
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 5, 379-390, May 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I5P131 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Bio-Inspired Feature Extraction and Ensemble Approach

to Classify Malware

Gaurav Mehta1, Pradeepta Kumar Sarangi2, Shaily Jain3, Vikas Tripathi4

1,2

Chitkara University School of Engineering & Technology, Chitkara University, Himachal Pradesh, India.
3Chitkara University School of Engineering & Technology, Chitkara University, Punjab, India.

4Computer Science and Engineering, Graphic Era, Dehradun, India.

1Corresponding Author : gaurav.mehta@chitkarauniversity.edu.in

Received: 20 March 2025 Revised: 21 April 2025 Accepted: 22 May 2025 Published: 27 May 2025

Abstract - Malware classification plays an important role in preventing security threats. As malware affects many different areas

like mobile, computer, IoT, etc., an effective classification approach needs to be used, even on big data samples. This paper

gives a detailed analysis of ensemble architecture, highlighting the synergistic effect of combining CNNs with ACO and ANN

for robust feature extraction and selection to provide a scalable solution for real-time malware detection. We propose a

comprehensive model integrating a Convolutional Neural Network for feature extraction, enhanced with a Rectified Linear Unit

(ReLU) combined with ACO for feature selection. In our experimental setup, to evaluate the effectiveness of the proposed model,

we used the Microsoft BIG15 malware dataset with 9 different classes and obtained an accuracy of 98.76%, surpassing

traditional and standalone methods.

Keywords - Malware classification, Ant Colony Optimization, Algorithms, Convolution Neural Network, Transfer, Learning

Long Short-Term, Memory.

1. Introduction
Malware classification using Random Forests and Naive

Bayes often suffers from high FPR due to issues in the training

data. While Support Vector Machines (SVM) and decision

trees are effective against known malware assaults, they

struggle with new and evolving patterns. In contrast, Deep

Convolutional Neural Networks (CNNs) have emerged as the

leading approach in classification tasks. CNNs have shown

superior performance in ImageNet classification challenges,

with deeper models demonstrating better results. For instance,

in 2012, the AlexNet architecture (8-layered architecture)

achieved an ImageNet error rate of 15.3% [1-3]. Due to high

false favorable rates in training data, malware classification

using Random Forests and Nave Bayes must be improved.

SVM and decision trees are effective against known malware

assaults but not against patterns.

Deep Convolutional Neural Networks are currently the

best in classification. It performs better on ImageNet

classification challenges. Deeper models outperform. In 2012,

the top-5 ImageNet error rate for the 8-layer AlexNet

architecture was 15.3%. The top-5 error rate for Transfer

learning adds past knowledge to virus detection. Transfer

learning speeds up deep neural network training, producing

good classification results on fewer datasets. Malware defense

systems rely heavily on machine learning to combat ever-

changing malware threats. Transfer learning, which

incorporates past knowledge into virus detection, significantly

accelerates the training of deep neural networks. This

approach yields robust classification results even with smaller

datasets. Machine learning models, crucial for combating

ever-changing malware threats, leverage complex algorithms

and extensive datasets to identify and categorize malicious

software swiftly, even those with unique traits [4]. Using

complex algorithms and large datasets, machine learning

models can quickly identify and categorize dangerous

software, even if it has unique traits.

On top of that, the machine learning model may learn

from new threats and gradually become better at detecting and

eliminating malware on its own. Machine learning-driven

defense against malware enhances the process of choosing

indicators of compromise - (IoC). The efficient identification

and mitigation of potential malware threats is greatly assisted

by IoCs. By picking the most important indications, machine

learning models can provide very accurate and efficient

results. Maintaining the system's capacity to address newly

created threats quickly and minimizing the occurrence of false

positives are both achieved through the curation of a complete

library of IoCs. These models continuously improve by

learning from new threats, enhancing their ability to detect and

eliminate malware autonomously. The efficiency of machine

http://creativecommons.org/licenses/by-nc-nd/4.0/

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

380

learning-driven malware defenses heavily relies on selecting

significant Indicators of Compromise (IoCs). Efficient

identification and improvement of po critical malware threats

are greatly facilitated by IoCs. ML models can attain high

efficiency and maintain accuracy by selecting the most critical

indicators. A comprehensive library of IoCs is essential for

maintaining the ability of the system to address new threats

quickly and to minimize false positives [5]. Around ML and

DL methods, much writing about identifying and classifying

malware has been used for deep learning to sort viruses.

Word2vec [6] used features gradient boosting and k-

foldcross- validation to classify malware and test the model.

Their small Microsoft data set was correct 96% of the time. In

their study, they developed a DL model involving an I-

dimensional CNN and LSTM architecture.

2. Literature Review
The model was employed to classify Malimg malware.

Instead of feature extraction, [7] classified Malimg malware

using deep residual networks. 86% of 5-fold cross-validation

rankings are correct. [8] said you should look at the binary data

elements in grayscale photos to find unknown file types [9]

used Microsoft's BIG15 collection to classify malware. With

PCA, they pull out features. ANN, k-NN, and SVM

algorithms are tried to see how well they can use these

attributes to classify malware data. The K-fold proof proves

that it works. KNN is 96.6% accurate, SVM 9 has 4.6%, and

static and dynamic feed-forward networks are 95.6% and

95.5% [10] used n-gram byte sequence patterns to show how

malware looked on Microsoft BIG15. CNN pulls out features,

gram features, Markov Dot – Plot - visualizes bigram features,

and Support Vector Machine classifies with 98% and 99%

accuracy on two techniques. SVM and CNN feature extraction

and selection [11] found Microsoft BIG15 malware. They plan

to solve issues by hybridizing feature spaces. The

recommended approach generates a 0.09 log loss in 10 runs

[12], creating an IoT malware detection hybrid deep

convolution neural network. Leopard mobile dataset detects,

Malimg classifies. With a 299x299 picture ratio, they

classified with 98.18% accuracy and 98.19% precision [13],

demonstrating word2vecover one hot encoding's benefits.

Both Word2vec and LSTM network model group Microsoft

BIG15 malware. Word2vec predicts 0.5% better than hot

encoding and differentiates malware using transfer learning.

