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Abstract - Malware classification plays an important role in preventing security threats. As malware affects many different areas 

like mobile, computer, IoT, etc., an effective classification approach needs to be used, even on big data samples. This paper 

gives a detailed analysis of ensemble architecture, highlighting the synergistic effect of combining CNNs with ACO and ANN 

for robust feature extraction and selection to provide a scalable solution for real-time malware detection. We propose a 

comprehensive model integrating a Convolutional Neural Network for feature extraction, enhanced with a Rectified Linear Unit 

(ReLU) combined with ACO for feature selection. In our experimental setup, to evaluate the effectiveness of the proposed model, 

we used the Microsoft BIG15 malware dataset with 9 different classes and obtained an accuracy of 98.76%, surpassing 

traditional and standalone methods. 

Keywords - Malware classification, Ant Colony Optimization, Algorithms, Convolution Neural Network, Transfer, Learning 

Long Short-Term, Memory. 

1. Introduction  
Malware classification using Random Forests and Naive 

Bayes often suffers from high FPR due to issues in the training 

data. While Support Vector Machines (SVM) and decision 

trees are effective against known malware assaults, they 

struggle with new and evolving patterns. In contrast, Deep 

Convolutional Neural Networks (CNNs) have emerged as the 

leading approach in classification tasks. CNNs have shown 

superior performance in ImageNet classification challenges, 

with deeper models demonstrating better results. For instance, 

in 2012, the AlexNet architecture  (8-layered architecture) 

achieved an ImageNet error rate of 15.3% [1-3]. Due to high 

false favorable rates in training data, malware classification 

using Random Forests and Nave Bayes must be improved. 

SVM and decision trees are effective against known malware 

assaults but not against patterns. 

 

Deep Convolutional Neural Networks are currently the 

best in classification. It performs better on ImageNet 

classification challenges. Deeper models outperform. In 2012, 

the top-5 ImageNet error rate for the 8-layer AlexNet 

architecture was 15.3%. The top-5 error rate for Transfer 

learning adds past knowledge to virus detection. Transfer 

learning speeds up deep neural network training, producing 

good classification results on fewer datasets. Malware defense 

systems rely heavily on machine learning to combat ever-

changing malware threats. Transfer learning, which 

incorporates past knowledge into virus detection, significantly 

accelerates the training of deep neural networks. This 

approach yields robust classification results even with smaller 

datasets. Machine learning models, crucial for combating 

ever-changing malware threats, leverage complex algorithms 

and extensive datasets to identify and categorize malicious 

software swiftly, even those with unique traits [4]. Using 

complex algorithms and large datasets, machine learning 

models can quickly identify and categorize dangerous 

software, even if it has unique traits. 

 

On top of that, the machine learning model may learn 

from new threats and gradually become better at detecting and 

eliminating malware on its own. Machine learning-driven 

defense against malware enhances the process of choosing 

indicators of compromise - (IoC). The efficient identification 

and mitigation of potential malware threats is greatly assisted 

by IoCs. By picking the most important indications, machine 

learning models can provide very accurate and efficient 

results. Maintaining the system's capacity to address newly 

created threats quickly and minimizing the occurrence of false 

positives are both achieved through the curation of a complete 

library of IoCs. These models continuously improve by 

learning from new threats, enhancing their ability to detect and 

eliminate malware autonomously. The efficiency of machine 
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learning-driven malware defenses heavily relies on selecting 

significant Indicators of Compromise (IoCs). Efficient 

identification and improvement of po critical malware threats 

are greatly facilitated by IoCs. ML models can attain high 

efficiency and maintain accuracy by selecting the most critical 

indicators. A comprehensive library of IoCs is essential for 

maintaining the ability of the system to address new threats 

quickly and to minimize false positives [5]. Around ML and 

DL methods, much writing about identifying and classifying 

malware has been used for deep learning to sort viruses. 

Word2vec [6]  used features gradient boosting and k-

foldcross- validation to classify malware and test the model. 

Their small Microsoft data set was correct 96% of the time. In 

their study, they developed a DL model involving an I-

dimensional CNN and  LSTM architecture. 

