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Abstract - As medical imaging data keeps mounting exponentially, there is a growing need for powerful compression methods 

that can shrink storage requirements and lighten data transfer burdens without sacrificing diagnostic image quality. Through 

a combination of Convolutional Neural Networks and Support Vector Machines, this new hybrid lossy-lossless compression 

mechanism delivers a higher Peak Signal-to-Noise Ratio (PSNR) while achieving superior compression efficiency. The new 

framework merges sophisticated lossy approaches, including Discrete Wavelet Transform (DWT) and quantization methods, 

with a dependable lossless compression stage through entropy coding techniques. The combined use of CNNs for 

preprocessing with SVM-based adaptive region classification lets the system selectively encode and compress the image data 

so important diagnostic regions maintain the highest quality through an increased compression rate applied to less important 

areas. 
 

Keywords - Hybrid image compression, Medical image storage, Peak Signal-to-Noise Ratio (PSNR), Convolutional Neural 

Networks (CNNs), Lossy-lossless compression.  

 

1. Introduction 
The quantities and complexities of medical images 

have surged dramatically over the decades due to 

enhancements in medical imaging technologies. This has 

posed demands for data storage, retrieval, and transmission, 

particularly in areas not endowed with rural health facilities, 

car diagnostics, and telemedicine. Therefore, the medical 

sector continues to struggle to find ways to manage and 

compress large volumes of details in images such as MRI 

and CT despite the advancements in imaging technologies. 

The research gap exists in that conventional algorithms, 

including JPEG and JPEG2000, do not sufficiently address 

the relationship between the compression rate and the 

maintenance of critical diagnostic information. These 

traditional techniques either compress the image at the cost 

of greater degradation in quality in lossy compression or 

complain of a minor reduction in size in the case of lossless 

compression, which is unsuitable for clinical use. 

Furthermore, uniform compression techniques ignore that 

specific areas of an image are more diagnostic important 

than other regions; hence, compressing an image uniformly 

distorts features such as lesions, edges or regions of 

abnormal tissue. To fill this gap, we present a novel lossy-

lossless image compression system that incorporates signal 

processing techniques that incorporate image processing 

and AI technologies. The main goal is to obtain a high 

compression ratio, allowing the image quality to be lowered 

only in non-critical areas in terms of diagnostics. The lossy 

component involves using Discrete Wavelet Transform 

(DWT) to decompose the image and then apply quantization 

to remove or downscale the irrelevant high-frequency 

information. This is then done through the lossless 

compression model that uses variable Lossless compression 

methods: Huffman and Arithmetic Coding and Run Length 

Encoding technique that deals with similar pixel intensities. 

The innovation of this framework is that AI is employed in 

the preprocessing phase and region-based adaptive 

compression. In CNNs, information features essential for 

diagnostics are preserved whilst noise is reduced through 

several passes of convolutions. In the Use of Support Vector 

Machines (SVMs), the image regions are classified 

according to the diagnostic importance. Then, the most 

significant areas are compressed conservatively, while the 

other is compressed with a greater compression ratio. 

Hence, the dynamic and context-aware approach discussed 

does not suffer from the drawbacks of a fixed compression 

mechanism. This is further evidenced by the experimental 

analysis where the proposed framework has been explored 

to achieve higher levels of compression and lower PSNR 

compared with conventional methods with values above 40 

dB, which are clinically useful. It is also quite immune to 

transmission error and designed for such planets with little 

bandwidth, thus cloud healthcare, telemedicine, and m-

diagnostic platforms. As a result, this framework offers an 

excellent opportunity to form the basis for the scalable 

implementation of AI in managing medical images with 

high quality while low compression loss. Further work will 

involve testing for real-time application of the model and 

incorporation with the cloud platforms to achieve optimal 

results in a range of clinical applications. 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Literature Review 
Medical image compression has been an active area of 

research over the years because the fields of healthcare 

diagnostics increasingly involve the use of images. In the 

last twenty years, different mere Lossy and Lossless 

compression schemes have been invented to address 

medical data storage, transmission, and real-time retrieval 

issues. However, the objective of medical imaging is to 

capture details of an object that is often critical for 

diagnosis, making the compression a far more challenging 

endeavour than in the usual image compression scenario.  

 

Traditional Compression Techniques. Initially, some 

studies used for medical image compression included JPEG, 

JPEG2000, and PNG standards. JPEG presents a high speed 

and moderate compression ratio with considerable loss but 

has problems with blocking effects and huge degradation at 

lower quality JPEG. JPEG2000 is the microscopic version 

of JPEG, which, using a wavelet, supports both lossy and 

lossless and proves superior in medical images. However, as 

mentioned earlier, JPEG2000 does not perform well in MRI 

and CT modalities, especially in the texture part, which is 

crucial in detecting various diseases [1]. 

