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Abstract - Type-2 Diabetes Mellitus (T2DM) occurs by insulin dysfunction, a chronic disease. Moreover, the human body 

cannot react with high sugar due to low secretion of insulin, which increases the blood sugar level. Due to the resistance of 

insulin or its low production, T2DM patients suffer a lot. The existing diagnosis process faces challenges such as low 

reliance on testing data, limited accessibility and chances for misdiagnosis. A new model, Exponential Spider Wasp 

Optimization, is introduced to address these issues, enabling the Quantum Dilated Convolutional Neural Network 

(ESWO_QDCNN) to detect T2DM. Initially, gene expression data is considered input from the gene expression dataset. 

Afterwards, the data transformation process is performed using Box-Cox transformation. Next, the feature selection process 

is performed by employing weighted Euclidean distance. Lastly, T2DM detection is attained by utilizing QDCNN, which is 

tuned using Exponential Spider Wasp optimization (ESWO). Here, the hybrid approach ESWO is developed by utilizing 

Exponential Weight Moving Average (EWMA) and Spider Wasp Optimizer (SWO). In addition to this, ESWO_QDCNN has 

achieved 91.524% accuracy, 90.854% sensitivity and 92.290% specificity. 

Keywords - Gene Expression Data, Type2 Diabetes mellitus, Deep learning, Quantum Dilated Convolutional Neural 

Network, Spider Wasp Optimizer. 

1. Introduction  
Gene expression data is the collection of information 

that helps to compare the various levels of messenger RNA 

(mRNA) in a cell structure. It also helps to study the protein 

formation in genes and the contribution of protein to cell 

function. Gene expression data is used in the biomedical 

field to diagnose diseases, especially diabetes. Diabetes 

mellitus is a metabolic disorder that occurs due to the rise in 

blood glucose and causes imperfection in the secretion of 

insulin [5]. Diabetes mellitus occurrence has increased as a 

result of changes in lifestyle, irregular food habits, 

overweight and obesity, and an ageing population [5, 7].  

The various types of diabetes are Type-1 diabetes, 

Type-2 diabetes, and gestational diabetes. The increased 

level of blood sugar can cause T2DM in the human body. 

Generally, the blood glucose gets high due to low insulin 

production or insulin resistance. Due to this, the human 

body cannot react with insulin. This type of variation in 

insulin dysfunction does not cause any noticeable symptoms 

in humans, but it impacts the body immediately. Identifying 

insulin dysfunction is very challenging [4, 9, 10].  

Detecting T2DM disease earlier gives a better solution 

[4]. Identifying diabetes-associated genes and their insights 

into disease diagnosis mechanisms involve different 

techniques [5]. Various Artificial Intelligence (AI) and 

Machine Learning (ML) techniques have been introduced 

by different researchers to automate the diagnosis of various 

diseases, including Diabetes [6]. In the field of AI, 

classification techniques analyse the data and distinguish 

whether the patient has the disease or not. Many supervised 

and unsupervised ML techniques identify important genes 

in gene databases. These methods are used to understand the 

structure of gene networks and help develop disease 

prediction models [5, 8]. To diagnose the disease, Deep 

learning (DL) methods are employed in the current scenario, 

and the most common DL techniques that are used in 

detecting T2DM are Convolutional Neural Networks 

(CNN), Recurrent Neural Networks (RNN), Deep Neural 
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Networks (DNN). CNN is used to analyze gene expression 

data to identify potential diabetes-related abnormalities. 

RNN can be used to analyze blood glucose levels to identify 

patterns and predict future trends. DNN can be applied to 

complex datasets, including clinical and lifestyle factors, to 

predict diabetes risk. DL-enabled techniques are considered 

to have higher accuracy than any other conventional ML 

approach. 

The major aim is to design ESWO_QDCNN for the 

detection of Type-2 diabetes. Primarily, the input gene 

expression data obtained from the database undergoes data 

transformation. The data transformation process converts 

the input gene expression data from one format or structure 

into another format or structure by utilizing Box-Cox 

transformation. Subsequently, the transformed data is 

processed through the feature selection process, where 

suitable features are selected. This process is carried out by 

employing weighted Euclidean distance. Finally, the T2DM 

detection is performed using QDCNN, which is trained 

using ESWO. Here, the optimized hybrid approach ESWO 

is developed by combining EWMA and SWO.  