 

2. Literature Review 
The model was employed to classify Malimg malware. 

Instead of feature extraction, [7] classified Malimg malware 

using deep residual networks. 86% of 5-fold cross-validation 

rankings are correct. [8] said you should look at the binary data 

elements in grayscale photos to find unknown file types [9] 

used Microsoft's BIG15 collection to classify malware. With 

PCA, they pull out features. ANN, k-NN, and SVM 

algorithms are tried to see how well they can use these 

attributes to classify malware data. The K-fold proof proves 

that it works. KNN is 96.6% accurate, SVM 9 has 4.6%, and 

static and dynamic feed-forward networks are 95.6% and 

95.5% [10] used n-gram byte sequence patterns to show how 

malware looked on Microsoft BIG15. CNN pulls out features, 

gram features, Markov Dot – Plot - visualizes bigram features, 

and Support Vector Machine classifies with 98% and 99% 

accuracy on two techniques. SVM and CNN feature extraction 

and selection [11] found Microsoft BIG15 malware. They plan 

to solve issues by hybridizing feature spaces. The 

recommended approach generates a 0.09 log loss in 10 runs 

[12], creating an IoT malware detection hybrid deep 

convolution neural network. Leopard mobile dataset detects, 

Malimg classifies. With a 299x299 picture ratio, they 

classified with 98.18% accuracy and 98.19% precision [13], 

demonstrating word2vecover one hot encoding's benefits. 

Both Word2vec and LSTM network model group Microsoft 

BIG15 malware. Word2vec predicts 0.5% better than hot 

encoding and differentiates malware using transfer learning. 

[14]. DTMIC identifies malware using ImageNet-trained deep 

convolutional neural networks (CNNs). Regularisation 

approach Early Stopping monitors validation loss with set 

values to avoid overfitting. MalImg and Microsoft BIG 

datasets test the model's efficacy and resilience. Compare 

VGG16, VGG19, and ResNet50 with Google's inceptionV3 

feature extractors and classifiers. DTMIC beats baseline 

models. Malware classification was done using fine-tuned 

convolution neural networks. [15] No feature engineering, 

binary code analysis, reverse engineering, or elaborate viral 

evasion methods are needed for MCFT-CNN to recognize the 

unnamed malware sample. Deep transfer learning family 

classifies malware pictures. Replacing the model's last layer 

with a dense, linked layer improves ResNet50. CNN is used 

to engineer features instead of input data. Transferred deep 

network knowledge enhances malware classification on a 

BIG15 dataset, decreases computing overhead, and improves 

visualization [16, 17]. 

 

Many obstacles and associated features need to be tackled 

for enhanced malware detection, for which a deep learning 

approach [18, 19] plays a vital role. Improving the IoCs in 

response to evolving malicious behavior is vital for 

developing useful malware defense methods. This study 

proposes using an ensemble-based feature selection to make a 

set of characteristics for malware detection [20, 21]. This 

approach enhances performance, particularly when the 

accuracy level is high. The methodology characterizes 

malware signatures as images using a neural network, 

capitalizing on CNNs' proficiency in image-related problems. 

This initial setup as an image classification problem enables 

rapid and accurate malware classification to assess danger and 

contamination. Transfer learning, particularly using the 

InceptionV3 model, outperforms LSTM networks in training. 

The proposed approach achieves an impressive 98.76% 

accuracy on 10,868 examples. The paper is planned as 

follows: 2nd Section gives related work in the section literature 

review, Section 3 explains the projected architecture, 

4thSection  outlines the proposed algorithm, 5thSection  details 

performance measurement, 6thSection  is the result discussion, 

and 7thSection  provides the conclusion. 

 

3. Object Code 

The proposed scheme transforms malware from byte data 

to image data. Malware is machine-level code, typically 

encoded as binary or assembly mnemonics. Byte files are built 

binaries representing malware, where mnemonics are 

converted into hexadecimal digits. The byte sequences are 

interpreted as grayscale images to convert malware into a 

visual format. The byte in the file is represented by a pixel, 

where the value of the byte determines the pixel intensity. This 

transformation process allows image processing techniques to 

be applied to analyze malware.  