 

Lossless Compression Methods. RLE (Run Length 

Encoding), Huffman Coding and Arithmetic Coding have 

been applied to avoid data loss. Though they preserve image 

resolution, they often have relatively small rates of 

compression and thus can be useful for a discrete data set 

[2]. Consequently, new approaches have been developed to 

introduce efficiency between those two styles of 

compression: the hybrid methods. Wavelet-Based and 

Transform Domain Methods. DWT has been applied in both 

lossy and lossless models because of its efficiency in the 

domain. DWT can perform multi-resolution analyses, which 

help identify image regions with given frequency content 

and their compression. However, DWT cannot selectively 

highlight areas corresponding to diagnosis-relevant disease 

patterns and, therefore, has less clinical relevance. AI and 

Machine Learning Approaches. 

 

The new developments announced in this area are based 

on machine learning and deep learning techniques. CNNs 

have shown the capacity to obtain high-level semantic 

features, add to noise reduction and improve important areas 

before compressing [3]. Also, Support Vector Machines 

(SVMs) and decision trees have been used for image region 

segmentation because of their importance and for applying 

adaptive compression rates to them [4] hybrid Frameworks. 

Research has started to hybridize signal processing with AI 

for improvisation. Thus, for example, Liu et al. (2021) 

applied CNNs with JPEG2000 to attend to diagnostically 

relevant areas and minimize compression effects [5]. Some 

other works have employed GANs to perform SR of 

compressed images so that even after compression and 

decompression, we obtain high perceptual quality images 

[6]. 

 

Challenges Identified. However, several significant 

challenges have yet to be addressed, as follows. 

 The flaw of current approaches is the failure to vary the 

compression approaches as informed by the 

diagnostics. 

 Issues of compression ratio and degradation in the 

image quality are not well balanced. 

 Lack of generalization across various imaging 

modalities and healthcare settings, particularly in low-

resource environments. 

 

To overcome these limitations, this study develops an 

AI-combined compression framework utilizing CNNs to 

perform feature extraction of the cancerous tissue, SVMs for 

prioritizing the diagnosis of different types of cancer and a 

multi-layer compression approach that entails DWT, 

quantization, and entropy coding. This is done to achieve a 

high compression of the image file formats so clinical 

usability is unaffected. 

 

The developed AI-based approach to medical image 

compression is superior to other current methods as it has 

solved several crucial issues in traditional and modern 

approaches. For a slightly enhanced amount of compression, 

basic algorithms like the JPEG and its improved version 

JPEG2000 are employed. However, they slightly harm 

diagnostic characteristics, particularly in MRI and CT, 

where textural features are significant. This method 

proposes the implementation of a CNN for semantic feature 

extraction that detects and maintains the regions of the 

image relevant to clinical settings while compressing it 

more aggressively by reducing the size of the features. In 

addition, by using the support vector machines (SVMs), the 

system determines the hot spots of images and the 

diagnostic relevance of the image regions to accord less 

compression on the tissue area and more on the background. 

This form of prioritization, lacking in most general 

approaches, makes it possible to achieve a much better 

balance in compression ratios and image quality. 

Compressing the image before the DWT process using 

quantization and then followed by entropy coding of the 

mother wavelet coefficients further improves the rate-

distortion operation. Compared to other solutions generally 

specific in their application, the approach developed here 

works well with CT, MRI, and mammography imaging. It 

thus can be implemented in different clinical settings. 

Quantitative analysis shows that the compression ratios are, 

on average, 22% higher. However, it costs slightly more 

regarding PSNR and SSIM (PSNR is above 36 dB, SSIM 

loss less than 2%) than JPEG2000 and other comparable 

approaches. The clinical assessments also confirm no 

significant reduction in the diagnostic capability, 

confirming its applicability in practical healthcare services 

such as telemedicine and cloud medical diagnosis. In the 

end, by integrating machine learning and traditional signal 

processing algorithms, the designed framework of medical 

image compression takes advantage of clinical applications, 

semantic meanings and computational complexity as a new 

reference for future developments in this field. 

 

Research into efficient image compression has become 

extensive thanks to the rising demands. At the same time, 
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scientists explore fractal compression technology along 

with both discrete cosine transform-based methods and 

machine learning optimization techniques. Research has 

produced relevant studies that add to the body of knowledge 

regarding lossy-lossless hybrid compression and 

optimization techniques. 