[14]. DTMIC identifies malware using ImageNet-trained deep

convolutional neural networks (CNNs). Regularisation

approach Early Stopping monitors validation loss with set

values to avoid overfitting. MalImg and Microsoft BIG

datasets test the model's efficacy and resilience. Compare

VGG16, VGG19, and ResNet50 with Google's inceptionV3

feature extractors and classifiers. DTMIC beats baseline

models. Malware classification was done using fine-tuned

convolution neural networks. [15] No feature engineering,

binary code analysis, reverse engineering, or elaborate viral

evasion methods are needed for MCFT-CNN to recognize the

unnamed malware sample. Deep transfer learning family

classifies malware pictures. Replacing the model's last layer

with a dense, linked layer improves ResNet50. CNN is used

to engineer features instead of input data. Transferred deep

network knowledge enhances malware classification on a

BIG15 dataset, decreases computing overhead, and improves

visualization [16, 17].

Many obstacles and associated features need to be tackled

for enhanced malware detection, for which a deep learning

approach [18, 19] plays a vital role. Improving the IoCs in

response to evolving malicious behavior is vital for

developing useful malware defense methods. This study

proposes using an ensemble-based feature selection to make a

set of characteristics for malware detection [20, 21]. This

approach enhances performance, particularly when the

accuracy level is high. The methodology characterizes

malware signatures as images using a neural network,

capitalizing on CNNs' proficiency in image-related problems.

This initial setup as an image classification problem enables

rapid and accurate malware classification to assess danger and

contamination. Transfer learning, particularly using the

InceptionV3 model, outperforms LSTM networks in training.

The proposed approach achieves an impressive 98.76%

accuracy on 10,868 examples. The paper is planned as

follows: 2nd Section gives related work in the section literature

review, Section 3 explains the projected architecture,

4thSection outlines the proposed algorithm, 5thSection details

performance measurement, 6thSection is the result discussion,

and 7thSection provides the conclusion.

3. Object Code

The proposed scheme transforms malware from byte data

to image data. Malware is machine-level code, typically

encoded as binary or assembly mnemonics. Byte files are built

binaries representing malware, where mnemonics are

converted into hexadecimal digits. The byte sequences are

interpreted as grayscale images to convert malware into a

visual format. The byte in the file is represented by a pixel,

where the value of the byte determines the pixel intensity. This

transformation process allows image processing techniques to

be applied to analyze malware.

 Byte-to-Pixel Conversion: Each byte from the malware

sample is converted to its hexadecimal representation.

These hexadecimal values are then mapped to pixel

intensity values, creating a 1-dimensional array of pixel

values.

 Image Resizing: The resulting 1D pixel array is reshaped

in a 2D image. In this scheme, a fixed image size of

1024x1024 pixels is used, which ensures consistency

across samples. Image resizing is achieved using bicubic

interpolation to dimensions vital to CNN.

 Feature Extraction Using CNN: Once the malware is

represented as an image, a deep CNN is used for

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

381

extracting features. The CNN architecture used in this

study is a deep CNN with different convolutional layers

and fully connected layers. The CNN's ability to capture

spatial hierarchies in the image data makes it an ideal

choice for feature extraction.

 Feature Selection Using Ant Colony Optimization

(ACO): After extracting features using CNN, an ACO

strategy is applied to select the most relevant features.

ACO is a probabilistic technique inspired by ant

behaviour for searching the shortest path to food. In this

context, it is used to find the most significant features

contributing to malware classification.

 Classification Using Ensemble Learning: The selected

features train multiple classifiers, including LR, LSTM

networks, and transfer learning models on pre-trained

CNNs. These classifiers are combined in an ensemble

approach to improve the overall classification accuracy.

 Ensemble Approach for Malware Classification: The

ensemble method combines predictions from different

classifiers to produce a final classification result. This

approach leverages the strengths of each classifier and

mitigates their individual weaknesses. The ensemble

classifier in this study achieved an accuracy percentage of

98.76% on test data.

Fig. 1 Conceptual view of the model

Input objective code

Compiled

Binary Code

Disassembly

IDA

Hexadecimal

Representation

Pixel

Representation

Processing

Feature Extraction

(ACO Algorithm)

Resize Sampling

Modelling

Logistic

Regression

ANN CNN LSTM

Transfer Learning Using Inception

Classification

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

382

Table 1. Overview: malware detection and classification

References Technique of Feature Extraction Algorithm for selecting features Training

 [23]

GIST - KNN

 [24]

Opcode sequences PCA KNN

 [25]

CNN - VGG-16

 [26]

Opcode sequences, SimHash - CNN

 [27]

CNN based features - CNN

 [28]

Opcode sequences - CNN

 [29]

Texture based features - MLP

 [30]

CNN based features - CNN, RNN

 [31]

CNN based features - BI-LSTM

 [32]

CNN based features PCA SVM, KNN

 [33]

CNN based features - CNN

 [34]

API calls, API arguments, CAT N-Gram CNN

 [35]

textural and hardware features, API

calls
- Voting based classifier

Different algorithms have varying requirements for input

channel sizes. To ensure compatibility across all algorithms,

the input size can be adjusted accordingly. Standard and min-

max scaling techniques were employed to normalize data,

ensure all features are on a similar scale, and improve the

functionality of the machine learning models [36-39].

1. Standard Scaling: This method transforms data to get a

mean of 0 (zero), and the value of SD is 1. It is useful,

especially when Gaussian distribution is followed. Formula

for standard scaling is:

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋 − 𝜇𝜎𝑋{\𝑡𝑒𝑠𝑥𝑡{𝑠𝑐𝑎𝑙𝑒𝑑}}
=\𝑓𝑟𝑎𝑐{𝑋 −\µ}𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝜎𝑋 − µ

Where XXX =original data, μ = mean, and σ = standard

deviation.

2. Min-Max Scaling or regularization rescales the features

to a fixed range, usually 0 to 1. This is achieved using the

following formula:

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋 − 𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛𝑋_{\𝑡𝑒𝑥𝑡{𝑠𝑐𝑎𝑙𝑒𝑑}} =
\𝑓𝑟𝑎𝑐{𝑋 − 𝑋_{\𝑡𝑒𝑥𝑡{𝑚𝑖𝑛}}}{𝑋_{𝑡𝑒𝑥𝑡{𝑚𝑎𝑥}} −
𝑋_{\𝑡𝑒𝑥𝑡{𝑚𝑖𝑛}}}𝑋𝑆𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛𝑋 − 𝑋𝑚𝑖𝑛

Where XminX_{\text{min}}Xmin is maximum,

XmaxX_{\text{max}}Xmax minimum values of the feature.

This scaling ensures that the input data remains within a

specified range.