 Byte-to-Pixel Conversion: Each byte from the malware 

sample is converted to its hexadecimal representation. 

These hexadecimal values are then mapped to pixel 

intensity values, creating a 1-dimensional array of pixel 

values. 

 Image Resizing: The resulting 1D pixel array is reshaped 

in a 2D image. In this scheme, a fixed image size of 

1024x1024 pixels is used, which ensures consistency 

across samples. Image resizing is achieved using bicubic 

interpolation to dimensions vital to CNN. 

 Feature Extraction Using CNN: Once the malware is 

represented as an image, a deep CNN is used for 
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extracting features. The CNN architecture used in this 

study is a deep CNN  with different convolutional layers 

and fully connected layers. The CNN's ability to capture 

spatial hierarchies in the image data makes it an ideal 

choice for feature extraction. 

 Feature Selection Using Ant Colony Optimization 

(ACO): After extracting features using CNN, an ACO 

strategy is applied to select the most relevant features. 

ACO is a probabilistic technique inspired by ant 

behaviour for searching the shortest path to food. In this 

context, it is used to find the most significant features 

contributing to malware classification. 

 Classification Using Ensemble Learning: The selected 

features train multiple classifiers, including LR, LSTM 

networks, and transfer learning models on pre-trained 

CNNs. These classifiers are combined in an ensemble 

approach to improve the overall classification accuracy. 

 Ensemble Approach for Malware Classification: The 

ensemble method combines predictions from different 

classifiers to produce a final classification result. This 

approach leverages the strengths of each classifier and 

mitigates their individual weaknesses. The ensemble 

classifier in this study achieved an accuracy percentage of 

98.76% on test data.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Conceptual view of the model
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Table 1. Overview: malware detection and classification 

References Technique of Feature Extraction Algorithm for selecting features Training  

 [23] 

GIST - KNN 

 [24] 

Opcode sequences PCA KNN 

 [25] 

CNN - VGG-16 

 [26] 

Opcode sequences, SimHash - CNN 

 [27] 

CNN based features - CNN 

 [28] 

Opcode sequences - CNN 

 [29] 

Texture based features              - MLP  

 [30]            

CNN based features      -   CNN, RNN   

 [31]      

CNN based features      -    BI-LSTM 

 [32]       

CNN based features                       PCA      SVM, KNN     

 [33]            

CNN based features      - CNN 

 [34]          

API calls, API arguments, CAT  N-Gram           CNN 

 [35]  

textural and hardware features, API 

calls  
- Voting based classifier 

 

Different algorithms have varying requirements for input 

channel sizes. To ensure compatibility across all algorithms, 

the input size can be adjusted accordingly. Standard and min-

max scaling techniques were employed to normalize data, 

ensure all features are on a similar scale, and improve the 

functionality of the machine learning models [36-39]. 

1. Standard Scaling: This method transforms data to get a 

mean of 0 (zero), and the value of SD is 1. It is useful, 

especially when Gaussian distribution is followed. Formula  

for standard scaling is: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋 − 𝜇𝜎𝑋{\𝑡𝑒𝑠𝑥𝑡{𝑠𝑐𝑎𝑙𝑒𝑑}}
=\𝑓𝑟𝑎𝑐{𝑋 −\µ}𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝜎𝑋 − µ 

Where XXX =original data, μ = mean, and σ = standard 

deviation. 

2. Min-Max Scaling or regularization rescales the features 

to a fixed range, usually 0 to 1. This is achieved using the 

following formula: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑋 − 𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛𝑋_{\𝑡𝑒𝑥𝑡{𝑠𝑐𝑎𝑙𝑒𝑑}} =
\𝑓𝑟𝑎𝑐{𝑋 − 𝑋_{\𝑡𝑒𝑥𝑡{𝑚𝑖𝑛}}}{𝑋_{𝑡𝑒𝑥𝑡{𝑚𝑎𝑥}} −
𝑋_{\𝑡𝑒𝑥𝑡{𝑚𝑖𝑛}}}𝑋𝑆𝑐𝑎𝑙𝑒𝑑 =  𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛𝑋 − 𝑋𝑚𝑖𝑛  

 

Where XminX_{\text{min}}Xmin is maximum, 

XmaxX_{\text{max}}Xmax minimum values of the feature. 