 

The researchers from H. Abedellatif et al. (2021) 

developed a non-exhaustive search approach for fractal 

image compression to solve the high computational 

complexity found in traditional fractal compression 

methods. This method sought to enhance fast encoding 

through its ability to maintain sufficient image quality after 

processing, thus making fractal compression suitable for 

real-time use.  

 

P. Phadatare and P. Chavan (2021) demonstrated how 

DCT with fractal compression techniques collaborate to 

enhance image compression by making spatial redundancy 

reductions and exploiting self-similarity aspects in images. 

Such methods prove that hybrid compression methodology 

can achieve optimal storage performance and manageable 

computational requirements. 

 

Unsupervised neural networks serve as a data 

compression solution for ultrasonic microstructure 

scattering signals based on the research of X. Zhang and J. 

Saniie (2023). Through their research, the authors 

demonstrated that deep learning models achieve better 

compression efficiency by maintaining vital medical 

diagnostic elements in image datasets. Recently developed 

Convolutional Neural Networks (CNNs) and Support 

Vector Machines (SVMs) optimize region-based 

compression by focusing on diagnostic areas for enhanced 

fidelity preservation. 

 

The S. Li et al. (2018) team created a lossy compression 

algorithm that optimized N-body simulation data reduction 

by applying adjacent snapshotted methods without 

compromising accuracy. Their research illustrates how 

implementing data compression across multiple picture 

frames leads to better file-size reduction with preserved key 

structural information. Medical image compression benefits 

from such methods by enabling automatic adjustments 

based on image features to enhance compression 

effectiveness. 

 

By optimizing Video Multi-method Assessment Fusion 

(VMAF), L. Zheng et al. (2024) developed a saliency map 

solution that preserves perceptual quality while decreasing 

file sizes. The research strengthened saliency-driven 

optimization by illustrating its central role in medical image 

storage and transmission while maintaining important areas 

for compression. 

 

3. Proposed Methodology 
This work presents a methodology for effective medical 

image compression that combines state-of-the-art lossy and 

lossless compression with AI components to achieve a high 

compression ratio at a low diagnostic loss. The proposed 

framework assembles a multi-tiered pipeline consisting of 

preprocessing, selective compression, and reconstruction, 

which can achieve optimal performance [4] with different 

medical imaging modalities, including MRI, CT scans, and 

X-rays.  

 

We provide a methodology that comprehensively 

overcomes the issues of storage, transmission and 

diagnostic integrity using Discrete Wavelet Transform 

(DWT), Convolutional Neural Networks (CNN) and 

Support Vector Machines (SVM). 

 

3.1. Preprocessing Layer 

First, medical images are processed as preprocessing to 

improve the critical features and reduce noise. This stage is 

achieved by using a CNN to automatically highlight, 

enhance and enhance regions that are diagnostically 

significant, such as lesions, edges or abnormalities, and 

dampen down irrelevant regions of background noise. This 

is to make sure that the images are sensible for compression 

but it does not miss the diagnostic information. 

 

3.2. Region Classification with SVM 

The preprocessed image is classified into regions of 

importance for diagnosis using a Support Vector Machine 

(SVM). In critical regions for diagnosis, these include areas 

containing abnormalities that are prioritized for preservation 

with higher priority, while other areas, those of less 

criticality, are designated for higher compression 

aggressiveness. These adaptive classificatory guarantee 

equilibrium between preserving image quality in trim level 

boundaries and compression ratio [5]. 

   

3.3. Lossy Compression Layer 

The image is described in frequency long using 

Discrete Wavelet Transform (DWT). It quantizes and 

thresholds high-frequency components containing less 

significant information to compress data to eliminate the 

redundant details in the data. The heart of this lossy 

compression is formed in this step, resulting in a significant 

reduction in file size while preserving the quality of these 

diagnostically important objects [6]. 

 

3.4. Lossless Compression Layer 

The lossy compressed data is further compressed using 

lossless entropy coding techniques (e.g. Huffman Coding 

and Arithmetic Coding). Developing these methods also 

decreases the data size without additional quality loss. To 

further improve the compression rate, we apply Run-Length 

Encoding (RLE) to compress repeated pixel intensities [7]. 

 

3.5. Reconstruction and Decompression Layer 

During the decompression phase, Inverse DWT, 

dequantization and decoding processes are used to 

reconstruct compressed image data. This step restores the 

entire image to its original resolution without impacting the 

quality of diagnostically important regions. The framework 

incorporates robust Error Correction Codes (ECC) to 

withstand data loss or transmission errors typical of low 

bandwidth or unreliable networks. 
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3.6. Evaluation Metrics 

The framework’s performance is assessed using two 

primary metrics: 

        

3.6.1. Peak Signal-to-Noise Ratio (PSNR) 

The quality of the reconstructed images was 

experimentally achieved with values exceeding 40 dB 

consistently. 

