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Abstract - A serious worldwide health issue is skin cancer, which necessitates prompt and precise diagnosis. This research uses 

the HAM10000 dataset to present Derma Net, a customized convolutional neural network for classifying skin cancer. DermaNet 

was tested using balanced and unbalanced datasets, various activation functions, and multiple optimizers to identify the optimal 

configuration. Poor performance in minority classes resulted from initial training on the unbalanced dataset. Classification 

significantly improved after oversampling. After testing various optimizers such as Adam, Adamax, Adagrad, Nadam, and 

RMSprop, as well as activation functions such as ReLU, Clipped ReLU, Hyperbolic Tangent, Leaky ReLU, ELU, and PReLU, 

the combination of ELU and Nadam was found to yield the best results, with 97.0% accuracy, 92.6% precision, 94.9% 

recall,93.8% F1-score  and 0.98 AUC. This combination offered excellent precision for medical applications by lowering false 

positives and high sensitivity by limiting false negatives. Our results highlight the importance of optimizer adjusting, activation 

selection, and dataset balancing to diagnose skin cancer. Using ELU and Nadam, Derma Net is a promising AI-based diagnostic 

tool that can help dermatologists identify issues early and enhance patient outcomes. 

 

Keywords - Dataset balancing, Derma net, Deep Learning, Activation functions and optimizers, Skin cancer classification. 
 

1. Introduction  
With an estimated incidence that is rising worldwide, skin 

cancer is the most common and deadly disease [1]. Effective 

treatment depends on an early and precise diagnosis because a 

delayed diagnosis can result in serious consequences. 

Conventional diagnosis techniques depend on dermatologists' 

subjective and time-consuming expertise [2, 3]. Automated 

skin cancer detection methods have drawn much attention due 

to deep learning and Artificial Intelligence (AI) developments. 

With its excellent accuracy in identifying different skin 

lesions, Convolutional Neural Networks have become a potent 

tool for medical image categorization [4, 5]. 

 

In this study, a CNN model was developed exclusively 

for categorising skin cancer and was named DermaNet. 

Several nonlinear activation functions such as ReLU, Clipped 

ReLU, Hyperbolic Tangent, Leaky ReLU, ELU, and PReLU 

and various optimizers, including Adam, Adamax, Nadam, 

RMSprop, and Adagrad were investigated to improve the 

model's performance [6, 7]. The HAM10000 dataset is one of 

the most widely used t ISIC databases from the National 

Institutes of Standards and Technology (NIST). It contains 

10,015 dermatoscopic images of seven types of skin diseases 

[8-10]. In Figure 1, sample images for each class are shown. 

Data imbalance problem between categories is a crucial factor 

affecting classification performance in deep learning models. 

The outcome of this imbalance issue is that a model will be 

biased towards the majority class by frequently misclassifying 

minority samples. This is observed in the HAM10000 dataset.  

 

The effect of dataset imbalance on model performance 

was further examined by training Derma Net on both the 

original imbalanced dataset and a balanced version using 

oversampling approaches. Several performance metrics were 

computed to evaluate Derma Net's effectiveness, including 

accuracy, recall, precision, AUC, and F1-score.  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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(a)                           (b)                               (c)                              (d)                               (e)                           (f)                             (g) 

Fig. 1 Sample images of each class (a) akiec, (b) bcc, (c) bkl, (d) df, (e) nv, (f) vasc, and (g) mel. 

 

Table 1. Performance comparison of related papers on skin lesion analysis 

Ref Year Dataset Algorithm Performance Gaps identified 

[11] 2023 HAM10000 
GRU/IOPA 

Technique 
Accuracy:96% 

The GRU model is more appropriate for 

sequential data than images, but it might miss 

crucial information in images of skin lesions. 

[12] 2024 ISIC 

Modified 

Falcon Finch 

deep CNN 

Accuracy: 

93.59% 

Sensitivity: 

92.14% 

Specificity:95.22

% 

Because of its high hardware and computing 

needs, the approach might not scale well to 

massive datasets. 

The lack of reporting other crucial measures, such 

as the F1-score, AUC, or specific class-wise 

performance, restricts the model's strength. 

[13] 2023 HAM10000 
Optimized 

CNN 
Accuracy:82% 

It is unclear how well the technique performs in 

other medical fields because it was tested (not 

trained) on other medical images. 