An important contribution of the proposed model is 

discussed as follows. 

 Proposed ESWO_QDCNN for T2DM detection: A 

potent model is designed to improve the detection of 

T2DM named ESWO_QDCNN. Here, ESWO-trained 

QDCNN undergoes the detection process.  

The structure of the remaining sections is as follows: 

Section 1.2 reviews the literature on T2DM detection 

methods and their limitations, Section 2 explains the 

ESWO_QDCNN methodology, Section 3 presents the 

evaluation results of ESWO_QDCNN, and Section 4 

provides the conclusion of ESWO_QDCNN for T2DM 

detection. 

1.1. Motivation 

 In the biomedical field, gene expression data are 

preferred to diagnose T2DM. The traditional techniques 

available for disease detection are unreliable, and more 

skilled people are required to analyze data. So, an effective 

and automative technique is significant in detection. 

Motivated by this fact, a new T2DM detection method is 

introduced by analyzing classical approaches. Some 

shortcomings of the traditional detection methods are 

discussed in this section. 

1.2. Literature Survey 

Hu, Y. et al. [1] designed a Weighted Gene Co-

Expression Network Analysis (WGCNA) for detecting 

shared genes of Pancreatic cancer and T2DM. It has the 

potential to identify the disease and provide a pathway to 

treat patients with T2DM. However, it had only limited 

public database availability, and the prolonged sample in the 

laboratory caused the results to be inaccurate.  Yang, Y. et 

al.  [2] presented Degree Matrix Network Entropy (DMNE) 

for diagnosing the various levels of T2DM. It was used to 

detect various levels of T2DM development and identify the 

important genes involved in T2DM disease occurrences. 

However, it could not generate gene comparison data. Li, J. 

et al. [3] introduced a Support Vector Machine (SVM) 

based model for identifying T2DM. It was a successful 

prediction model for conventional diagnosis markers, 

allowing clinicians to treat patients individually and 

effectively. However, it was devoid of thorough analysis 

and validation using a bigger sample size. Middha, K. et al. 

[4] developed a Competitive Multi-Verse Rider Optimizer 

(CMVRO)-based hybrid deep learning scheme for detecting 

T2DM. It had the potential to predict the disease using tuned 

classifiers and was efficient in detecting the disease.  Even 

though it has some advantages, it lacks an optimization 

algorithm and advanced classifiers for the accurate 

prediction of T2DM disease. 

1.3. Challenges  

The following discusses the various challenges 

encountered by existing approaches. 

 The method presented in [2] facilitated the extraction of 

more computable features from gene expression data. 

However, it was incapable of performing well in large 

datasets with diverse gene expression data. 

 In [3], the designed approach achieved the 

identification of T2DM. However, it failed in detailed 

investigation and validation of clinical data with 

increased sample size to verify the prognosis of the 

gene signature involved in type 2 diabetes. 

 Major challenges in Type 2 Diabetes Mellitus (T2DM) 

detection include the struggle of early detection due to 

its asymptomatic nature and time-consuming testing 

procedures. In addition, detecting T2DM with vast 

datasets has become very challenging for identifying 

the disease.  

 

2. Methodology 
This study proposes an Exponential Spider Wasp 

Optimization (ESWO) enabled Quantum Dilated 

Convolutional Neural Network (QDCNN) for the detection 

of Type-2 Diabetes Mellitus (T2DM) using gene expression 

data. The methodology consists of multiple stages: data 

acquisition, transformation, feature selection, and 

classification.  

2.1. Proposed Exponential Spider Wasp Optimization 

enabled Quantum Dilated Convolutional Neural Network 

for T2DM detection 
T2DM cause serious health issues, and if it is untreated 

over a long time, it may cause heart disease, stroke, kidney 

failure, and loss of vision. Early detection of the disease 
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gives better hope for the patients. Nowadays, the current 

diagnosis techniques are time-consuming and slow in 

detecting the disease. Hence, improved detection techniques 

are significant in assisting doctors in the diagnosis phase. 

Here, ESWO_QDCNN is presented for T2DM detection. 