This scaling ensures that the input data remains within a 

specified range. 

 

Research Gap and Novelty of the Study 

While numerous approaches in sentiment analysis have 

demonstrated significant accuracy improvements, several 

research gaps remain. Existing works such as [1, 2, 5] 

emphasize sentiment classification but primarily rely on 

predefined linguistic features or sequence models without 

exploring the depth of hybrid methodologies that combine 

contextual embeddings with domain-specific enhancements. 

A review of prior studies, including [3, 4, 6], shows 

limited integration of deep learning interpretability in real-

world applications such as stock market sentiment forecasting 

or business intelligence at scale. Moreover, tools like 

TextBlob and VADER [7] rely on lexicons that lack 

adaptability across dynamic domains like fintech and politics. 

Key Novel Contributions of this Study 

Gap in Literature Proposed Solution 

Context-insensitive lexicon-

based methods [4, 7] 

Integration of LSTM 

with domain-tuned 

embeddings 

Lack of explainability in deep 

models [6] 

Inclusion of attention 

mechanisms 

Poor handling of sarcasm and 

irony [9] 

Hybrid multi-channel 

architecture 

Domain drift across datasets Domain adaptation using 

transfer learning 

This study addresses these gaps by proposing a sentiment 

analysis framework combining advanced LSTM-based 

architectures with real-time contextual learning using large 

datasets. Furthermore, the novelty lies in adapting the model 

to shifting sentiment patterns over time, ensuring robust 

performance across diverse textual domains. 

3.1. Feature Extraction 

Significant behavioral features were extracted using the 

ACO  algorithm, ideal for discrete optimization problems 

[40]. ACO encodes potential solutions to routing issues as 
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paths. When traversing these paths, ants leave a trail of 

pheromones that gradually evaporate. The concentration of 

pheromones is directly proportional to the quality of the 

solution (path fitness). 

1. ACO algorithm simulates ant behavior to find the path. 

The main steps include: 

a) Initialization: Set initial pheromone levels on all 

paths. 

b) Construction: Ants build solutions by moving from 

one node to another, guided by pheromone levels and 

heuristic information. 

Pheromone Update: After constructing solutions, 

pheromone levels are updated to reinforce good solutions and 

discourage bad ones. The updated formula is: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡)

+ ∑ 𝑎𝑛𝑡𝑠∆𝜏𝑖𝑗𝑎𝑛𝑡\𝑡_{𝑖𝑗}(𝑡 + 1)

=  (1 −\𝜌)\𝑐.\𝑡_{𝑖𝑗}(𝑡)
+\𝑠𝑢𝑚_{\𝑡𝑒𝑥𝑡{𝑎𝑛𝑡𝑠}}\𝛿\𝑡_{𝑖𝑗}^{𝑡𝑒𝑥𝑡
\{𝑎𝑛𝑡}}𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡)

= 𝑎𝑛𝑡𝑠 ∑ ∆𝜏𝑖𝑗𝑎𝑛𝑡 

Where τij(t)\tau_{ij}(t)τij(t) is pheromone level on path 

(i,j)(i, j)(i,j) at time ttt, ρ\rhoρ is the evaporation rate, and 

Δτijant\Delta \tau_{ij}^{\text{ant}}Δτijant is the pheromone 

amount deposited by an ant. 

 

2. Feature Selection: The ACO algorithm evaluates the 

quality of features and their ability to improve classification 

accuracy. Features with higher pheromone concentrations are 

considered more important and are selected for further 

processing. 

3.2. Training 

This step involves training ML  and DL algorithms on the 

dataset, which consists of nine different malware classes. The 

system categorizes these classes using error-driven gradient 

updating in the final network layer, typically a softmax layer. 