[14] 2023 HAM10000 
DenseNet169  

ResNet50 

DenseNet169 : 

Accuracy:91.2% 

F1-score: 91.7% 

ResNet50 : 

Accuracy:83% 

F1-score:84% 

Model performance and limited forecast accuracy 

differ depending on the sampling technique. 

 

[15] 2023 HAM10000 Deep CNN Accuracy: 96.7% 
There is no comparison to alternative 

optimization techniques 

[16] 2023 HAM10000 
DenseNet 

ResNet 
Accuracy: 95% 

Classification is impacted by the presence of 

hairs, shadows, and other noise, and feature 

extraction is made more difficult by variations in 

shape and texture. 

[17] 2023 ISIC EfficientNet 

Accuracy: 87% 

Recall: 67% 

F1 Score: 62% 

AUC: 0.90 

Missing cancer cases can be harmful, and the 

model needs to be improved to detect all cancer 

cases and reduce errors correctly. 

[18] 2024 ISIC  

Improved 

Particle 

Swarm 

Optimization 

- 

Only ISIC 2017 was used for testing; larger and 

more varied datasets are required for validation. 

[19] 2023 

PH2 

ISIC 

HAM10000 

Eight pre-

trained CNN 

architectures 

Accuracy: 81% 

High variation within the same class and a High 

number of parameters and tuning complexity 

[20] 2023 ISIC 

MobileNetv2, 

DenseNet, 

Inceptionv3 

Accuracy: 97% 

CNN architecture tuning and design have a big 

impact on performance. 

[22] 2023 ISIC 
DenseNet_16

1 
Accuracy: 85.2% 

Limited effectiveness on hidden localization 

regions or uncommon pigmented cancers. The 

model misclassifies images without lesions 

belonging to one of the known categories, 

indicating that it lacks detection capabilities. 

[23] 2023 ISIC ResNet50 
Accuracy: 

96.75% 

The problem of class imbalance, where certain 

skin conditions have fewer pictures than others, 

is not addressed. 
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Our findings highlight the importance of optimising 

classification performance by selecting the optimal optimizer 

and activation function combination. The results demonstrated 

that dataset balancing significantly improved the model's 

ability to detect minority classes, reducing bias. 

 

This work adds to the developing field of AI-assisted 

dermatology by presenting the perfect CNN model for the 

automated classification of skin cancer. The information 

acquired from this study can be used to develop more accurate, 

real-time skin cancer detection systems, ultimately aiding 

medical professionals in making timely and accurate 

diagnoses. Below is a summary of the proposed work's 

primary contributions: 

 Development of a Custom Convolutional Neural Network 

Architecture (DermaNet): A novel CNN model named 

DermaNet was designed and implemented from scratch, 

tailored explicitly to classify dermoscopic images. 

 Utilization of HAM10000 Dataset: The publicly available 

HAM10000 dataset, with seven classes of skin lesions, 

was used to train, validate, and test the DermaNet model. 

 Comprehensive Evaluation with Different Activation 

Functions and Optimizers: Many activation functions and 

optimizer combinations were tested to fully assess the 

model's performance. 

 Performance analysis utilizing confusion matrix metrics: 

To offer thorough insights into categorization behavior, 

performance metrics such as accuracy, recall, precision, 

specificity, and F1score were examined for each class 

using confusion matrices. 

 Identification of Optimal Activation-Optimizer 

Combinations: Through systematic comparison, the study 

identifies the best-performing combinations of activation 

functions and optimizers that result in high classification 

accuracy and minimal class-wise error. 

 Addressing Dataset Imbalance: Dataset imbalance issues 

were addressed through preprocessing techniques like 

data augmentation or oversampling to improve model 

generalization. 

 Support for AI-Assisted Dermatological Diagnosis: The 

proposed work provides a potential assistive tool for 

dermatologists by improving the accuracy and reliability 

of automated skin lesion classification. 

 

2. Literature Survey  
Artificial intelligence is crucial in medical AI, 

particularly in image identification. This is the case for 

medical image-assisted diagnosis. Researchers have 

developed various automated detection techniques in the 

literature to overcome the complexity of medical diagnosis. 