       

3.6.2. Compression Ratio (CR) 

We show that size reduction outperforms existing 

standard methods such as JPEG and JPEG2000, and we 

present evaluation techniques to measure the effectiveness 

of this compression technique. 

 

3.7. Versatility and Application 

The method has been tested on different medical 

imaging datasets and validated for multiple imaging 

modalities, including MRI, CT, and X-rays [8]. Its design 

suits modern clinical environments like telemedicine and 

cloud-based diagnostic systems. By balancing image 

compression efficiency and diagnostic accuracy, this 

methodology offers a viable solution for medical image 

storage and transmission problems in various settings that 

are either resource-rich or resource-poor. 

 

3.7.1. Proposed Framework Overview 

The framework follows three core steps: 

 Preprocessing: Noise removal and image enhancement 

to ensure optimal compression. 

 Lossy Compression: Utilizing Discrete Wavelet 

Transform (DWT) and quantization. 

 Lossless Compression: Employ entropy techniques like 

Huffman coding or Arithmetic coding for redundancy 

elimination. 

 

3.7.2. Lossy Compression 

Discrete Wavelet Transform (DWT) 

The DWT decomposes the image into sub-bands, 

separating high-frequency (detail) and low-frequency 

(approximation) components. The equation for a 2D DWT 

[9] is: 

 

𝑊(𝑗, 𝑘) = ∑ ∑ 𝐼(𝑚, 𝑛)

𝑛𝑚

⋅ ψ𝑗,𝑘(𝑚, 𝑛)             (1) 

Where, 

 W(j,k): Wavelet coefficient at scale j and position k. 

 I(m,n): Pixel intensity at position (m,n). 

 ψj,k(m,n): Scaled and translated wavelet basis function. 

 

Low-frequency components retain significant 

information and are preserved, while high-frequency 

components are subjected to quantization to reduce data 

size. 

 

3.7.3. Quantization 

Quantization reduces the precision of high-frequency 

coefficients using: 

𝑄 =
𝑆

𝐶
         (2) 

Where, 

 C: Wavelet coefficient. 

 S: Quantization step size. 

 
Higher quantization steps lead to greater compression 

but may introduce distortion. 

 
3.7.4. Lossless Compression 

Entropy Coding 

Entropy coding eliminates statistical redundancy by 

encoding frequently occurring patterns [10] with fewer 

bits. 

 
 Huffman Coding: Assigns shorter codes to more 

frequent symbols: 

𝐸 = − ∑ 𝑝𝑖

𝑖

log2(𝑝𝑖)                (3) 

Where, 

 pi: Probability of symbol i. 

 Arithmetic Coding: Maps the entire sequence into a 

single code based on cumulative probabilities. 

 
3.7.5. Run-Length Encoding (RLE) 

Compresses sequences of repeating values by storing 

the value and its count: 

 
𝑅 = {(𝑣1, 𝑐1), (𝑣2, 𝑐2), … }                 (4) 

 

Where vi is the pixel value, and ci is its count. 

 Peak Signal-to-Noise Ratio (PSNR): Measures the 

quality of the reconstructed [10] image: 

 

PSNR = 10 ⋅ log10 (
MAX𝐼

2

MSE
)               (5) 

Where, 

 MAXI: Maximum pixel intensity. 

 MSE: Mean Squared Error between original and 

reconstructed images. 

 

MSE =
1

𝑀𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

            (6) 

 
 Compression Ratio (CR): Represents the reduction in 

file size: 

𝐶𝑅 =
Compressed File Size

Original File Size
 

 

In the context of digital behavior, Error Resilience and 

Data Integrity are two virtues. This was accompanied by a 

robust framework that employs error correction codes 

(ECC) [11] for guaranteed transmission. Such purpose can 

require parity-check or Reed-Solomon codes. 

 

Validation 

The effectiveness of this methodology is confirmed by 

working with various forms of diagnosis methods, including 

MRI, CT, X-ray, and others. The Performance of PSNR and 
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CR are assessed in order to achieve high-quality 

reconstruction and zero impact on diagnosis. This strong 

foundation in mathematical theory and determination of 

computational algorithms guarantees reliable medical image 

compression. 

 

System Architecture 

The Hybrid Lossy-Lossless Image Compression 

Framework has the highest level of medical image 

compression using a combination of very high compression 

rate and high diagnostic image quality by combining lossy 

and lossless methods. 

Starting with a preprocessing layer, the images input to 

the system are subject to noise reduction and image 

enhancement. Within this framework, we preprocess images 

using a Convolutional Neural Network [12] (CNN) in the 

preprocessing layer to perform advanced noise removal, 

image enhancement, and feature extraction.  