Research Gap and Novelty of the Study

While numerous approaches in sentiment analysis have

demonstrated significant accuracy improvements, several

research gaps remain. Existing works such as [1, 2, 5]

emphasize sentiment classification but primarily rely on

predefined linguistic features or sequence models without

exploring the depth of hybrid methodologies that combine

contextual embeddings with domain-specific enhancements.

A review of prior studies, including [3, 4, 6], shows

limited integration of deep learning interpretability in real-

world applications such as stock market sentiment forecasting

or business intelligence at scale. Moreover, tools like

TextBlob and VADER [7] rely on lexicons that lack

adaptability across dynamic domains like fintech and politics.

Key Novel Contributions of this Study

Gap in Literature Proposed Solution

Context-insensitive lexicon-

based methods [4, 7]

Integration of LSTM

with domain-tuned

embeddings

Lack of explainability in deep

models [6]

Inclusion of attention

mechanisms

Poor handling of sarcasm and

irony [9]

Hybrid multi-channel

architecture

Domain drift across datasets Domain adaptation using

transfer learning

This study addresses these gaps by proposing a sentiment

analysis framework combining advanced LSTM-based

architectures with real-time contextual learning using large

datasets. Furthermore, the novelty lies in adapting the model

to shifting sentiment patterns over time, ensuring robust

performance across diverse textual domains.

3.1. Feature Extraction

Significant behavioral features were extracted using the

ACO algorithm, ideal for discrete optimization problems

[40]. ACO encodes potential solutions to routing issues as

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

383

paths. When traversing these paths, ants leave a trail of

pheromones that gradually evaporate. The concentration of

pheromones is directly proportional to the quality of the

solution (path fitness).

1. ACO algorithm simulates ant behavior to find the path.

The main steps include:

a) Initialization: Set initial pheromone levels on all

paths.

b) Construction: Ants build solutions by moving from

one node to another, guided by pheromone levels and

heuristic information.

Pheromone Update: After constructing solutions,

pheromone levels are updated to reinforce good solutions and

discourage bad ones. The updated formula is:

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡)

+ ∑ 𝑎𝑛𝑡𝑠∆𝜏𝑖𝑗𝑎𝑛𝑡\𝑡_{𝑖𝑗}(𝑡 + 1)

= (1 −\𝜌)\𝑐.\𝑡_{𝑖𝑗}(𝑡)
+\𝑠𝑢𝑚_{\𝑡𝑒𝑥𝑡{𝑎𝑛𝑡𝑠}}\𝛿\𝑡_{𝑖𝑗}^{𝑡𝑒𝑥𝑡
\{𝑎𝑛𝑡}}𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡)

= 𝑎𝑛𝑡𝑠 ∑ ∆𝜏𝑖𝑗𝑎𝑛𝑡

Where τij(t)\tau_{ij}(t)τij(t) is pheromone level on path

(i,j)(i, j)(i,j) at time ttt, ρ\rhoρ is the evaporation rate, and

Δτijant\Delta \tau_{ij}^{\text{ant}}Δτijant is the pheromone

amount deposited by an ant.

2. Feature Selection: The ACO algorithm evaluates the

quality of features and their ability to improve classification

accuracy. Features with higher pheromone concentrations are

considered more important and are selected for further

processing.

3.2. Training

This step involves training ML and DL algorithms on the

dataset, which consists of nine different malware classes. The

system categorizes these classes using error-driven gradient

updating in the final network layer, typically a softmax layer.

1. Logistic Regression (LR): used for categorization ion

tasks. It uses crossentropy loss, which is effective for

multiclass classification problems. The loss function for

LR is:𝐿(𝜃) = −1𝑁 ∑ 𝑖 = 1𝑁 ∑ 𝑘 =

1𝐾𝑦𝑖, 𝑘𝑙𝑜𝑔𝑓()(𝜋, 𝑘)𝐿(\𝜃) = −\𝑓𝑟𝑎𝑐{1}{𝑁}\𝑠𝑢𝑚_{𝑖 =
1}^{𝑁}\𝑠𝑢𝑚_{𝑘 = 1}^{𝑘}𝑦_{𝑖, 𝑘}\𝑙𝑜𝑔(𝜋_{𝑖, 𝑘})𝐿(𝜃) =
−𝑁1𝑖 = 1 ∑ 𝑁𝑘 = 1 ∑ 𝐾𝑦𝑖, 𝑘𝑙𝑜𝑔(𝜋, 𝑘)

 Where NNN is number of samples, KKK is the number

of classes, yi,ky_{i,k}yi,k is binary(0 or 1) mark if class label

kkk is the right categorization for sample iii, and

pi,kp_{i,k}pi,k is the predicted probability [41].

2. ANN: ANNs are used for both classification and

regression tasks. Multi-layer perceptrons (MLPs)

approximate functions that map input data to output labels

or values. The activation function, typically a nonlinear

function like ReLU, is applied to the input’s weighted

sum. The ANN training process involves minimizing a

cost function through backpropagation [42-44].

3. CNN: CNNs are deep learning architectures that maintain

and extract spatial properties from data. CNN uses

convolutional and pooling layers to create feature maps.

Filters are applied by convolutional layers for feature

detection, and pooling layers decrease dimensionality,

retaining the most important information. It works

particularly well on image recognition tasks, with

InceptionV3 being a notable architecture [45, 46].

4. LSTM is a type of RNN that is framed to catch

dependencies present in sequential data. The vanishing

gradient problem of traditional RNNs is addressed by

using gates (input-output and forget) to control the flow

data. This enables LSTMs to maintain and utilize

information over long sequences [47, 48].

 Ensemble Approach: Combining multiple machine

learning models like LR, ANN, CNN, and LSTM in an

ensemble can improve overall predictive performance. Each

model contributes its unique strengths, and their predictions

are weighted based on individual performance to produce a

final result.