1. Logistic Regression (LR): used for categorization ion 

tasks. It uses crossentropy loss, which is effective for 

multiclass classification problems. The loss function for 

LR is:𝐿(𝜃) = −1𝑁 ∑ 𝑖 = 1𝑁 ∑ 𝑘 =

1𝐾𝑦𝑖, 𝑘𝑙𝑜𝑔𝑓()(𝜋, 𝑘)𝐿(\𝜃) = −\𝑓𝑟𝑎𝑐{1}{𝑁}\𝑠𝑢𝑚_{𝑖 =
1}^{𝑁}\𝑠𝑢𝑚_{𝑘 = 1}^{𝑘}𝑦_{𝑖, 𝑘}\𝑙𝑜𝑔(𝜋_{𝑖, 𝑘})𝐿(𝜃) =
−𝑁1𝑖 = 1 ∑ 𝑁𝑘 = 1 ∑ 𝐾𝑦𝑖, 𝑘𝑙𝑜𝑔(𝜋, 𝑘) 

 Where NNN is number of samples, KKK is the number 

of classes, yi,ky_{i,k}yi,k is binary(0 or 1) mark if class label 

kkk is the right categorization for sample iii, and 

pi,kp_{i,k}pi,k is the predicted probability [41]. 

2. ANN: ANNs are used for both classification and 

regression tasks. Multi-layer perceptrons (MLPs) 

approximate functions that map input data to output labels 

or values. The activation function, typically a nonlinear 

function like ReLU, is applied to the input’s weighted 

sum. The ANN training process involves minimizing a 

cost function through backpropagation [42-44]. 

3. CNN: CNNs are deep learning architectures that maintain 

and extract spatial properties from data. CNN uses 

convolutional and pooling layers to create feature maps. 

Filters are applied by convolutional layers for feature 

detection, and pooling layers decrease dimensionality, 

retaining the most important information. It works 

particularly well on image recognition tasks, with 

InceptionV3 being a notable architecture [45, 46]. 

4. LSTM is a type of RNN that is framed to catch 

dependencies present in sequential data. The vanishing 

gradient problem of traditional RNNs is addressed by 

using gates (input-output and forget) to control the flow 

data. This enables LSTMs to maintain and utilize 

information over long sequences [47, 48]. 

 Ensemble Approach: Combining multiple machine 

learning models like LR, ANN, CNN, and LSTM  in an 

ensemble can improve overall predictive performance. Each 

model contributes its unique strengths, and their predictions 

are weighted based on individual performance to produce a 

final result.  

 

3.3. Proposed Algorithm 

 The proposed algorithm is broken down into following 

ten steps as follows: 

Step 1: Start with importing libraries 

Step 2: Load the data and preprocess the data 

Xtrain, ytrain = load_train_data()      

Xtest, ytest = load_test_data()          

Xtrainpreprocessed = preprocess(Xtrain)   

Xtestpreprocessed = preprocess(Xtest)     

 

Step 3: Feature Extraction 

for iteration in range(max_iterations): 

    solutions = [] 

    for ant in range(ant_count): 

      solution=       construct_solution(pheromone_levels, 

feature_importance) 

 solutions.append(solution) 

    solution_scores= evaluate_solutions(solutions,  Xtrain, 

Xtest, ytrain, ytest) 

 

Step 4: Training by LR model 

lrmodel = LogisticRegression() 

lrmodel.fit(Xtrain_preprocessed, ytrain) 

lrpredictions= lrmodel.predict(Xtestpreprocessed) 

 

Step 5: Training by ANN model 

annmodel = MLPClassifier() 
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annmodel.fit(Xtrainpreprocessed, ytrain) 

annpredictions=  annmodel.predict(Xtestpreprocessed) 

 

Step 6: Training by CNN model 

inputlength=maxseqlength)) 

cnnmodel.add(Conv1D(filters=32,kernelsize=3,  

activation='relu')) 

cnnmodel.add(MaxPooling1D(pool_size=2)) 

cnnmodel.add(Flatten()) 

cnnmodel.add(Dense(1, activation='sigmoid')) 

cnnmodel.compile(optimizer='adam', 

loss='binarycrossentropy', metrics=['accuracy']) 

Xtrainpadded= padsequences(Xtrainpreprocessed, 

maxlen=maxseqlength) 