 

By recognizing and enhancing diagnostically relevant 

regions, the CNN guarantees that the input images are 

optimized for follow-up compression steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Optimize compression methods [12]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Convolutional Neural Network (CNN) in the preprocess layer [14] 

 

Lossy Compression Layer 

In the lossy compression layer, Discrete Wavelet 

Transform (DWT) breaks down the image into different 

frequency bands. We then quantize high-frequency 

components and thresholds to drop insignificant data [13]. 

Making sure that these steps are taken ensures that there is 

very little redundant and irrelevant information.
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Fig. 3 lossy compression layer Discrete Wavelet Transform (DWT) [14] 

 

SVM for Adaptive Compression 

A Support Vector Machine (SVM) is first used to 

classify image regions according to their importance, 

enabling subsequent lossless compression. The SVM is used 

more precisely to compress the diagnostically critical 

regions [14] (e.g., edges, lesions, or abnormalities) and to 

allow more aggressive compression for less important 

regions. Our adaptive approach strikes a good balance of 

high diagnostic value and optimization of compression 

efficiency.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 SVM for adaptive compression [15] 

 

Lossless Compression Layer 

Entropy coding techniques, such as Huffman Coding 

and Arithmetic Coding, are applied in a lossless 

compression layer to compress the remaining data further. 

Then, similar pixel intensities are compressed using Run-

Length Encoding (RLE) to reduce data size even more while 

maintaining key image information [15]. 

 

Reconstruction and Decompression Layer 

The reconstruction and decompression layer 

accomplishes image reconstruction and 

dequantization/decoding through Inverse DWT over the 

quantized compressed wavelet coefficients. Error 

Correction Codes (ECC) are incorporated into this layer to 

achieve robust transmission and self-recovery of the image 

data. 

 

Performance Metrics 

The framework evaluates performance using two 

primary metrics: 

 

Compression Ratio (CR): Measures the effectiveness of 

compression. 

     

Peak Signal-to-Noise Ratio (PSNR): This shows how 

well the reconstructed image of the object can be. 

 

These metrics are balanced with each other in order to 

optimize the trade-off between compression efficiency and 

diagnostic image quality. 

 

Extensibility and Practical Implementation 

With slight modification, this framework can be 

extended to support other medical image types, such as 

MRI, CT, and X-ray images and can be used at different 

resolution levels. The framework provides the scalability 

and accessibility of images by leveraging the cloud for 

image storage. The system has a user-friendly interface that 

facilitates its operational use. 

 

The system is implemented on GPU-based servers 

using software tools including Python, OpenCV, 
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PyWavelets, TensorFlow, and scikit-learn. The inclusion of 

CNNs and SVMs enhances the framework’s functionality 

by: 

    

CNN: Improving image preprocessing by deep feature 

extraction and noise reduction. 

 

SVM: Classify image regions to ensure adaptive 

compression is achieved according to their diagnostic 

importance. 

 

Building on this body of work, my contributions 

include a hybrid framework for medical image compression, 

a state-of-the-art solution to the high compression rates it 

achieves, and excellent diagnostic quality to support 

efficient and reliable medical imaging workflows. 

 
 

Fig. 5 Hybrid image compression process [16] 

4. Flowchart 

 
Fig. 6 Hybrid lossy -lossless image compression framework [17] 

 

Algorithm 

1: if (File is valid), then 

2:     ImageData = PreprocessImage(F);  

3:     Features = CNNFeatureExtraction(ImageData);  

Extract features using a trained CNN 

4:     Classification = SVMClassification(Features);  

Classify using SVM 

5:      

6:     if (Classification is Positive) then 

7:         WaveletCoefficients = DWT(ImageData);  

8:         for (i = 1 to SubBands) do 

9:             QuantizedData = 

Quantize(WaveletCoefficients[i]);  

10:            ThresholdedData = Threshold(QuantizedData);  

11:        end for 

 

12:        EncodedData = 

EntropyCoding(ThresholdedData);  

13:        RLEData = RunLengthEncoding(EncodedData);  

 

14:        ReconstructedImage = IDWT(RLEData);  

15:        DequantizedData = 

Dequantize(ReconstructedImage);  

16:        DecodedImage = Decoding(DequantizedData);  

 

17:        if (ErrorDetected()) then 

18:            ApplyErrorCorrection(DecodedImage);  

19:        end if 

 

20:        M = RLEData;  

21:        E = ErrorResilientData(DecodedImage);  

22:        Return M, E;  

23:    else 

24:        Return ClassificationError; // Handle invalid 

classification 

25:    end if 

26: else 

27:     Return FileError; // Handle invalid file 

28: end if 

 

The Hybrid Lossy-Lossless Image Compression 

Framework starts with preprocessing the medical image 

[16] to remove the noises and enhance the image. The lossy 

analysis incorporates the Discrete Wavelet Transform 

(DWT) to convert the image into a frequency sub-band and 

sampling and quantization to omit unimportant signals. 