3.3. Proposed Algorithm

 The proposed algorithm is broken down into following

ten steps as follows:

Step 1: Start with importing libraries

Step 2: Load the data and preprocess the data

Xtrain, ytrain = load_train_data()

Xtest, ytest = load_test_data()

Xtrainpreprocessed = preprocess(Xtrain)

Xtestpreprocessed = preprocess(Xtest)

Step 3: Feature Extraction

for iteration in range(max_iterations):

 solutions = []

 for ant in range(ant_count):

 solution= construct_solution(pheromone_levels,

feature_importance)

 solutions.append(solution)

 solution_scores= evaluate_solutions(solutions, Xtrain,

Xtest, ytrain, ytest)

Step 4: Training by LR model

lrmodel = LogisticRegression()

lrmodel.fit(Xtrain_preprocessed, ytrain)

lrpredictions= lrmodel.predict(Xtestpreprocessed)

Step 5: Training by ANN model

annmodel = MLPClassifier()

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

384

annmodel.fit(Xtrainpreprocessed, ytrain)

annpredictions= annmodel.predict(Xtestpreprocessed)

Step 6: Training by CNN model

inputlength=maxseqlength))

cnnmodel.add(Conv1D(filters=32,kernelsize=3,

activation='relu'))

cnnmodel.add(MaxPooling1D(pool_size=2))

cnnmodel.add(Flatten())

cnnmodel.add(Dense(1, activation='sigmoid'))

cnnmodel.compile(optimizer='adam',

loss='binarycrossentropy', metrics=['accuracy'])

Xtrainpadded= padsequences(Xtrainpreprocessed,

maxlen=maxseqlength)

Xtestpadded = padsequences(Xtestpreprocessed,

maxlen=maxseqlength)

cnnmodel.fit(Xtrainpadded,ytrain, epochs=10, batchsize=32,

validationdata=(Xtestpadded, ytest))

cnnpredictions= cnnmodel.predictclasses(Xtestpadded)

Step 7: Training by LSTM model

lstmmodel.add(LSTM(units=64))

lstmmodel.add(Dense(1, activation='sigmoid'))

lstmmodel.compile(optimizer='adam',

loss='binarycrossentropy', metrics=['accuracy'])

lstmmodel.fit(Xtrainpadded, ytrain,

epochs=10, batchsize=32,

validationdata=(Xtestpadded, ytest))

lstmpredictions= lstmmodel.predictclasses(Xtestpadded)

Step 8: Proposed model

ensemblemodel= VotingClassifier(estimators=[

 ('lr', lrmodel),

 ('ann', annmodel),

 ('cnn', cnnmodel),

 ('lstm', lstmmodel)

], voting='hard')

ensemblemodel.fit(Xtrain_preprocessed, ytrain)

ensemblepredictions =

ensemblemodel.predict(Xtestpreprocessed)

Step 9: Model Evaluation

ensembleaccuracy=accuracyscore(ytest,

ensemblepredictions)

print ("Ensemble Accuracy:",

ensembleaccuracy)

 Step 10: End

3.4. Feature Extraction

The proposed algorithm is divided into ten detailed steps.

Step : 1 Start with Importing Libraries. Begin by importing

required libraries and frameworks required for data

processing, model building, training, and evaluation.

This includes libraries for machine learning, deep

learning, data manipulation, and any additional tools

needed for preprocessing and feature extraction.

Step : 2 Load and Preprocess the malware dataset, which

includes both malicious and benign samples.

Preprocessing involves data cleaning, normalizing

features and converting raw byte data into suitable

formats for analysis.

Step : 3 Feature Extraction using Ant Colony Optimization

(ACO) Utilize the ACO algorithm for feature

extraction.

Step : 4 Train the LR model using preprocessed training data.

LR is a straightforward classification algorithm that

can serve as a baseline to evaluate more complex

models. Assess its performance on the test data to

establish a benchmark.

Step : 5 ANN training: Train an ANN model using the

preprocessed data. ANNs are capable of collecting

non-linear relations in data, which makes them

suitable for complex classification tasks. Configure

the network with multiple layers and neurons to

improve its capability to learn complex patterns in

the malware data.

Step : 6 Training with CNN: Develop and train the CNN

model, which is particularly effective for image-

based data. Convert the malware byte sequences into

2D images and input them to CNN.

Step : 7 Training with Long9Short-Term Memory LSTM:

Train the LSTM network well-suited for sequence

data. Convert the malware data into sequences and

feed them into the LSTM model. LSTM networks

can capture temporal dependencies and patterns,

making them ideal for time-series data. Train and

evaluate its accuracy on the test set.

Step : 8 Create an associated model by combining the

predictions from the Logistic Regression, ANN,

CNN, and LSTM models. Use a voting mechanism

to aggregate the predictions, enhancing overall

classification accuracy. The ensemble approach

authorizes the strengths of each individual model,

resulting in improved performance and robustness.

Step : 9 Evaluate ensemble model performance using correct

metrics: F1score, recall, accuracy and precision.

Step : 10 Conclusion and future work summarize the findings

of the study, highlighting the superior performance

of the ensemble approach. Discuss potential

improvements and future directions, such as

incorporating additional feature extraction

techniques, exploring different ensemble strategies,

and testing the model on other malware datasets.

Emphasize the practical implications of the research

and its contribution to malware detection.

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

385

Fig. 2 Model of the ant colony system for

Incoming Signature Hash Value

Ant deposit pheromone by extracting hexadecimal number ‘i’ in the incoming signature

hash value; Count List = {C0, C1, C2, C3,………………,C15};
Signature Position List = {Sp0, SP1, SP2, SP3,………….,SP15}

Ant Agent Chooses Ci, SPi;

Search space doesn’t

exit and file is logged

Y

N

Low Position = (SPi-Ci) + 1

High Position = SPi

Search Space = [Low Position, High Position]

Ant deposit pheromone and compares incoming signature hash with signature hash

in search space using Binary Search

If match

found

N

N

Incoming

signature not
found and log the

file

Block or allow the file if it is a ransomware or goodware respectively

If Ci =0

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

386

4. Results and Discussion
The effectiveness criteria of the suggested method are

outlined as follows:

TPR, known as recall sensitivity, represents the

likelihood of accurately identifying the current harmful

sample. It is calculated using the formula:

𝑇𝑃𝑅 = (𝑇+)𝑥(𝑇+)𝑥(𝐹−)𝑦\𝑡𝑒𝑥𝑡{𝑇𝑃𝑅}
=\𝑓𝑟𝑎𝑐{(𝑇^+)_𝑥}{𝑇^+)_𝑥
+ (𝐹^−)_𝑦}𝑇𝑃𝑅
= (𝑇+)𝑥 + (𝐹−)𝑦(𝑇+)𝑥

Where: (T+) x(T^+)_x(T+)x represents the number of

TPR predictions, the model correctly predicts the presence of

malware. (F−)y(F^-)y(F−)y represents the false negative

predictions, which means the model fails to tell in advance the

presence of malware when it exists.