Xtestpadded = padsequences(Xtestpreprocessed, 

maxlen=maxseqlength) 

cnnmodel.fit(Xtrainpadded,ytrain, epochs=10, batchsize=32,  

validationdata=(Xtestpadded, ytest)) 

cnnpredictions=  cnnmodel.predictclasses(Xtestpadded) 

 

Step 7: Training by LSTM model 

lstmmodel.add(LSTM(units=64)) 

lstmmodel.add(Dense(1, activation='sigmoid')) 

lstmmodel.compile(optimizer='adam', 

loss='binarycrossentropy', metrics=['accuracy']) 

lstmmodel.fit(Xtrainpadded, ytrain,  

epochs=10, batchsize=32,  

validationdata=(Xtestpadded, ytest)) 

lstmpredictions= lstmmodel.predictclasses(Xtestpadded) 

 

Step 8: Proposed model 

ensemblemodel= VotingClassifier(estimators=[ 

    ('lr', lrmodel), 

    ('ann', annmodel), 

    ('cnn', cnnmodel), 

    ('lstm', lstmmodel) 

], voting='hard') 

ensemblemodel.fit(Xtrain_preprocessed, ytrain) 

ensemblepredictions = 

ensemblemodel.predict(Xtestpreprocessed) 

 

Step 9:  Model Evaluation 

ensembleaccuracy=accuracyscore(ytest, 

ensemblepredictions) 

print ("Ensemble Accuracy:",  

ensembleaccuracy) 

 Step 10: End   

 

3.4. Feature Extraction 

The proposed algorithm is divided into ten detailed steps.  

Step : 1 Start with Importing Libraries. Begin by importing 

required libraries and frameworks required for data 

processing, model building, training, and evaluation. 

This includes libraries for machine learning, deep 

learning, data manipulation, and any additional tools 

needed for preprocessing and feature extraction. 

Step : 2 Load and Preprocess the malware dataset, which 

includes both malicious and benign samples. 

Preprocessing involves data cleaning, normalizing 

features and converting raw byte data into suitable 

formats for analysis. 
 

Step : 3 Feature Extraction using Ant Colony Optimization 

(ACO) Utilize the ACO algorithm for feature 

extraction. 
 

Step : 4 Train the LR model using preprocessed training data. 

LR is a straightforward classification algorithm that 

can serve as a baseline to evaluate more complex 

models. Assess its performance on the test data to 

establish a benchmark. 
 

Step : 5 ANN training: Train an ANN model using the 

preprocessed data. ANNs are capable of collecting 

non-linear relations in data, which makes them 

suitable for complex classification tasks. Configure 

the network with multiple layers and neurons to 

improve its capability to learn complex patterns in 

the malware data. 
 

Step : 6 Training with CNN: Develop and train the CNN 

model, which is particularly effective for image-

based data. Convert the malware byte sequences into 

2D images and input them to CNN.  
 

Step : 7 Training with Long9Short-Term Memory LSTM: 

Train the LSTM network well-suited for sequence 

data. Convert the malware data into sequences and 

feed them into the LSTM model. LSTM networks 

can capture temporal dependencies and patterns, 

making them ideal for time-series data. Train and 

evaluate its accuracy on the test set. 
 

Step : 8 Create an associated model by combining the 

predictions from the Logistic Regression, ANN, 

CNN, and LSTM models. Use a voting mechanism 

to aggregate the predictions, enhancing overall 

classification accuracy. The ensemble approach 

authorizes the strengths of each individual model, 

resulting in improved performance and robustness. 
 

Step : 9 Evaluate ensemble model performance using correct 

metrics: F1score, recall, accuracy and precision. 
 

Step : 10 Conclusion and future work summarize the findings 

of the study, highlighting the superior performance 

of the ensemble approach. Discuss potential 

improvements and future directions, such as 

incorporating additional feature extraction 

techniques, exploring different ensemble strategies, 

and testing the model on other malware datasets. 

Emphasize the practical implications of the research 

and its contribution to malware detection. 