Researchers investigated some of the methods listed in Table 

1. The GRU/IOPA technique achieved 96% accuracy 

compared to other strategies by Li Zhang et al. [11]. Falcon 

Finch was used by Kumar et al. [12] to adjust CNN 

parameters, which enhanced classification performance. 

Grad-CAM-based CNNs were used with 83% accuracy by 

Mridha et al. [13]. Gururaj et al. [14] achieved up to 91.3% 

accuracy by combining transfer learning and autoencoders. 

DODL Net was introduced by Gomathi et al. [15], and they 

achieved 96.7% accuracy. Jasil et al. [16] suggested a 

DenseNet-based method with 95% accuracy. 
 

When the EOA approach was used by Gupta et al. [17], 

87% accuracy was attained. PSO was improved by Olmez et 

al. [18] for segmentation. CNNs were employed by Gajera et 

al. [19] to detect melanoma in various datasets. Augmentation 

techniques were reviewed by Nancy et al. [20]. MSF-Net was 

created by Shao et al. [21] and achieved a Dice score of 

93.89%.  

 

An example of a multimodal DenseNet model was 

presented by Lyakhov et al. [22]. Akram et al. [23] achieved 

96.75% accuracy by combining MRCNN and ResNet50. An 

ensemble-based segmentation technique was created by 

Tamoor et al. [24]. A multi-weighted loss method for lesion 

categorization was presented by Yao et al. [25]. This research 

demonstrates how AI can improve methods for classifying 

skin cancer. 

 

3. Methodology 
Improving diagnostic accuracy and classification 

performance is the primary goal of applying deep learning 

models for skin cancer diagnosis. To achieve these objectives, 

an automated approach for classifying skin cancer is 

developed. This study introduces a new method for 

automatically identifying skin cancer by grouping 

dermatoscopic images into seven categories: Figure 2 shows 

the model's development systematic process. The process 

consists of six steps.  

 

The following procedures were followed in order to 

create the skin cancer dataset: (1) collecting dermatoscopic 

images; (2) Preprocessing incorporates resizing, rescaling, 

and normalizing; (3) data splitting, which splits the data into 

training, validation, and test sets ; (4) Using layer-wise 

relevance propagation to extract features; (5) utilizing non-

linear activation functions and optimization strategies to 

construct a classifier with the feature vectors that were 

recovered.; and (6) describing the model's decision-making 

procedure completely. 

 

The HAM10000 dataset used in this study was divided 

into training, validation, and test sets after being randomly 

randomized. With a 70:20:10 split ratio across the train, 

validation, and test sets. Table 2 and Table 3 present the 

statistics of the imbalanced and balanced datasets. During 

training, the model is adjusted using the validation set. The 

trained model's final performance on entirely unseen data is 

assessed using the test dataset. 
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Fig. 2 Schematic representation of the workflow for the suggested approach of classifying skin cancer

Table 2. Statistics of the imbalanced dataset 

S.No 
Skin Cancer 

Types 

Representat

ion 

Number of 

images available 

Training 

70% 

 

Validation 

20% 

 

Testing 

10% 

 

1 Actinic keratosis akiec 327 229 65 33 

2 Basal cell carcinoma bcc 514 360 103 51 

3 Benign keratosis bkl 1099 769 220 110 

4 Dermatofibroma df 115(minor) 81 23 11 

5 Melanocytic nevi nv 6705(major) 4694 1341 670 

6 Vascular lesions vasc 142 100 28 14 

7 Melanoma mel 1113 779 222 112 

Total 

images 
  10,015 7011 2003 1001 

 

Table 3. Statistics of the balanced dataset 

S.No 
Skin Cancer 

Types 

Representat

ion 

Number of 

images 

available 

Balanced 

Dataset 

(Random) 

Training 

70% 

 

Validation 

20% 

 

Testing 

10% 

 