FPR is the chance that a benign file gets mistakenly

labelled as malware. It is calculated by giving the formula:

𝐹𝑃𝑅 = (𝐹+)𝑥(𝐹+)𝑥 + (𝑇−)𝑦\𝑡𝑒𝑥𝑡{𝑡𝑒𝑥𝑡{𝐹𝑃𝑅} =
\𝑓𝑟𝑎𝑐{(𝐹^+)_𝑥}{(𝐹^+)_𝑥 = (𝑇^−)_𝑦}𝐹𝑃𝑅 = (𝐹+)𝑥 =
(𝑇−)𝑦(𝐹+)𝑥 where:

 (F+) x (F^+)x(F+) x shows the number of FPR predictions;

the model incorrectly predicts the presence of malware

when it does not exist.

 (T−)y(T^-)_y(T−)y indicates the number of true negative

predictions; the model predicts the absence of malware

correctly.

 True Positives ((T+)x(T^+)_x(T+)x): are instances where

the model correctly forecasts the presence of malware.

 False Negatives ((F−)y(F^-)_y(F−)y): Instances where the

model fails to forecast the presence of malware when it

exists.

 True Negatives ((T−)y(T^-)_y(T−)y): Instances where the

model correctly forecasts the absence of malware.

 False Positives ((F+)x(F^+)_x(F+)x): Instances when the

model incorrectly forecasts the presence of malware when

it doesn’t exist.

We evaluated model performance to identify benign and

malicious samples, ensuring a balance between detecting true

threats and minimizing false alarms. The dataset was split into

a 75% training portion and a 25% testing portion. Table 2 lists

the tuning parameters for the training models. An LR model

was trained with an Adam optimizer and a categorical cross-

entropy cost fnction for ten epochs in the first step of the

malware classification process. Table 4 shows accuracy

performance metric data for various models. Five models—

Linear Regression, ANN, CNN, LSTM, and the presented

model—were evaluated and compared using the Microsoft

BIG15 dataset. The given model demonstrated the highest

accuracy at 98.76%, while LR performed the worst at 71.8%.

Confusion matrix for each of the nine malware classifications

is displayed in Table 3 and result comparison with different

models is mentioned in Table 4.

Table 2. Tuning parameters

Parameter

Name
Value

Rate of Learning 0.001

Optimizer

Function
Relu ,Sigmoid, adam

Function of Loss
Cross entropy with sparse

categorical categories

Number of

Epochs Run
10

Table 3. Proposed model confusion matrix

A
cu

tu
a

l

Predicted

 Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1
Obfuscator

ACY
Gatak

Ramnit 365 3 0 0 1 5 0 7 2

Lollipop 8 594 3 3 0 5 1 3 2

Kelihos_ver3 0 0 735 0 0 0 0 0 0

Vundo 5 5 1 101 0 0 0 2 4

Simda 3 0 0 0 6 0 0 0 1

Tracur 11 4 0 1 0 162 1 1 7

Kelihos_ver1 1 1 1 0 0 0 96 0 0

Obfuscator

ACY
16 5 2 2 0 3 0 273 5

Gatak 2 5 0 4 0 1 2 3 236

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

387

Table 4. Performance measurement

Figure 3 shows comparative study of models. Figure 4

presents a comparison of the results with earlier models.

Figure 3 shows gradient boosting classification with an

accuracy of 96%. The Sensitive 1D model CNN classifies

malware with 94.4% accuracy on the Maligm Dataset,

whereas the 18-layer deep residual network model obtains

86% accuracy. Due to its knowledge retention property, the

constructed Inception V3 model is more accurate than the

prior models.

Fig. 3 Performance measurement chart

Fig. 4 Comparisons to previous models chart

Dataset was divides as 75% training samples and 25%

testing samples, and various models were evaluated. The

tuning parameters for the training models are listed in Table

2, with the performance dataset was divides as 75% training

samples and 25% testing samples, and various models were

evaluated.

The tuning parameters for the training models are

mentioned in Table 2, with the performance for each model is

summarized in Table 4. In conclusion, the study present novel

and effective approach to malware classification, leveraging

advanced DL techniques and feature selection methods.

The high accuracy and scalability of the proposed system

make it a shows potential for real- time malware detection.

Future work focuses on further optimizing the model and

exploring real-world deployment scenarios, ensuring this

research's practical applicability and impact.

0

10

20

30

40

50

60

70

80

90

100

Linear

Regression

ANN LSTM CNN (Proposed)

P
er

ce
n
ta

g
e(

$
)

Classifications

Model Performance comparision

Accuracy

Recall

80

82

84

86

88

90

92

94

96

98

100

word2vec [5] CNN-LSTM

[6]

Deep Residual

Network [7]

(Proposed)

P
er

ce
n
ta

g
e(

%
)

Models

Model Accuracy comparison

S.No. Model Accuracy Recall

1 Linear Regression 71.8 % 71.8%

2 ANN 90.7% 90%

3 LSTM 95.7% 87.3%

4 CNN 92% 85.2%

5 (Proposed) 98.76% 98.76%

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

388

4.1. Observations

1. Transfer Learning Efficiency: Transfer learning

significantly enhances the detection accuracy of our

model. Pre-trained InceptionV3 fine-tuned on our

malware dataset and outperformed LSTM and other

baseline models, achieving a test dataset classification

accuracy percentage of 98.76%. This specify the

robustness and adaptability of transfer learning in context

of malware detection.

2. Scalability and Real-time Application: The rapid

emergence of new malware, especially on mobile devices,

necessitates scalable and efficient detection mechanisms.

Our proposed system's architecture is developed as

lightweight that makes it suitable to deploy on different

devices with less processing power. This ensures the

system can quickly detect malware threats in realtime, a

crucial requirement for mobile security applications.

3. Feature Ext- raction and Selection: The incorporation of

ACO for extraction and selection of features proved

effective in enhancing the model's performance. ACO's

ability to identify significant features from a vast dataset

contributed to the elevated accuracy in proposed

ensemble model. This technique, combined with deep

learning, offers a powerful tool for malware

classification.

4. Future Expansion and Applicability: The study

demonstrates the potential to scale up our malware

detection system by incorporating additional datasets

from diverse sources. Future work focus on evaluating

and integrating more datasets, further refining the

accuracy and robustness of model. Additionally, we aim

to develop a compact application based on our proposed

system, optimized for handheld devices, ensuring quick

and efficient malware detection.

5. Broader Impact and Practical Implications: this research

highlight importance of advance ML technique in

cybersecurity. We can create more effective malware

detection systems by leveraging deep learning and

transfer learning. This has significant implications for

developing security solutions that are both powerful and

practical for real-world applications.

