sentiment categories. The model achieves Area Under 

the Curve (AUC) scores of 0.94 for positive, 0.91 for neutral, 

and 0.93 for negative sentiments. These values indicate that 

the model maintains reliable discrimination power for each 

class, with slightly higher performance for positive and 

negative categories. The close proximity of the curves to the 

top-left corner demonstrates a favorable balance between 

sensitivity and specificity, reinforcing the model’s 

effectiveness in handling multi-sentiment visual-textual 

inputs. 

 
Fig. 8(b) ROC curves for MVSA-multiple dataset 

4.4. Discussion 

Existing sentiment analysis models face significant 

challenges, particularly when dealing with multimodal 

information such as text and images. These challenges include 

effective integration of diverse data types, handling noisy 

datasets, addressing context-dependent sentiments, and 

managing the complexities of sarcasm and ambiguity. 

Traditional approaches, such as Early Fusion and Late Fusion, 

often struggle to seamlessly combine textual and visual 

modalities, leading to suboptimal performance in capturing 

sentiment cues. Models like Cross-Modal Attention (CMA) 

and Adaptive Learning (AL) may encounter scalability issues 

and high computational costs, limiting their practical 

applicability in real-world scenarios. Content-based methods 

and conventional neural networks frequently fail to capture the 

nuanced interactions between textual and visual features, 

especially when sentiments are expressed implicitly or 

sarcastically.  
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The proposed Contextual Adaptive Cross-Modal 

Attention Fusion (CA-CMAF) framework addresses these 

challenges by leveraging a new cross-modal attention 

technique that dynamically adapts to the contextual relevance 

of textual and visual features. This approach ensures a 

seamless integration of multimodal data, enhancing the 

model’s capability to capture complex sentiment cues that are 

often expressed across different modalities. By incorporating 

adaptive learning techniques, CA-CMAF optimizes the fusion 

process, improving both exploration and exploitation 

capabilities. The framework’s ability to handle noisy and 

ambiguous datasets is further enhanced through its robust 

feature extraction and fusion mechanisms, which mitigate the 

impact of irrelevant or conflicting information from different 

modalities. Additionally, CA-CMAF addresses the challenge 

of context-dependent sentiments by effectively utilizing both 

textual and visual features, even when sentiments are 

expressed implicitly or sarcastically. 

5. Conclusion 
The proposed Contextual Adaptive Cross-Modal 

Attention Fusion (CA-CMAF) framework represents a 

significant advancement in multimodal sentiment predictions, 

addressing critical challenges such as seamless integration of 

textual and visual data, handling noisy and ambiguous 

datasets, and capturing context-dependent sentiments, 

including sarcasm and implicit expressions. By leveraging a 

novel cross-modal attention mechanism and adaptive learning 

techniques, CA-CMAF ensures robust and accurate sentiment 

classification, even in complex and noisy scenarios. The 

framework’s ability to dynamically adapt to the contextual 

relevance of multimodal features enhances its performance, 

making it scalable and computationally efficient. 

As demonstrated by outcomes on MVSA-Single and 

MVSA-Multiple datasets, CA-CMAF outperforms all 

competing methods across all metrics. On MVSA-Single, CA-

CMAF achieves an accuracy of 92%, surpassing SOTA by 

significant margins. Similarly, on MVSA-Multiple, proposed 

CA-CMAF achieves an accuracy of 91%, consistently 

outperforming SOTA and other baseline methods like CMA 

and Late Fusion. These results highlight the framework’s 

superior capability to integrate and leverage multimodal data 

for sentiment analysis. CA-CMAF focuses on context-aware 

sentiment analysis, leading to more precise sentiment 

predictions. It establishes a strong reference point for handling 

multimodal data in sentiment-related tasks. By integrating 

multimodal fusion, adaptive learning, and attention 

mechanisms, CA-CMAF offers a robust and versatile solution. 

This makes it highly effective for various datasets and 

practical applications. It contributes to the advancement of 

sentiment analysis models, ensuring greater accuracy and 

dependability moving forward. 

Building upon the promising outcomes of the CA-CMAF 

framework, several avenues for future exploration are evident. 

First, extending the model to support additional modalities 

such as audio or video could further enrich sentiment 

interpretation in social media and real-world scenarios. 

Moreover, adapting the CA-CMAF framework for low-

resource languages or multilingual datasets could broaden its 

applicability and inclusiveness. Incorporating explainable AI 

techniques may also enhance interpretability, helping users 

understand the contribution of each modality in decision-

making. Additionally, exploring lightweight or real-time 

versions of CA-CMAF would be valuable for deployment in 

mobile or edge computing environments. Further research 

may also focus on improving the model’s ability to handle 

evolving language trends, such as slang, emojis, and memes, 

which frequently appear in social media content. Integrating 

reinforcement learning could enhance adaptive feature 

selection based on feedback loops or user preferences. 

Another promising direction involves incorporating emotional 

intensity detection to better capture subtle sentiment 

variations. Finally, collaborative learning approaches, such as 

federated learning, could help build more privacy-preserving 

and decentralized sentiment models without sharing raw data. 
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