Initially, the input gene expression data is from the database, 

and it is subjected to the data transformation process. The 

data transformation process will convert the input data from 

one format or structure into another format or structure by 

utilizing Box-Cox transformation. Next, the transformed 

data will be allowed in the feature selection process, where 

suitable features are selected. This process is carried out by 

employing weighted Euclidean distance. Lastly, the T2DM 

detection is accomplished by ESWO-trained QDCNN. Here, 

the optimized hybrid approach ESWO is developed by 

integrating EWMA and SWO. Figure 1 reveals the pictorial 

presentation of ESWO_QDCNN for T2DM detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Pictorial presentation of ESWO_QDCNN for T2DM detection 

2.1.1. Data Acquisition 

An input Gene expression data is acquired from the 

gene expression dataset [18], which can be formulated by, 

𝐺 = {𝐺1, 𝐺2, . . . 𝐺𝑎, . . 𝐺𝑏}                               (1) 

Where, 𝐺𝑎 represent 𝑎𝑡ℎ input gene expression data, 

whereas 𝐺𝑏 Denotes the total gene expression data from the 

dataset 𝐺. 

2.2. Box-Cox Transformation for Data Transformation 

Data transformation is the transformation of the 

structure of the data. It is useful in identifying significant 

variations throughout the procedure; otherwise, it will go 

unnoticed [11]. Here, Box-Cox transformation is employed 

to perform data transformation. This approach is much 

preferable due to its flexibility, ability to handle non-

normality and effectiveness in improving model 

performance. It is an organized approach to make data more 

suitable for statistical modelling, ensuring better results and 

more reliable inferences. Hence, this method is used for data 

transformation. The expression mentioned below is used for 

processing the data to perform data transformation and 𝐺𝑎is 

given as an input. 

𝐵𝑎
(𝜆)

= {𝜆
𝑙𝑜𝑔(𝐺𝑎)

−1(𝐺𝑎
𝜆−1)

    𝑖𝑓𝜆 = 0, 𝜆 ≠ 0            (2) 
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𝐺(𝜆) = 𝑋𝛽+∈                                (3) 

Where 𝐺𝑎is the input data, 𝐺(𝜆) is the λ- transformed data, X 

is the design matrix, 𝛽is the set of parameters associated 

with λ-transformed data, ∈is the error term, and 𝐵𝑎Is the 

output obtained from Box-Cox transformation with the 

dimension of [𝑚 × 𝑛]. 

2.3. Feature Selection using Weighted Euclidean Distance 

Feature selection is essential for reducing the size of 

datasets as they have varied sizes and will change 

drastically. Here, feature selection is employed by weighted 

Euclidean distance [12].  

 

Weighted Euclidean distance improves accuracy by 

integrating objective and subjective features with adjustable 

weights, allowing for better customization of significant 

features. It has improved flexibility in handling diverse data 

types, making it more effective.  

 

The resulting data from the data transformation Ba with 

the dimension of [𝑚 × 𝑛]is provided as the input and Sa is 

the selected feature having a dimension of [𝑚 × 𝑙] where n

> l . 

 

𝑆𝑎[𝑚×𝑙] = √∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)𝑖

2
         (4) 

Where, 𝑤𝑖represent weight, 𝑥𝑖represents feature to be 

selected and 𝑦𝑖represents the target.  

2.4. T2DM Detection using QDCNN 

T2DM detection is a time-consuming and unreliable 

process. Due to human intervention, an effective model is 

necessary. Here, QDCNN, which is trained using ESWO, 

performs the detection. The selected features with 

dimensions involved in the feature selection phase are 

subjected to detection.  

2.4.1. Architecture of QDCNN 

QDCNN [13] adopts the structure of a Convolutional 

Neural Network by integrating quantum layers with 

classical layers, and the quantum circuit can be placed 

anywhere in the mode. The quantum dilated convolutional 

layer is the dilation convolution that is performed in the 

convolution layer. Figure 2 illustrates the architecture of 

ESWO_QDCNN. 

Convolution Operation 

In CNN, the convolutional layer performs the 

convolution operation; hence, it has an important role. The 

convolution operation involves multiplying a set of weights 

with the input in convolutional networks, and it is a linear 

process.  

Dilated Convolution 

In dilated convolution, the convolution process is 

performed on the selected feature. 𝑆𝑎. In addition to the 

convolution layer, the dilated convolution layer has an extra 

hyperparameter called the dilation rate.  