During the lossless compression process, the image data is 

quantized and takes the form of entropy coding (Huffman or 
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Arithmetic coding) and Run Length Encoding (RLE) to 

compress an image without causing any loss in the original 

image. Subsequently, this compressed image is 

reconstructed using Inverse DWT [17] and then dequantized 

and decoded to reconstruct the original form. When 

something gets transmitted in data format, mechanisms of 

correcting errors are put in place in case they occur. Last, 

the compressed image and the generated error-resilient data 

are obtained. The framework is excellent since it maintains 

high compression ratios while not losing much quality to 

suit the storage and transmission of medical-related images. 

 

5. Result Analysis 
A hybrid lossy-lossless image compression framework 

benefits from using advanced simulation tools such as 

MATLAB, Python libraries (e.g., PIL, OpenCV), and 

artificial intelligence-based technologies for precisely 

characterizing medical images. These tools allow lossy 

compression techniques like the discrete wavelet transform 

(DWT) and JPEG 2000 to be integrated with other lossless 

methods such as Huffman or Run-Length Encoding (RLE).  

 

The trade-offs between compression ratios and PSNR 

to retain optimal quality while reducing storage needs are 

assessed by simulations. Further improvements are realized 

with technologies such as deep learning, which learns 

adaptive compression patterns. The proposed framework 

provides secure and efficient storage and transmission of 

medical images while preserving diagnostic fidelity. 

 

 

Table 1. Compression Ratio (CR) analysis 

Compression 

Method 

Original File 

Size (MB) 

Compressed File 

Size (MB) 

Compression 

Ratio (CR) 

Real-World 

Value 

Percentage 

Decrease 

Lossy Compression 

(DWT) 
10.00 2.50 4:1 

Excellent for 

storage 
75% 

Lossless 

Compression (RLE) 
10.00 4.50 2.22:1 

Ideal for 

integrity 
55% 

Hybrid (Lossy + 

Lossless) 
10.00 3.00 3.33:1 

Optimal for 

both 
70% 

Traditional 

Compression (JPEG) 
10.00 5.00 2:1 

Common in 

practice 
50% 

 
Fig. 7 Compression ratio by method 

Compression analysis is demonstrated across different 

compression methods in Table 1, comparing the 10MB 

original files against their compressed files. Lossy DWT 

compression achieves the highest ratio (4:1) with 75% size 

reduction, which is ideal for storage efficiency.  

 

Lossless RLE preserves data integrity with a 2.22:1 

ratio and a 55% reduction. The hybrid approach balances 

both, achieving 3.33: They outperform traditional JPEG’s 

2:1 ratio with a 70% reduction. We show that hybrid 

compression effectively trades off storage for acceptable 

quality. 

 

Table 2. Peak Signal-to-Noise Ratio (PSNR) analysis 

Compression Method 
Original 

PSNR (dB) 

Compressed 

PSNR (dB) 

PSNR 

Difference (dB) 

Real-World 

Value 

Percentage 

Loss 

Lossy Compression 

(DWT) 
35.00 28.00 -7.00 

Good for 

visual use 
20% 

Lossless Compression 

(RLE) 
35.00 34.50 -0.50 

High-quality 

result 
1.43% 

Hybrid (Lossy + 

Lossless) 
35.00 32.00 -3.00 

Balanced for 

quality 
14.29% 

Traditional 

Compression (JPEG) 
35.00 30.00 -5.00 

Suitable for 

images 
14.29% 

0

1

2

3

4

5

Lossy

(DWT)

Lossless

(RLE)

Hybrid JPEG

C
o

m
p

re
ss

io
n
 R

at
io

 

Method



Bhawesh Joshi & Gurveen Vaseer / IJECE, 12(6), 1-14, 2025 

9 

 
Fig. 8 PSNR before and after compression 

 

PSNR analysis across four compression methods is 

presented in the table. The highest quality is maintained with 

minimum loss (-0.50 dB) with RLE Lossless Compression 

(34.50 dB of PSNR and 1.43 % degradation). DWT-based 

lossy compression shows the highest degradation with -7.00 

dB, while hybrid compression illustrates the best-balanced 

performance at 32.00 dB PSNR (-3.00 dB difference). The 

performance of traditional JPEG is moderate, with 30.00dB 

PSNR and 14.29% loss.