Gaurav Mehta et al. / IJECE, 12(5), 379-390, 2025 

 

385 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Model of the ant colony system for 
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4. Results and Discussion  
The effectiveness criteria  of the suggested method are 

outlined as follows: 

TPR, known as recall sensitivity, represents the 

likelihood of accurately identifying the current harmful 

sample. It is calculated using the formula:  

𝑇𝑃𝑅 = (𝑇+)𝑥(𝑇+)𝑥(𝐹−)𝑦\𝑡𝑒𝑥𝑡{𝑇𝑃𝑅}
=\𝑓𝑟𝑎𝑐{(𝑇^+)_𝑥}{𝑇^+)_𝑥
+ (𝐹^−)_𝑦}𝑇𝑃𝑅
= (𝑇+)𝑥 + (𝐹−)𝑦(𝑇+)𝑥 

Where: (T+) x(T^+)_x(T+)x represents the number of 

TPR predictions, the model correctly predicts the presence of 

malware. (F−)y(F^-)y(F−)y represents the false negative 

predictions, which means the model fails to tell in advance the 

presence of malware when it exists. 

FPR is the chance that a benign file gets mistakenly 

labelled as malware. It is calculated by giving the formula:  

𝐹𝑃𝑅 = (𝐹+)𝑥(𝐹+)𝑥 + (𝑇−)𝑦\𝑡𝑒𝑥𝑡{𝑡𝑒𝑥𝑡{𝐹𝑃𝑅} =
\𝑓𝑟𝑎𝑐{(𝐹^+)_𝑥}{(𝐹^+)_𝑥 = (𝑇^−)_𝑦}𝐹𝑃𝑅 = (𝐹+)𝑥 =
(𝑇−)𝑦(𝐹+)𝑥 where: 

 (F+) x (F^+)x(F+) x shows the number of FPR predictions; 

the model incorrectly predicts the presence of malware 

when it does not exist. 

 (T−)y(T^-)_y(T−)y indicates the number of true negative 

predictions; the model predicts the absence of malware 

correctly. 

 True Positives ((T+)x(T^+)_x(T+)x): are instances where 

the model correctly forecasts the presence of malware. 

 False Negatives ((F−)y(F^-)_y(F−)y): Instances where the 

model fails to forecast the presence of malware when it 

exists. 

 True Negatives ((T−)y(T^-)_y(T−)y): Instances where the 

model correctly forecasts the absence of malware. 

 False Positives ((F+)x(F^+)_x(F+)x): Instances when the 

model incorrectly forecasts the presence of malware when 

it doesn’t exist. 

We evaluated model performance to identify benign and 

malicious samples, ensuring a balance between detecting true 

threats and minimizing false alarms. The dataset was split into 

a 75% training portion and a 25% testing portion. Table 2 lists 

the tuning parameters for the training models. An LR model 

was trained with an Adam optimizer and a categorical cross-  

entropy cost fnction for ten epochs in the first step of the 

malware classification process. Table 4 shows accuracy 

performance metric data for various models. Five models—

Linear Regression, ANN, CNN, LSTM, and the presented 

model—were evaluated and compared using the Microsoft 

BIG15 dataset. The given model demonstrated the highest 

accuracy at 98.76%, while LR performed the worst at 71.8%. 

Confusion matrix for each of the nine malware classifications 

is displayed in Table 3 and result comparison with different 

models is mentioned in Table 4. 

Table 2. Tuning parameters 

Parameter 

Name 
Value 

Rate of Learning 0.001 

Optimizer 

Function 
Relu ,Sigmoid, adam 

Function of Loss 
Cross entropy with sparse 

categorical categories 

Number of 

Epochs Run 
10 

Table 3. Proposed model confusion matrix 

A
cu

tu
a

l 

Predicted 

  Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 
Obfuscator 

ACY 
Gatak 

Ramnit 365 3 0 0 1 5 0 7 2 

Lollipop 8 594 3 3 0 5 1 3 2 

Kelihos_ver3 0 0 735 0 0 0 0 0 0 

Vundo 5 5 1 101 0 0 0 2 4 

Simda 3 0 0 0 6 0 0 0 1 

Tracur 11 4 0 1 0 162 1 1 7 

Kelihos_ver1 1 1 1 0 0 0 96 0 0 

Obfuscator 

ACY 
16 5 2 2 0 3 0 273 5 

Gatak 2 5 0 4 0 1 2 3 236 
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Table 4. Performance measurement 

 

 

 

 

 

Figure 3 shows comparative study of models. Figure 4 

presents a comparison of the results with earlier models. 