𝑄𝑎[𝑐, 𝑑] = ∑ ∑ 𝑘[𝑞. 𝑙]𝑙 . 𝑆𝑎𝑞 [𝑐 + 𝑞. 𝑟, 𝑑 + 𝑙. 𝑟]            (5) 

Where, aQ
 is the output, aS

 is the input, c and d  are 

the location indices of aQ
, k  is the filter and r is the 

dilation rate. The spatial resolution wO
 and hO

 of the 

resulting feature map, extracted from an w hC C
 input 

image by a t u  kernel can be calculated as: 

𝑂𝑤 = (
𝐶𝑤−𝑡+2𝑝

𝑠
) + 1                            (6) 

 𝑂ℎ = (
𝐶ℎ−𝑢+2𝑝

𝑠
) + 1                  (7) 

Where, 𝑂𝑤 and 𝑂ℎ  are the spatial resolution, 𝑠  is the 

stride, 𝐶𝑤 × 𝐶ℎ represents the input image by a 𝑡 × 𝑢 kernel, 

and 𝑝 is the padding.     

Quantum Convolution 

Convolution is performed based on quantum circuits in 

this phase; hence, it is called quantum convolution. 

Quantum convolution consists of three modules to perform 

convolution, such as 

Encoding Module: The existing data is encoded into a 

quantum state within the convolutional circuit. Therefore, 

the classical information is encoded in the initial state of a 

qubit. This type of encoding is referred to as single-variable 

or qubit encoding. 

Entangled Module: The encoding module is applied to 

the cluster of single and multi-qubit gates obtained from the 

encoded quantum state. The single and multi-quit gates are 

associated with quantum convolution for extracting task-

specific features. From the entanglement module, the final 

quantum states are measured. 

Decoding Module: In a decoding module, output 

classical vectors are extracted by mapping the quantum state 

to the classical vector. The main task of the convolution 

layer is to extract a classical output vector 𝑓(𝑗, 𝜃) By using 

the mapping from the quantum state: 

𝛭: |𝑗, 𝜃⟩ → 𝑓(𝑗, 𝜃)                                (8) 
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Fig. 2 Architecture of ESWO_QDCNN 

2.4.2. Tuning of QDCNN Using ESWO  

The parameters of QDCNN are optimized using the 

ESWO algorithm. Here, the ESWO algorithm is employed 

using the Exponentially Weighted Moving Average and 

Spider Wasp Optimizer algorithm. SWO algorithm inherited 

the characteristics of spider wasps, such as addressing 

challenges, unique hunting behaviour, nesting features, and 

mating. Solution Encoding: The solution encoding is used to 

obtain optimal solution in a D dimensional search space 

𝐷 = [1 × 𝑛], where n  represents the learning parameter of 

QDCNN. Fitness function: The fitness function obtains 

optimal solutions from QDCNN. It is represented as, 

𝐹 =
1

𝑏
∑ [𝑇 − 𝑄𝑎]𝑏

𝑎=1
2
                                                         (9) 

Where F is the fitness function?  Is the output obtained 

from QDCNN the targeted output? 

Algorithm Steps: 

The algorithm steps of ESWO_QDCNN for T2DM 

detection are as follows. 

Step 1: Initialization of Parameters 

The population of spiders and wasps was initialized in 

the search space [16]. Here R represents spider and W 

represents Wasp, N are the number of features e  and 
g

 are 

the number of spiders and wasps. 

 

𝑅 =

[
 
 
 
 
 

𝑅1,1 ⋯ 𝑅1,𝑁/2 ⋯ 𝑅1,𝑁

⋮ ⋱ ⋮ / ⋮
𝑅𝑒/2,1 ⋯ 𝑅𝑒/2,𝑁/2 ⋯ 𝑅𝑒/2,𝑁

⋮ / ⋮ ⋱ ⋮
𝑅𝑒,1 ⋯ 𝑅𝑒,𝑁/2 ⋯ 𝑅𝑒,𝑁 ]

 
 
 
 
 

𝑒𝜒𝑁

                (10) 

𝑊 =

[
 
 
 
 
 

𝑊1,1 ⋯ 𝑊1,𝑁/2 ⋯ 𝑊1,𝑁

⋮ ⋱ ⋮ / ⋮
𝑊𝑔/2,1 ⋯ 𝑊𝑔/2,𝑁/2 ⋯ 𝑊𝑔/2,𝑁

⋮ / ⋮ ⋱ ⋮
𝑊𝑔,1 ⋯ 𝑊𝑔,𝑁/2 ⋯ 𝑊𝑔,𝑁

]
 
 
 
 
 

𝑔𝜒𝑁

            (11) 

Step 2: Estimate Fitness Function 

The fitness function is used to determine the optimal 

solution for T2DM detection. The fitness function is already 

computed in Equation (9).   