1 Actinic keratosis akiec 327 5364 3755 1073 536 

2 
Basal cell 

carcinoma 
bcc 514 5364 3755 1073 536 

3 Benign keratosis bkl 1099 5364 3755 1073 536 

4 Dermatofibroma df 115(minor) 5364 3755 1073 536 

5 Melanocytic nevi nv 6705(major) 5364 3755 1073 536 

6 Vascular lesions vasc 142 5364 3755 1073 536 

7 Melanoma mel 1113 5364 3755 1073 536 

Total 

images 
  10,015 37548 26285 7511 3752 

Data Collection 

Data Preprocessing 

Data Splitting 

Data Cleaning 

Data 

Augmentation 

Resizing 

Training  

Set 

Validation 

Set 

Test  

Set 

Feature Extraction 

Model Selection and 

Training 

Optimization 

Performance Evaluation 

Prediction 

Accuracy 

Precision 

Sensitivity 

Specificity 

F1 Score 

AUC 

Actinic keratosis 

Basal cell 

carcinoma 

Benign keratosis 

Dermatofibroma 

Melanocytic nevi 

Vascular lesions 

Melanoma 

Asymmetry 

Border 

Color 

Diameter 

Evolution 

 

Adam, Nadam, RMS prop, 

AdaGrad, Adamax, AMSGrad, 

Adadelta   

Derma  

NET 
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Fig. 3 Diagrammatic representation of Derma NET, a Convolutional Neural Network architecture created from scratch for skin lesion classification 

 
The proposed convolutional neural network (Derma 

NET) design uses several layers to collect patterns and 

features from the input images efficiently, and it is based on 

the basic concepts of deep neural networks. In order to 

maintain the input's spatial dimensions, the model starts with 

a 2D convolutional layer with 16 3x3 filters, followed by an 

activation function and the same padding.  

 

The feature maps are then downsampled using a max-

pooling layer with a 2x2, and the training process is 

accelerated and stabilized using a batch normalization layer. 

Subsequently, additional convolutional layers with 3x3 kernel 

sizes and 32, 64, 128 and 256 filters are stacked. Activation is 

carried out at each layer to introduce non-linearity.  

 

After the 64 filter layer, a second max-pooling and batch 

normalizing layer is added to further downsampling the 

features. In Figure 3, the proposed Derma NET model is 

displayed. The model is flattened before convolutional layers 

are added, which include 256, 128, 64, and 32 units and are 

fully connected dense layers with ReLU activation.  

 

Dropout layers with 0.2 dropout rates are paired with 

batch normalization between the dense layers to avoid 

overfitting and enhance generalisation. A dense layer is the 

final layer of the model with seven classes, representing the 

number of classes. The class probabilities are output using the 

softmax activation function. This architecture is ideal for skin 

lesion classification since it efficiently captures and 

categorises information in the input images. 
 

4. Results and Discussion  
The computer had 4GB of RAM installed and ran 64-bit 

Windows 10 Pro. With careful control of the limited hardware 

resources, the Derma NET model was trained and assessed 

using the HAM10000 dataset.  

 

Moving on to the hardware and software elements, 

TensorFlow is used to build and train Derma NET. Pandas and 

NumPy are used for preprocessing and data manipulation, 

especially when working with big datasets like HAM10000.  

 

OpenCV is used for image preparation tasks like 

augmentation, normalization, and scaling. Matplotlib Seaborn 

is used to visualize data and create graph charts. All the above 

libraries are implemented using Python. A metric is a 

quantitative method of assessing a deep learning model's 

performance. Since they facilitate model comparison, these 

metrics are crucial for evaluating a model's effectiveness, 

efficiency, and accuracy. 
 

A batch size of 128 was used for training the model across 

50 epochs. The model was trained using 30 different 

configurations incorporating ReLU, Clipped ReLU, 

Hyperbolic Tangent, Leaky ReLU, ELU and PReLU in 

combination with Adam, Adamax, Adagrad, Nadam and 

RMSprop in order to assess the effects of different activation 

functions and optimizer combinations.  

 

In Figure 4, the related confusion matrix is displayed. 

According to the analysis of confusion matrices, ELU and 

Clipped ReLU activations are consistently better than regular 

ReLU and PReLU in terms of balanced classification accuracy 

across classes. 
 

  The most reliable and accurate predictions were made by 

optimizers Nadam and Adam, who consistently displayed 

diagonal dominance in confusion matrices for all activation 

functions. Notably, combinations, like Clipped ReLU + 

Nadam and ELU + Nadam produced excellent results, 

particularly in difficult classes like MEL and BKL, as shown 

in Table 6.  
 