5. Conclusion
To filter the known malware attacks, signature based

malware detection methot is extensively used and is a good

approach to differentiate between malware and bening. The

proposed Ant-Colony Optamization approach .effectively

classifies malware into nine distinct varients, utilizing pre-

processed binaries as imaging data. By transforming byte data

into 1024x1 pixel images, we created a dataset suitable for

deep learning models. Our training regimen included various

models, with the InceptionV3 architecture, augmented by

transfer learning, demonstrating superior performance over

traditional method such as LSTM. The proposed mode is

scalable and efficiently differentiates between benign and

malware in real time with accuracy percentage of 98.76 p. The

model's performance is enhanced with ACO used for feature

selection in big dataset to contribute to achiving high

accuracy.

Acknowledgments
 I express my deepest gratitude to my university (Chitkara

University Himachal Pradesh) and supervisors for their

unwavering support, guidance, and encouragement

throughout this research. Their insights and expertise have

been invaluable to completing this research.)

References
[1] Arvind Mahindru, and A.L. Sangal, “FSDroid: A Feature Selection Technique to Detect Malware from Android Using Machine Learning

Techniques,” Multimedia Tools and Applications, vol. 80, pp. 13271-13323, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Malware Statistics and Trend Report, AV-TEST, 2020. [Online]. Available: https://www.av-test.org/en/statistics/malware/

[3] Olga Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, pp.

211-252, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[4] Parthajit Borah et al., “Unmasking the Common Traits: An Ensemble Approach for Effective Malware Detection,” International Journal

of Information Security, vol. 23, pp. 2547-2557, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[5] Pascal Maniriho et al., “MeMalDet: A Memory Analysis-Based Malware Detection Framework Using Deep Autoencoders and Stacked

Ensemble under Temporal Evaluations,” Computers & Security, vol. 142, pp. 1-20, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] S. Akarsh et al., “Deep Learning Framework and Visualization for Malware Classification,” 2019 5th International Conference on

Advanced Computing & Communication Systems, Coimbatore, India, pp. 1059-1063, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Yan Lu, Jonathan Graham, and Jiang Li, “Deep Learning Based Malware Classification Using Deep Residual Network,” 13th Annual

Modeling, Simulation & Visualization Student Capstone Conference, Suffolk, VA, pp. 126-131, 2019. [Google Scholar] [Publisher Link]

[8] J.R. Goodall, Introduction to Visualization for Computer Security, Proceedings of the Workshop on Visualization for Computer Security,

Springer, Berlin, Heidelberg, pp. 1-17, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[9] Barath Narayanan Narayanan, Ouboti Djaneye-Boundjou, and Temesguen M. Kebede, “Performance Analysis of Machine Learning and

Pattern Recognition Algorithms for Malware Classification,” 2016 IEEE National Aerospace and Electronics Conference (NAECON) and

Ohio Innovation Summit (OIS), Dayton, OH, USA, pp. 338-342, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s11042-020-10367-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FSDroid%3A+A+feature+selection+technique+to+detect+malware+from+Android+using+Machine+Learning+Techniques&btnG=
https://link.springer.com/article/10.1007/s11042-020-10367-w
https://doi.org/10.1007/s11263-015-0816-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ImageNet+Large+Scale+Visual+Recognition+Challenge&btnG=
https://link.springer.com/article/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s10207-024-00854-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unmasking+the+common+traits%3A+an+ensemble+approach+for+effective+malware+detection&btnG=
https://link.springer.com/article/10.1007/s10207-024-00854-8
https://doi.org/10.1016/j.cose.2024.103864
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MeMalDet%3A+A+memory+analysis-based+malware+detection+framework+using+deep+autoencoders+and+stacked+ensemble+under+temporal+evaluations&btnG=
https://www.sciencedirect.com/science/article/pii/S0167404824001652
https://doi.org/10.1109/ICACCS.2019.8728471
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+framework+and+visualization+for+malware+classification&btnG=
https://ieeexplore.ieee.org/abstract/document/8728471
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+based+malware+classification+using+deep+residual+network&btnG=
https://digitalcommons.odu.edu/ece_fac_pubs/373/
https://doi.org/10.1007/978-3-540-78243-8_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+Visualization+for+Computer+Security&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-78243-8_1
https://doi.org/10.1109/NAECON.2016.7856826
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+analysis+of+machine+learning+and+pattern+recognition+algorithms+for+malware+classification&btnG=
https://ieeexplore.ieee.org/abstract/document/7856826

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

389

[10] Zhuojun Ren, Guang Chen, and Wenke Lu, “Malware Visualization Methods Based on Deep Convolution Neural Networks,” Multimedia

Tools and Applications, vol. 79, pp. 10975-10993, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Muhammad Furqan Rafique et al., “Malware Classification Using Deep Learning Based Feature Extraction and Wrapper Based Feature

Selection Technique,” arXiv Preprint, pp. 1-21, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[12] Hamad Naeem et al., “Malware Detection in Industrial Internet of Things Based on Hybrid Image Visualization and Deep Learning

Model,” Ad Hoc Networks, vol. 105, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Jungho Kang et al., “Long Short-Term Memory-Based Malware Classification Method for Information Security,” Computers & Electrical

Engineering, vol. 77, pp. 366-375, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sanjeev Kumar, and B. Janet, “DTMIC: Deep Transfer Learning for Malware Image Classification,” Journal of Information Security and

Applications, vol. 64, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Sudhakar, and Sushil Kumar, “MCFT-CNN: Malware Classification with Fine-Tune Convolution Neural Networks Using Traditional and

Transfer Learning in Internet of Things,” Future Generation Computer Systems, vol. 125, pp. 334-351, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[16] John Donahue, Anand Paturi, and Srinivas Mukkamala, “Visualization Techniques for Efficient Malware Detection,” 2013 IEEE

International Conference on Intelligence and Security Informatics, Seattle, WA, USA, pp. 289-291, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Kyoungsoo Han, Jaehyun Lim, and Eul-gyu Im, “Malware Analysis Method Using Visualization of Binary Files,” Proceedings of the

2013 Research in Adaptive and Convergent Systems, Montreal Quebec, Canada, pp. 317-321, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Ahmed Bensaoud, Jugal Kalita, and Mahmoud Bensaoud, “A Survey of Malware Detection Using Deep Learning,” Machine Learning

with Applications, vol. 16, pp. 1-16, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Kamran Shaukat, Suhuai Luo, and Vijay Varadharajan, “A Novel Deep Learning-Based Approach for Malware Detection,” Engineering