Step 3: Crossover based on Spider Movement 

To perform crossover, the original number of features is 

extracted from the features of spiders and wasps, and the 

newly formed subset of each iteration proceeds to a new 

population [16]. Here are the features selected from spider 

wasps, the reminder,  the number of spiders and wasps, and 

the number of features selected, representing the top 

population. 

𝐹𝑠𝑔
𝑅 = 𝑅𝑣 [𝐻 (𝑔,

𝑁𝑅

2
)] [:

𝑁𝐹𝑠

2
]            (12) 

 

𝐹𝑠𝑔
𝑊 = 𝑊𝑣 [𝐻 (𝑔,

𝑁𝑤

2
)] [

𝑁𝐹𝑠

2
: ]   

                       (13) 

Step 4: Mutation based on Wasp Movement 

Changing certain features in the wasp population gives 

certain feature changes to perform mutation operations [16].  

𝐿𝑔𝑒
𝑊 = 𝑊𝑣 [𝐻 (𝑔,

𝑁𝑊

2
)] [𝑒] × [𝐽(0,1)]            (14) 
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Here, 

W

geL
 the mutated value of Wasp from the subset 

of a number of spiders and Wasp returns an integer,  which 
g

 is the number of spiders and wasps. 

Step 5: Updated Solution 

The updated solution is the integration of EWMA [14] 

with the SWO algorithm [15]. The standard equation from 

the SWO algorithm is given as, 

𝑅𝑊𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑧+1
= 𝑅𝑊𝑒

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑧
+ 𝜇1 ∗ (𝑅𝑊𝑈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑧
− 𝑅𝑊𝑉

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑧
)          (15) 

Let us assume,             

𝑅𝑊𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑧+1
= 𝐼𝑒(𝑧 + 1)              (16) 

𝑅𝑊𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑧
= 𝐼𝑒(𝑧)               (17) 

𝑅𝑊𝑈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑧
= 𝐼𝑒𝑈(𝑧)                              (18) 

𝑅𝑊𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑧
= 𝐼𝑒𝑉(𝑧)                 (19) 

Then Equation (15) becomes, 

𝐼𝑒(𝑧 + 1) = 𝐼𝑒(𝑧) + 𝜇1 ∗ (𝐼𝑒𝑈(𝑧) − 𝐼𝑒𝑉(𝑧))              (20) 

The general equation from EWMA is given as,  

𝐼𝑒
𝐸(𝑧) = 𝜆𝐼𝑒(𝑧) + (1 − 𝜆)𝐼𝑒

𝐸(𝑧 − 1)                         (21) 

𝐼𝑒(𝑧) =
1

𝜆
[𝐼𝑒

𝐸(𝑧) − (1 − 𝜆)𝐼𝑒
𝐸(𝑧 − 1)]                      (22) 

Substituting Equation (17) in Equation (16), 

𝐼𝑒(𝑧 + 1) =
[𝐼𝑒

𝐸(𝑧)−(1−𝜆)𝐼𝑒
𝐸(𝑧−1)]+[𝜇1∗(𝐼𝑒𝑈(𝑧)−𝐼𝑒𝑉(𝑧))]∗𝜆

𝜆
     (23) 

Where Z represents the iteration number, 
 1E

eI z 
 is 

the individual's position using EWMA of 
thz item. 

 1E

eI z 
 Is the updated ESWO solution for training 

QDCNN? 

Step 6: Re-Evaluation of Fitness Function 

The fitness function will iterate continually till it attains 

the optimal solution. 

Step 7: Termination 

In the termination phase, the optimization will be 

achieved using the repeated iteration of ESWO by training 

QDCNN using the algorithm. 