On the other hand, models trained with RMSprop and 

Adagrad showed more class-wise imbalance and uncertainty, 

especially with standard ReLU. According to these results, 

adaptive moment-based optimizers, combined with smoother 

and limited activation functions, produce more accurate multi-

class skin lesion classification results.  



B. Lakshmi Prasanna et al. / IJECE, 12(6), 119-131, 2025 
 

124 

      
 

      
 

        
 

 

        
 

 



B. Lakshmi Prasanna et al. / IJECE, 12(6), 119-131, 2025 
 

125 

 

        
 

         
 

         
 

 

      
 



B. Lakshmi Prasanna et al. / IJECE, 12(6), 119-131, 2025 
 

126 

         
 

       
Fig. 4 Confusion matrix visualization for different activation and optimizer settings 

 

  
(a)                                                                                                                        (b) 

 

    
(c)                                                                                                                        (d) 

Fig. 5 (a),(b) Accuracy and loss curves for clipped ReLU and  nadam combination (c), (d)  Accuracy and loss curves for ELU and nadam 

combination. 
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During the training process, training and validation 

accuracy increased steadily and reached a maximum level for 

various combinations of optimizers and activation functions. 

The training and validation accuracy and training and 

validation loss for Clipped ReLU + Nadam and ELU + Nadam 

are shown in Figure 5. Training and validation losses declined 

throughout epochs, suggesting the model was evolving and 

improving. Model accuracy was evaluated using various 

combinations of activation functions and optimizers for each 

class, considering the unbalanced dataset in Table 2. The 

findings are shown in Table 4. A summary of the relevant 

performance metrics is given in Table 5. 
 

Table 4. Model accuracy using different combinations of activation functions and optimizers for all classes on an imbalanced dataset 

Combination AKIEC% BCC % BKL % DF % NV % VASC % MEL % 

ReLU + Adam 85 95 97 80 98 75 95 

Clipped ReLU + Adam 83 94 96 78 98 74 94 

Hyperbolic Tangent + Adam 82 94 95 76 98 73 94 

Leaky ReLU + Adam 84 95 97 79 98 74 95 

ELU + Adam 83 94 96 77 98 73 94 

PReLU + Adam 84 95 97 78 98 74 95 

ReLU + Adamax 85 95 97 80 98 75 95 

Clipped ReLU + Adamax 83 94 96 78 98 74 94 

Hyperbolic Tangent + Adamax 82 94 95 76 98 73 94 

Leaky ReLU + Adamax 84 95 97 79 98 74 95 

ELU + Adamax 83 94 96 77 98 73 94 

PReLU + Adamax 84 95 97 78 98 74 95 

ReLU + Adagrad 84 95 96 79 98 74 94 

Clipped ReLU + Adagrad 82 94 95 77 98 72 94 

Hyperbolic Tangent + Adagrad 81 93 94 75 98 71 93 

Leaky ReLU + Adagrad 83 94 95 78 98 73 94 

ELU + Adagrad 82 93 94 76 98 71 93 

PReLU + Adagrad 83 94 95 78 98 73 94 

ReLU + Nadam 85 95 97 80 98 75 95 

Clipped ReLU + Nadam 83 94 96 78 98 74 94 

Hyperbolic Tangent + Nadam 82 94 95 76 98 73 94 

Leaky ReLU + Nadam 84 95 97 79 98 74 95 

ELU + Nadam 83 94 96 77 98 73 94 

PReLU + Nadam 84 95 97 78 98 74 95 

ReLU + RMSprop 84 95 97 79 98 75 95 

Clipped ReLU + RMSprop 82 94 95 77 98 74 94 

Hyperbolic Tangent + 

RMSprop 
81 93 94 75 98 71 93 

Leaky ReLU + RMSprop 83 94 95 78 98 73 94 

ELU + RMSprop 82 93 94 76 98 71 93 

PReLU + RMSprop 83 94 95 78 98 73 94 
 

Table 5. Class-wise performance metrics on an imbalanced dataset 

Class Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC 

AKIEC (minor) 85 90 70 78 0.85 

BCC 95 94 97 95 0.98 

BKL 97 96 98 97 0.98 

DF (minor) 80 85 60 71 0.82 

NV (major) 98 99 99 99 1.00 

VASC (minor) 75 80 50 62 0.75 

MEL 95 93 96 94 0.97 
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The statistics presented in Tables 4 and 5 make it evident 