Figure 3 shows gradient boosting classification with an 

accuracy of 96%. The Sensitive 1D model CNN classifies 

malware with 94.4% accuracy on the Maligm Dataset, 

whereas the 18-layer deep residual network model obtains 

86% accuracy. Due to its knowledge retention property, the 

constructed Inception V3 model is more accurate than the 

prior models. 

 

 

 
Fig. 3 Performance measurement chart 

 
Fig. 4 Comparisons to previous models chart 

Dataset was divides as 75% training samples and 25% 

testing samples, and various models were evaluated. The 

tuning parameters for the training models are listed in Table 

2, with the performance dataset was divides as 75% training 

samples and 25% testing samples, and various models were 

evaluated.  

The tuning parameters for the training models are 

mentioned in Table 2, with the performance for each model is 

summarized in Table 4. In conclusion, the study present novel 

and effective approach to malware classification, leveraging 

advanced DL techniques and feature selection methods.  

The high accuracy and scalability of the proposed system 

make it a shows potential for real-  time malware detection. 

Future work focuses on further optimizing the model and 

exploring real-world deployment scenarios, ensuring this 

research's practical applicability and impact. 
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S.No. Model Accuracy Recall 

1 Linear Regression 71.8 % 71.8% 

2 ANN 90.7% 90% 

3 LSTM 95.7% 87.3% 

4 CNN 92% 85.2% 

5 (Proposed) 98.76% 98.76% 
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4.1. Observations 

1. Transfer Learning Efficiency: Transfer learning 

significantly enhances the detection accuracy of our 

model. Pre-trained InceptionV3 fine-tuned on our 

malware dataset and outperformed LSTM and other 

baseline models, achieving a test dataset classification 

accuracy percentage of 98.76%. This specify the 

robustness and adaptability of transfer learning in context 

of malware detection. 

2. Scalability and Real-time Application: The rapid 

emergence of new malware, especially on mobile devices, 

necessitates scalable and efficient detection mechanisms. 

Our proposed system's architecture is developed as 

lightweight that makes it suitable to deploy on different 

devices with less processing power. This ensures the 

system can quickly detect malware threats in realtime, a 

crucial requirement for mobile security applications. 

3. Feature Ext- raction and Selection: The incorporation of 

ACO for extraction and selection of features proved 

effective in enhancing the model's performance. ACO's 

ability to identify significant features from a vast dataset 

contributed to the elevated accuracy in proposed 

ensemble model. This technique, combined with deep 

learning, offers a powerful tool for malware 

classification. 

4. Future Expansion and Applicability: The study 

demonstrates the potential to scale up our malware 

detection system by incorporating additional datasets 

from diverse sources. Future work focus on evaluating 

and integrating more datasets, further refining the 

accuracy and robustness of model. Additionally, we aim 

to develop a compact application based on our proposed 

system, optimized for handheld devices, ensuring quick 

and efficient malware detection. 

5. Broader Impact and Practical Implications: this research 

highlight  importance of advance ML technique in 

cybersecurity. We can create more effective malware 

detection systems by leveraging deep learning and 

transfer learning. This has significant implications for 

developing security solutions that are both powerful and 

practical for real-world applications. 

5. Conclusion 
To filter the known malware attacks, signature based 

malware detection methot is extensively used and is a good 

approach to differentiate between malware and bening. The 

proposed Ant-Colony Optamization approach .effectively 

classifies malware into nine distinct varients, utilizing pre-

processed binaries as imaging data. By transforming byte data 

into 1024x1 pixel images, we created a dataset suitable for 

deep learning models. Our training regimen included various 

models, with the InceptionV3 architecture, augmented by 

transfer learning, demonstrating superior performance over 

traditional method such as LSTM. The proposed mode is 

scalable and efficiently differentiates between benign and 

malware in real time with accuracy percentage of 98.76 p. The 

model's performance is enhanced with ACO used for feature 

selection in big dataset to contribute to achiving high 

accuracy. 
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