3. Results and Discussion 
This section discusses the result obtained from the 

T2DM detection process of ESWO_QDCNN, along with 

the metrics and dataset. 

3.1. Experiment Setup 

ESWO_QDCNN, designed for T2DM detection, is 

executed using the PYTHON tool. 

3.2. Dataset Description 

In the Gene Expression Dataset [18], human islets were 

extracted from organ donors' pancreas using collagenase 

digestion, density gradient purification, hand selection, and 

two days of culture in M199 culture media. It contains 

selected columns of [0 - 147] and a dataset length of (14, 

22284). Thirteen samples are used in the Affymetrix Human 

Genome U133A Array platform. It contains an additional 

file, GSE25724_RAW.tar, which is 26.0 MB in size and is 

of the TAR (of CEL) file type.  

3.3. Evaluation Metrics 

Accuracy, sensitivity and specificity metrics are used to 

assess the ESWO_QDCNN approach. 

3.3.1. Accuracy 

Accuracy [17] is the model's proportion of correct 

predictions made while evaluating the samples. It is 

formulated as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑍𝑝𝑜𝑠+𝑍𝑛𝑒𝑔

𝑍𝑝𝑜𝑠+𝑌𝑝𝑜𝑠+𝑌𝑛𝑒𝑔+𝑍𝑛𝑒𝑔
           (24) 

Here, posZ
 it denotes true positives and negatives, 

whereas it specifies false positives and false negatives. 

3.3.2. Sensitivity 

Sensitivity [17] is calculated as the percentage of cases 

that are predicted correctly, which is modelled as, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑍𝑝𝑜𝑠

𝑍𝑝𝑜𝑠+𝑌𝑛𝑒𝑔
            (25) 

3.3.3. Specificity 

Specificity [17] is evaluated by the percentage of non-

diabetic individuals correctly identified by the specific test. 

It is represented as, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑍𝑛𝑒𝑔

𝑍𝑛𝑒𝑔+𝑌𝑝𝑜𝑠
            (26) 

3.4. Comparative Analysis 

The methods WGCNA [1], DMNE [2], SVM [3] and 

CMVRO [4] are used to compare the performance of the 

proposed ESWO_QDCNN and show its efficiency. 
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3.4.1. Analysis based on K-Value 

Figure 3 represents the study of ESWO_QDCNN with 

other classical methods based on metrics such as accuracy, 

Sensitivity and specificity by changing the K-value. Figure 

3 (a) illustrates the accuracy of ESWO_QDCNN and other 

methods. For K-Value=9, ESWO_QDCNN reaches an 

accuracy of 91.524%, whereas other methods reached 

83.257%, 84.524%, 86.954% and 88.541%. It shows that 

the performance of ESWO_QDCNN is improved by 

9.032%, 7.648%, 4.993% and 3.259%. Figure 3 (b) shows 

the Sensitivity of ESWO_QDCNN and other classical 

methods. When K-Value=9, ESWO_QDCNN achieved a 

Sensitivity of 90.854%, whereas other methods achieved 

81.564%, 85.632%, 86.933% and 88.521%. It demonstrates 

that the Sensitivity of ESWO_QDCNN is improved by 

10.226%, 5.748%, 4.316% and 2.567%. Figure 3 (c) 

represents the specificity of ESWO_QDCNN. When 

considering a K-value of 9, the traditional methods achieved 

the specificity of 82.365%, 84.256%, 86.924% and 

89.521%, whereas ESWO_QDCNN attained 92.290%. It 

shows the performance improvement of ESWO_QDCNN 

by 10.753%, 8.704%, 5.814% and 2.999%. 
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(c) 

Fig. 3 Analysis based on K-value (a) Accuracy, (b)  Sensitivity, and (c) Specificity. 