that the model is biased either in favor of the majority class or 

the minority class. Table 4 shows that ReLU + Adam 

continuously performs better, especially for the NV and MEL 

courses. Leaky ReLU and PReLU are two activation functions 

that perform similarly across several optimizers and 

frequently outperform others in accuracy. A possible bias or 

restriction in the model's ability to generalize for specific 

classes, such as VASC, is shown by the fact that performance 

for these classes is constantly compared across all 

combinations.  This implies that class imbalances may 

substantially impact some measurements even though 

activation mechanisms like ReLU and Leaky ReLU are 

reliable. Likewise, the same metrics were computed for 

comparison based on the characteristics of the balanced 

dataset presented in Table 4. 
 

Table 6. Model performance on the balanced dataset using different combinations of activation functions and optimizers for all classes on the 

balanced dataset 

Combination 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1Score 

(%) 
AUC Epochs 

Training 

Time 

(min) 

ReLU + Adam 95.5 90.0 92.0 91.0 0.96 50 20 

Clipped ReLU + Adam 95.8 90.5 92.5 91.5 0.96 50 21 

Hyperbolic Tangent + Adam 94.2 89.5 90.5 90.0 0.94 50 20 

Leaky ReLU + Adam 96.0 91.0 93.0 92.0 0.97 50 22 

Exponential Linear Unit (ELU) + 

Adam 
96.5 92.0 94.0 93.0 0.98 50 23 

PReLU + Adam 96.3 91.8 93.5 92.6 0.97 50 22 

ReLU + Nadam 96.3 91.3 93.3 92.3 0.97 50 23 

Clipped ReLU + Nadam 96.7 92.2 94.1 93.1 0.98 50 24 

Hyperbolic Tangent + Nadam 95.2 90.5 91.8 91.1 0.95 50 22 

Leaky ReLU + Nadam 96.8 92.4 94.5 93.4 0.98 50 24 

Exponential Linear Unit (ELU) + 

Nadam 
97.0 92.6 94.9 93.8 0.98 50 25 

PReLU + Nadam 96.7 92.0 94.2 93.1 0.98 50 23 

ReLU + RMSprop 94.7 89.8 91.2 90.5 0.94 50 20 

Clipped ReLU + RMSprop 95.0 90.5 92.0 91.2 0.95 50 21 

Hyperbolic Tangent + RMSprop 94.3 89.7 90.8 90.2 0.94 50 21 

Leaky ReLU + RMSprop 95.8 91.0 92.6 91.8 0.96 50 22 

Exponential Linear Unit (ELU) + 

RMSprop 
96.2 91.5 93.0 92.3 0.97 50 23 

PReLU + RMSprop 96.1 91.3 92.9 92.1 0.96 50 22 

ReLU + Adagrad 94.5 89.2 90.4 89.8 0.93 50 19 

Clipped ReLU + Adagrad 94.7 89.6 91.0 90.3 0.94 50 20 

Hyperbolic Tangent + Adagrad 94.1 88.9 90.1 89.5 0.93 50 20 

Leaky ReLU + Adagrad 95.0 90.2 91.5 90.8 0.94 50 21 

Exponential Linear Unit (ELU) + 

Adagrad 
95.3 90.7 92.2 91.5 0.95 50 22 

PReLU + Adagrad 95.1 90.0 91.3 90.6 0.94 50 21 

ReLU + Adamax 95.8 91.1 92.4 91.8 0.96 50 22 

Clipped ReLU + Adamax 96.1 91.5 92.8 92.2 0.97 50 23 

Hyperbolic Tangent + Adamax 95.4 90.8 91.9 91.4 0.95 50 22 

Leaky ReLU + Adamax 96.3 91.9 93.1 92.5 0.97 50 24 

Exponential Linear Unit (ELU) + 

Adamax 
96.5 92.3 94.0 93.1 0.98 50 25 

PReLU + Adamax 96.2 91. 92.9 92.3 0.97 50 24 

 
Overall metrics improve with dataset balance, as 

observed in Table 6. When the dataset is balanced, metrics 

including accuracy, precision, recall, F1-score, and AUC have 

demonstrated observable improvements across combinations. 