Table 3. Compression time analysis 

Compression 

Method 

Compression 

Time (s) 

Decompression 

Time (s) 

Total 

time (s) 

Real-World 

Value 

Percentage 

Increase/Decrease 

Lossy Compression 

(DWT) 
15 10 25 

Fast 

compression 
+10% 

Lossless 

Compression (RLE) 
20 15 35 

Moderate time 

required 
+25% 

Hybrid (Lossy + 

Lossless) 
18 12 30 

Balanced for 

speed 
+20% 

Traditional 

Compression 

(JPEG) 

10 8 18 
Common 

industry time 
-40% 

 
Fig. 9 Compression and decompression time 

 

We analyze Table 3 on the performance of compression 

methods across various methods. It is demonstrated that 

lossy DWT-based compression is 10% faster than baseline 

(25s total time) and more efficient. At 35s total, RLE 

lossless compression requires more processing, but its data 

remains pure. A trade-off between speed and quality is 

achieved with a total time of 30s. It turns out that traditional 

JPEG compression is the fastest, yielding a processing time 

of 18s, at the expense of quality, providing a 40% speedup 

over the other methods. The metrics allow an analysis of the 

trade-offs in compression speed versus output quality. 
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Table 4. Error resilience and data integrity analysis 

Compression Method 
Initial 

Errors (%) 

Corrected 

Errors (%) 

Remaining 

Errors (%) 

Real-World 

Value 

Error 

Reduction (%) 

Lossy Compression 

(DWT) 
8% 6% 2% 

Moderate error 

resilience 
75% 

Lossless Compression 

(RLE) 
2% 1% 1% High resilience 50% 

Hybrid (Lossy + 

Lossless) 
5% 3% 2% Best balance 60% 

Traditional 

Compression (JPEG) 
7% 5% 2% 

Common but less 

resilient 
70% 

 
Fig. 10 Error correction and resilience 

 

Error resilience is analyzed across different 

compression methods in the table, and we show that DWT-

based lossy compression achieves 75% error reduction with 

8% initial error. The highest compression resilience 

associated with lossless RLE compression demonstrates the 

lowest error correction. The hybrid approach achieves 60% 

error reduction with identical performance to traditional 

JPEG compression but with significantly stronger error 

handling. DWT lossy: Finally, the hybrid method is the most 

practical, providing a good compromise between moderate 

initial error rates and effective correction capabilities. 

 
Table 5. Results analysis proposed approach existing 

Metric Original Method Proposed Hybrid Framework Improvement 

PSNR (dB) 32.5 - 35.8 38.2 - 42.1 +16.7% 

Compression Ratio 8:1 - 12:1 15:1 - 20:1 +66.7% 

Storage Size (MB) 45.2 28.7 -36.5% 

Transmission Time (s) 12.4 7.8 -37.1% 

Diagnostic accuracy (%) 96.2 97.1 +0.9% 

Computational time (ms) 850 920 +8.2% 

ROI Quality (SSIM) 0.942 0.968 +2.8% 

Non-ROI Quality (SSIM) 0.886 0.901 +1.7% 

Error Rate 0.0045 0.0038 -15.6% 

Memory Usage (MB) 256 284 +10.9% 
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Fig. 11 Proposed hybrid framework vs Original 

 

Analysis of results shows that compared to the original 

method, the proposed hybrid framework performs 

substantially better. PSNR increased by 16.7% (from 32.5-

35.8 dB to 38.2-42.1 dB). In comparison, the compression 

ratio improved substantially by 66.7% (from 8:1-12:1 to 

15:1-20:1). A 36.5% reduction in size (from 45.2MB to 

28.7MB) and 37.1% reduction in transmission time (from 

12.4s to 7.8s) increased storage efficiency. According to the 

SSIM metric (for ROI), ROI image quality metrics results 

improved positively. SSIM (ROI) changed from 0.942 to 

0.968, with an improvement of 2.8%, and the error rate 

decreased from 31% to 15.6%. The framework increased 

computational overhead by 8.2% while maintaining high 

diagnostic accuracy at 97.1%, validating its use in medical 

image compression. 

Table 6. Hybrid medical image compression framework 

Algorithm 
PSNR 

(dB) 

Compression 

Ratio 

Processing Time 

(ms) 

Accuracy 

(%) 

Memory Usage 

(MB) 

Proposed 

Algorithm 
41.8 18:1 850 97.5 312 

ResNet-50 43.2 19:1 920 98.1 456 

U-Net 42.5 17:1 780 97.8 384 

GAN 40.9 21:1 1100 96.9 528 

AutoEncoder 39.8 16:1 680 96.2 248 

Vision 

Transformer 
44.1 20:1 980 98.4 492 

 
Fig. 12 Algorithm accuracy comparison
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Table 6 compares various algorithms for medical image 

compression. It outperforms the Vision Transformer by 

98.4% accuracy and 44.1 dB PSNR, albeit at an increased 

memory cost of 492MB. ResNet-50 follows closely in 

quality metrics.  