3.4.2. Analysis based on Training Data 

Figure 4 demonstrates the evaluation of 

ESWO_QDCNN with other comparative methods by 

varying training data depending on various metrics such as 

Accuracy, Sensitivity and Specificity. Figure 4 (a) displays 

the accuracy of ESWO_QDCNN and other methods with 

Training data=90%. Here, ESWO_QDCNN has an accuracy 

of 91.452%, and the other methods show an accuracy of 

81.997%, 86.541%, 87.514% and 89.143%. It depicts the 

performance improvement is enhanced by 10.340%, 

5.370%, 4.307% and %2.526 while comparing it with other 

methods. Figure 4 (b) shows the Sensitivity of 

ESWO_QDCNN, which was analyzed with other methods 

while considering training data = 90%. Here, the Sensitivity 

attained by ESWO_QDCNN is 90.248%, and the other 

traditional methods achieved 82.416%, 85.693%, 87.541% 

and 87.965%. It shows the performance improvement of 

ESWO_QDCNN by 8.678%, 5.047%, 2.999% and 2.529%. 

Figure 4 (c) portrays the specificity of ESWO_QDCNN 

compared with other methods while considering training 

data=90%. Here, ESWO_QDCNN achieved a specificity of 

92.537%, and the other methods attained 82.590%, 

84.596%, 85.632% and 88.537%. It shows performance 

improvement of ESWO_QDCNN by 10.750%, 8.581%, 

7.462% and 4.323%. 
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Fig. 4 Analysis based on Training data, (a) Accuracy, (b) Sensitivity, and (c) Specificity.

3.5. Comparative Discussion 

Table 1 shows the assessment of ESWO_QDCNN and 

other traditional approaches. When K-Value is 9, 

ESWO_QDCNN attained 91.524% accuracy, and the other 

classical methods attained 83.257%, 84.524%, 86.954% and 

88.541%. The high accuracy rate shows that 

ESWO_QDCNN can capture better complex patterns in the 

gene-expression data. The Sensitivity achieved by 

ESWO_QDCNN while considering K-Value=9 is 90.854%, 

while other methods achieved 81.564%, 85.632%, 86.933% 

and 88.521%. The enhanced Sensitivity of ESWO_QDCNN 

shows robustness in handling imbalanced gene-expression 

data and can obtain optimized parameters. The classical 

methods obtained the specificity of 82.365%, 84.256%, 

86.924% and 89.521%, whereas ESWO_QDCNN obtained 

the enhanced specificity of 92.290%. It denotes that 

ESWO_QDCNN can effectively identify negative instances, 

reduce false positives, and perform well in identifying 

T2DM. From the comparative analysis, it is obvious that 

ESWO_QDCNN is an effective approach for T2DM 

identification. Furthermore, ESWO_QDCNN attained an 

accuracy of 91.524%, Sensitivity of 90.854% and specificity 

of 92.290% for K-Value=9. 
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Table 1. Comparative discussion of ESWO_QDCNN 

Setups 
Metrics/ 

Methods 
WGCNA DMNE SVM CMVRO 

Proposed 

ESWO_QDCNN 

K-Value=9 

Accuracy (%) 83.257 84.524 86.954 88.541 91.524 

Sensitivity (%) 81.564 85.632 86.933 88.521 90.854 

Specificity (%) 82.365 84.256 86.924 89.521 92.290 

Training 

Data=90% 

Accuracy (%) 81.997 86.541 87.514 89.143 91.452 

Sensitivity (%) 82.416 85.693 87.541 87.965 90.248 

Specificity (%) 82.590 84.596 85.632 88.537 92.537 

 

4. Conclusion 
The early detection of T2DM is very crucial for 

eliminating certain complications in heart, kidney, vision 

and hearing problems in T2DM patients. Here, this 

condition is non-curable but can be prevented if it is 

diagnosed early. The main problems faced by T2DM 

detection methods are low accuracy, limited datasets, low 

processing, and inability to explore various datasets. As AI 

develops, various detection methods are being developed for 

effective disease detection and application in the real world. 

In this study, ESWO_QDCNN is considered for T2DM 

detection. Primarily, the input data is obtained from the 

Gene Expression dataset. Then, data transformation is 

achieved using Box-Cox transformation. Then, weighted 

Euclidean Distance is opted to perform feature selection. 

Lastly, the T2DM detection is achieved by employing 

ESWO_QDCNN. Here, the optimized hybrid approach 

ESWO is developed by utilizing the EWMA and SWO 

algorithms. Additionally, ESWO_QDCNN achieved 

91.524% accuracy, 90.854% sensitivity and 92.290% 

specificity. In future, by enhancing model interpretability 

and decision-making integration, this system can enable 

more robust and reliable detection of T2DM in clinical 

environments.  
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