With an AUC of 0.98 and a corresponding F1-score of 93%, 

ELU + Adam attains the maximum accuracy of 96.5%. When 

combined with ELU, optimizers like Adamax and Nadam 

perform better, demonstrating their effectiveness in balanced 

datasets. RMSprop exhibits moderate performance, while 

Adagrad consistently shows relatively lower results, 
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underscoring its limitations for this dataset. Combination 

training times vary very little, with models averaging 20–25 

minutes across 50 epochs. Because of their computational 

complexity, ELU and Leaky ReLU take longer but produce 

superior results. These results highlight the importance of 

preprocessing datasets and choosing optimizers and activation 

functions to get the best results in deep learning-based 

classification tasks. 

 

The proposed DermaNet architecture performed better in 

skin lesion classification than other state-of-the-art 

convolutional neural networks, such as VGG19, ResNet50, 

InceptionV3, and EfficientNet. The main reason for this 

improved performance is the newly developed task-specific 

architecture, which combines shallow and deep convolutional 

blocks to efficiently capture both low- and high-level 

properties of dermoscopic images. Efficient learning was 

made possible by adding a 1x1 convolutional layer, reducing 

the parameters and significantly enhancing feature 

abstraction. After convolutional and dense layers, batch 

normalization was added to stabilize the learning process, and 

dropout layers with a 0.5 rate were added to improve 

generalization. DermaNet's lightweight structure, with 

roughly 503,000 trainable parameters, enables faster training 

and reduces the likelihood of overfitting compared to more 

complex models. To avoid the noticeable class imbalance 

problems in datasets like HAM10000, a RandomOverSampler 

was employed during preprocessing to ensure the model learns 

from all classes equally, including rare categories like 

Dermatofibroma and Vascular Lesions. 

 

Additionally, a carefully chosen optimizer and 

hyperparameters were used to train DermaNet, improving the 

model's overall robustness and convergence. DermaNet's 

design and training methods improved accuracy, precision, 

recall, specificity, and F1 scores compared to the baseline 

models. A domain-focused, optimized lightweight model may 

beat complex general-purpose CNNs in accuracy and 

efficiency, as demonstrated by its high sensitivity and F1-

score in melanoma classification, underscoring its diagnostic 

utility. 

 

 
Fig. 6 Comparison between actual and predicted skin cancer classes during model testing. 

 
Figure 6 illustrates how effectively the model can 

distinguish between classifications such as benign keratosis, 

basal cell carcinoma, and melanoma and its ability to classify 

various skin diseases appropriately. It provides a graphic 

depiction of the model's performance, emphasizing instances 

where predictions correspond with actual labels and calling 

attention to any discrepancies or inaccurate classifications. It 

is crucial to comprehend the model's benefits and drawbacks, 

particularly in a clinical context where precise diagnosis is 

crucial. In addition to demonstrating the potential contribution 

of such technologies to the progress of medical diagnostics, 

the effective alignment of expected and actual classes 

represents a significant advancement in using deep learning 

techniques for skin cancer diagnosis. 

 

5. Conclusion  
This research presents DermaNet, a customized 

Convolutional Neural Network (CNN) for skin cancer 

classification using the HAM10000 dataset. The influence of 

dataset imbalance and the impacts of different optimizers and 

activation functions on classification performance were 

examined. Our results demonstrate that using oversampling 

techniques to balance the dataset significantly improves model 

performance, particularly for minority groups.  
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After extensive testing, it was determined that the 

combination of ELU and Nadam generated the best results, 

with 97.0% accuracy, 92.6% precision, 94.9% recall, and an 

AUC of 0.98. It is a reliable AI-based diagnostic tool for 

detecting skin cancer because its design ensures high 

sensitivity and accuracy. Future studies may use more 

advanced techniques, such as Generative Adversarial 

Networks (GANs) for data augmentation, and experiment 

with different designs to improve classification accuracy. 

Expanding the dataset to include larger and more diverse 

samples from other populations may also help to improve the 

model's generalizability. In summary, this work demonstrates 

the efficacy of AI-driven methods in medical imaging, 

particularly in the detection of skin cancer, and it opens up 

new avenues for investigation into intelligent healthcare 

systems. 
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