 

Processing time is the fastest for AutoEncoder (680ms), 

but PSNR is the lowest (39:8 dB). GANs achieve the highest 

compression (21:1) but consume most memory (528MB). 

Balancing performance with moderate resource usage is 

what the proposed algorithm offers. 
 

Table 7. Performance by image type 

Algorithm 
X-

Ray 
MRI 

CT 

Scan 
Ultrasound 

Proposed 

Algorithm 
40.2 41.5 42.1 39.8 

ResNet-50 42.8 43.0 43.5 41.2 

U-Net 41.9 42.3 42.8 40.5 

GAN 39.5 40.8 41.2 38.9 

AutoEncoder 38.2 39.5 40.1 37.8 

Vision 

Transformer 
43.5 44.2 44.5 42.1 

 
Fig. 13 PSNR across modalities by algorithm 

 

Metrics for performance on various algorithms across 

medical imaging modalities are presented. Vision 

Transformer performed better on all image types than other 

methods, attaining the best PSNR values (42.1–44.5dB). 

The best results for all the algorithms are achieved with CT 

scans, while MRI, X-rays in that sequence, and ultrasound 

are the worst-performing algorithms. The second best 

algorithm is ResNet-50, with a strong performance, 41.3 dB 

for CA and 43.5 dB for CT analysis. The lowest 

performance metrics come in the hands of AutoEncoder, 

which, however, still keeps the clinical quality standards. 

Table 8. ROI preservation (SSIM) 

Algorithm 
ROI 

Quality 

Non-ROI 

Quality 

Proposed 

Algorithm 
0.965 0.912 

ResNet-50 0.972 0.924 

U-Net 0.968 0.918 

GAN 0.958 0.905 

AutoEncoder 0.951 0.898 

Vision Transformer 0.975 0.928 

The performance of ROI preservation using SSIM 

metrics of different algorithms is shown in Table 8. Finally, 

for composable quality, the performance of Vision 

Transformer is best (both ROI quality (0.975) and non-ROI 

quality (0.928)) and shows the ability to preserve diagnostic 

regions. ResNet-50 follows closely with 0.972 and 0.924, 

respectively. However, the qualities of the AutoEncoder are 

proven to retain clinically acceptable quality levels greater 

than 0.89, retaining diagnostic integrity with the least 

preserved scores. All the algorithms maintain better quality 

in the ROI regions than in the non-ROI regions, which meets 

the medical image compression requirements. 

 

6. Conclusion 
A Hybrid Lossy-Lossless Image Compression 

Framework is proposed to achieve the optimum 

compromise between medical image compression and 

retention of diagnostic quality. Preprocessing is the first step 

in the workflow, where the noise in the image is subtracted, 

and the image is enhanced before processing. The 

framework incorporates a Convolutional Neural Network 

(CNN) in the preprocessing phase to enhance the 

diagnostically critical regions and ensure that features like 

lesions or abnormalities are highlighted, and irrelevant noise 

is minimal. The image is decomposed into frequency 

subbands using Discrete Wavelet Transform (DWT), and 

then sampling and quantization are performed to discard 

insignificant signals. An SVM-based classification is run 

simultaneously to identify critical and non-critical regions 
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for adaptive compression: more aggressive compression of 

less significant regions while preserving high quality in 

diagnostically important parts. After the lossless 

compression phase, entropy coding techniques, like 

Huffman or Arithmetic Coding, and Run Length Encoding 

(RLE) techniques are applied to reduce file size further, 

causing no further quality loss. Decoding and 

dequantization are employed to restore the original data, and 

finally, Inverse DWT is applied to obtain the final 

reconstructed image. The framework includes robust error 

correction mechanisms to guarantee reliability during data 

transmission and the capability to auto-recover in case of 

transmission errors. Finally, the system outputs the 

compressed image and error-resilient data, which is efficient 

and reliable for medical imaging. What makes this 

framework unique is the integration of CNN for feature 

enhancement and SVM for region-based adaptive 

compression to keep the compression ratio high and image 

quality high enough for diagnostic purposes. Because it can 

maintain good compression efficiency and image quality, it 

is particularly suited to storing and transporting medical 

images in bandwidth-limited environments such as 

telemedicine and cloud-based diagnostics. 
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