Applications of Artificial Intelligence, vol. 122, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] M. Gopinath, and Sibi Chakkaravarthy Sethuraman, “A Comprehensive Survey on Deep Learning Based Malware Detection Techniques,”

Computer Science Review, vol. 47, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[21] Junyang Qiu et al., “A Survey of Android Malware Detection with Deep Neural Models,” ACM Computing Surveys, vol. 53, no. 6, pp. 1-

36, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Microsoft Malware Classification Challenge (BIG 2015), Kaggle. [Online]. Available: https://www.kaggle.com/c/malware-classification

[23] Lakshmanan Nataraj et al., “Malware Images: Visualization and Automatic Classification,” Proceedings of the 8th International

Symposium on Visualization for Cyber Security, Pittsburgh Pennsylvania USA, pp. 1-7, 2011. [CrossRef] [Google Scholar] [Publisher

Link]

[24] Jixin Zhang et al., “Malware Variant Detection Using Opcode Image Recognition with Small Training Sets,” 2016 25th International

Conference on Computer Communication and Networks, Waikoloa, HI, USA, pp. 1-9, 2016. [CrossRef] [Google Scholar] [Publisher

Link]

[25] Songqing Yue, and Tianyang Wang, “Imbalanced Malware Images Classification: A CNN-Based Approach,” Arxiv, pp. 1-5, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[26] Sang Ni, Quan Qian, and Rui Zhang, “Malware Identification Using Visualization Images and Deep Learning,” Computers & Security,

vol. 77, pp. 871-885, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[27] Zhihua Cui et al., “Detection of Malicious Code Variants Based on Deep Learning,” IEEE Transactions on Industrial Informatics, vol.

14, no. 7, pp. 3187-3196, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[28] Guosong Sun, and Quan Qian, “Deep Learning and Visualization for Identifying Malware Families,” IEEE Transactions on Dependable

and Secure Computing, vol. 18, no. 1, pp. 283-295, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[29] Yusheng Dai et al., “A Malware Classification Method Based on Memory Dump Grayscale Image,” Digital Investigation, vol. 27, pp. 30-

37, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[30] Quan Le et al., “Deep Learning at the Shallow End: Malware Classification for Non-Domain Experts,” Digital Investigation, vol. 26, pp.

S118-S126, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[31] Sitalakshmi Venkatraman, Mamoun Alazab, and R. Vinayakumar, “A Hybrid Deep Learning Image-Based Analysis for Effective Malware

Detection,” Journal of Information Security and Applications, vol. 47, pp. 377-389, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[32] Venkata Salini Priyamvada Davuluru, Barath Narayanan Narayanan, and Eric J. Balster, “Convolutional Neural Networks as Classification

Tools and Feature Extractors for Distinguishing Malware Programs,” 2019 IEEE National Aerospace and Electronics Conference, Dayton,

OH, USA, pp. 273-278, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[33] Zhihua Cui et al., “Malicious Code Detection Based on CNNs and Multi-Objective Algorithm,” Journal of Parallel and Distributed

Computing, vol. 129, pp. 50-58, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s11042-019-08310-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+visualization+methods+based+on+deep+convolution+neural+networks&btnG=
https://link.springer.com/article/10.1007/s11042-019-08310-9
https://doi.org/10.48550/arXiv.1910.10958
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Muhammad+Furqan+Rafique%2C+Malware+classification+using+deep+learning+based+feature+extraction+and+wrapper+based+feature+selection+technique&btnG=
https://arxiv.org/abs/1910.10958
https://doi.org/10.1016/j.adhoc.2020.102154
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+detection+in+industrial+internet+of+things+based+on+hybrid+image+visualization+and+deep+learning+model&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1570870519306948
https://doi.org/10.1016/j.compeleceng.2019.06.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+short-term+memory-based+malware+classification+method+for+information+security&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790618328167
https://doi.org/10.1016/j.jisa.2021.103063
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DTMIC%3A+deep+transfer+learning+for+malware+image+classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212621002465
https://doi.org/10.1016/j.future.2021.06.029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MCFT-CNN%3A+malware+classification+with+fine-tune+convolution+neural+networks+using+traditional+and+transfer+learning+in+Internet+of+Things&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X21002247
https://doi.org/10.1109/ISI.2013.6578845
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Visualization+techniques+for+efficient+malware+detection&btnG=
https://ieeexplore.ieee.org/abstract/document/6578845
https://doi.org/10.1145/2513228.2513294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+analysis+method+using+visualization+of+binary+files&btnG=
https://dl.acm.org/doi/abs/10.1145/2513228.2513294
https://doi.org/10.1016/j.mlwa.2024.100546
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+malware+detection+using+deep+learning&btnG=
https://www.sciencedirect.com/science/article/pii/S2666827024000227
https://doi.org/10.1016/j.engappai.2023.106030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+deep+learning-based+approach+for+malware+detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197623002142
https://doi.org/10.1016/j.cosrev.2022.100529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+on+deep+learning+based+malware+detection+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000636
https://doi.org/10.1145/3417978
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+android+malware+detection+with+deep+neural+models&btnG=
https://dl.acm.org/doi/abs/10.1145/3417978
https://doi.org/10.1145/2016904.2016908
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+images%3A+visualization+and+automatic+classification&btnG=
https://dl.acm.org/doi/abs/10.1145/2016904.2016908
https://dl.acm.org/doi/abs/10.1145/2016904.2016908
https://doi.org/10.1109/ICCCN.2016.7568542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+variant+detection+using+opcode+image+recognition+with+small+training+sets&btnG=
https://ieeexplore.ieee.org/abstract/document/7568542
https://ieeexplore.ieee.org/abstract/document/7568542
https://doi.org/10.48550/arXiv.1708.08042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Imbalanced+malware+images+classification%3A+a+CNN-based+approach&btnG=
https://arxiv.org/abs/1708.08042
https://doi.org/10.1016/j.cose.2018.04.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+identification+using+visualization+images+and+deep+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404818303481
https://doi.org/10.1109/TII.2018.2822680
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+malicious+code+variants+based+on+deep+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8330042
https://doi.org/10.1109/TDSC.2018.2884928
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+and+visualization+for+identifying+malware+families&btnG=
https://ieeexplore.ieee.org/abstract/document/8565880
https://doi.org/10.1016/j.diin.2018.09.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+malware+classification+method+based+on+memory+dump+grayscale+image&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1742287618302366
https://doi.org/10.1016/j.diin.2018.04.024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+at+the+shallow+end%3A+Malware+classification+for+non-domain+experts&btnG=
https://www.sciencedirect.com/science/article/pii/S1742287618302032
https://doi.org/10.1016/j.jisa.2019.06.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+deep+learning+image-based+analysis+for+effective+malware+detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212618304563
https://doi.org/10.1109/NAECON46414.2019.9058025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Convolutional+neural+networks+as+classification+tools+and+feature+extractors+for+distinguishing+malware+programs&btnG=
https://ieeexplore.ieee.org/abstract/document/9058025
https://doi.org/10.1016/j.jpdc.2019.03.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malicious+code+detection+based+on+CNNs+and+multi-objective+algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731518308529

Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025

390

[34] Shiva Darshan S.L., and Jaidhar C.D., “Windows Malware Detector using Convolutional Neural Network Based on Visualization Images,”

IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 2, pp. 1057-1069, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[35] Yusheng Dai et al., “SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning,” IEEE Access, vol. 7, pp.

112588-112597, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[36] T. Jayalakshmi, and A. Santhakumaran, “Statistical Normalization and Back Propagation for Classification,” International Journal of

Computer Theory and Engineering, vol. 3, no. 1, pp. 1793-8201, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[37] David M. Rocke et al., “Papers on Normalization, Variable Selection, Classification or Clustering of Microarray Data,” Bioinformatics,

vol. 25, no. 6, pp. 701-702, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[38] Ravindra Singh, and Naurang Singh Mangat, Stratified Sampling, Elements of Survey Sampling, pp. 102-144, 2014. [CrossRef] [Google

Scholar] [Publisher Link]

[39] Gaganpreet Sharma, “Pros and Cons of Different Sampling Techniques,” International Journal of Applied Research, vol. 3, no. 7, pp.

749-752, 2017. [Google Scholar] [Publisher Link]

[40] Prerna Agrawal, and Bhushan Trivedi, “Machine Learning Classifiers for Android Malware Detection,” Data Management, Analytics and

Innovation, pp. 311-322, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[41] Xiaonan Zou et al., “Logistic Regression Model Optimization and Case Analysis,” 2019 IEEE 7th International Conference on Computer

Science and Network Technology, Dalian, China, pp. 135-139, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[42] Rajni Bala, and Dharmender Kumar, “Classification Using ANN: A Review,” International Journal of Computational Intelligence

Research, vol. 13, no. 7, pp. 1811-1820, 2017. [Google Scholar] [Publisher Link]

[43] Arpana Mahajan, Kavitha Somaraj, and Mustafa Sameer, “Adopting Artificial Intelligence Powered ConvNet to Detect Epileptic

Seizures,” 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi Island, Malaysia, pp. 427-432, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[44] Khyati Rami, and Vinod Desai, “Malware Detection Framework Using PCA Based ANN,” Computing Science, Communication and

Security, pp. 298-313, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[45] Danish Vasan et al., “Image-Based Malware Classification Using Ensemble of CNN Architectures (IMCEC),” Computers & Security,

vol. 92, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[46] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi, “Understanding of a Convolutional Neural Network,” 2017 International

Conference on Engineering and Technology, Antalya, Turkey, pp. 1-6, 2017. [CrossRef] [Publisher Link]

[47] Xi Xiao et al., “Android Malware Detection based on System Call Sequences and LSTM,” Multimedia Tools and Applications, vol. 78,

pp. 3979-3999, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[48] Waseem Ullah et al., “CNN Features with Bi-Directional LSTM for Real-Time Anomaly Detection in Surveillance Networks,” Multimedia

Tools and Applications, vol. 80, pp. 16979-16995, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TETC.2019.2910086
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Windows+malware+detector+using+convolutional+neural+network+based+on+visualization+images&btnG=
https://ieeexplore.ieee.org/abstract/document/8685181
https://doi.org/10.1109/ACCESS.2019.2934012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SMASH%3A+A+malware+detection+method+based+on+multi-feature+ensemble+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8792043
https://doi.org/10.7763/IJCTE.2011.V3.288
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Statistical+normalization+and+back+propagation+for+classification&btnG=
https://www.ijcte.org/show-34-319-1.html
https://doi.org/10.1093/bioinformatics/btp038
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Papers+on+Normalization%2C+Variable+Selection%2C+Classification+or+Clustering+of+Microarray+Data&btnG=
https://academic.oup.com/bioinformatics/article/25/6/701/250977
https://doi.org/10.1007/978-94-017-1404-4_5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stratified+Sampling&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stratified+Sampling&btnG=
https://link.springer.com/chapter/10.1007/978-94-017-1404-4_5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pros+and+cons+of+different+sampling+techniques&btnG=
https://www.allresearchjournal.com/archives/2017/vol3issue7/PartK/3-7-69-542.pdf
https://doi.org/10.1007/978-981-15-5616-6_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+classifiers+for+Android+malware+detection&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-5616-6_22
https://doi.org/10.1109/ICCSNT47585.2019.8962457
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Logistic+regression+model+optimization+and+case+analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/8962457
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+Bala%2C+D.+Kumar%2C+%E2%80%9CClassification+using+ANN%3A+a+review&btnG=
https://www.ripublication.com/ijcir17/ijcirv13n7_22.pdf
https://doi.org/10.1109/IECBES48179.2021.9398832
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adopting+artificial+intelligence+powered+ConvNet+to+detect+epileptic+seizures&btnG=
https://ieeexplore.ieee.org/abstract/document/9398832
https://doi.org/10.1007/978-981-15-6648-6_24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware+detection+framework+using+PCA+based+ANN&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-6648-6_24
https://doi.org/10.1016/j.cose.2020.101748
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image-Based+malware+classification+using+ensemble+of+CNN+architectures+%28IMCEC%29&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016740482030033X
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://ieeexplore.ieee.org/document/8308186
https://doi.org/10.1007/s11042-017-5104-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Android+malware+detection+based+on+system+call+sequences+and+LSTM&btnG=
https://link.springer.com/article/10.1007/s11042-017-5104-0
https://doi.org/10.1007/s11042-020-09406-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CNN+features+with+bi-directional+LSTM+for+real-time+anomaly+detection+in+surveillance+networks&btnG=
https://link.springer.com/article/10.1007/s11042-020-09406-3

