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Abstract - The coding efficiency of any compression algorithm at a low bit rate is challenging. It is a crucial performance 

metric for reconstructing the hyperspectral image after compression. Many wavelet-based compression algorithms have been 

proposed, but they either have low coding efficiency, extortionate coding memory requirements, or high coding complexity. In 

the present manuscript, the proposed compression algorithm utilized the property of contourlet transform to represent the 

image's geometrical features. This led to an increase in the coding efficiency of the proposed compression algorithm. Using 

markers it has low and fixed memory requirements and coding complexity. The simulation presented that the proposed 

compression algorithm gains 2% to 5% in coding efficiency. 

Keywords - Hyperspectral image compression, Coding algorithm, Lossy compression, Transform coding, Set Partitioned. 

1. Introduction  
Hyperspectral (HS) imaging is an advanced technology 

that combines a spectrometer and a camera sensor to capture 

multi-band spectral images by examining the reflection or 

radiation data (spatial and spectral information) for a single 

scene across successive wavelengths of visible to infrared 

and beyond (400 nm to 2500 nm with spectral spacing of 5 

nm to 10 nm) [1-3].  

With such detailed information in HS images, HS 

imaging has great potential in multiple applications ranging 

from astronomy [4], biotechnology [5], biomedical [6], 

chemical imaging [7], corrosion detection (infrastructure) 

[8], cultivation [9], defence [10], environment [11], forestry 

[12], forensic [13], geology [14], healthcare [15], mining 

(mineralogy) [16], oceanography [17], pharmaceuticals [18], 

remote sensing [19], township planning [20] etc.  

The refined analysis enhances comprehension of the HS 

image, leading to more well-founded judgments [21]. 

Remote Sensing (RS) collects information about objects 

from a distance, utilizing technology to detect characteristics 

such as temperature and radiation [22]. Given the extensive 

information available in hyperspectral images, scientists are 

developing computational algorithms in different research 

fields ranging from band reduction [23], classification [24], 

change detection [25], compression [26], denoising [27], 

dimension reduction [28], feature extraction [29], feature 

selection [30], fusion [31], image inpainting [32], object 

identification/recognition [33], segmentation [34], target 

detection [35], unmixing [36] etc.  

Each HS image occupies around 150 MB of storage 

space. Hence, saving the HS image data in the onboard 

sensor memory requires memory [37]. An efficient 

compression algorithm is required to compress the HS image 

data before the transmission from the onboard station to the 

earth station to save the onboard sensor memory, curtail the 

HS image data processing time (complexity), lower the data 

bandwidth and reduce the energy requirement [38-39]. 

Two forms of redundancy exist in HS images: spatial 

redundancy (due to the correlated coefficient present in one 

frame) and spectral redundancy (due to the pixels present at 

the same spatial location in adjutant frames) [40]. 

Redundancy should be minimized to achieve compression in 

any image [41]. 

The compression algorithms, or the HyperSpectral 

Image Compression Algorithm (HSICA), are divided into 

categories based on HS image data loss or coding process. 

Based on HS image data loss it is subdivided into three 

types: lossless, near lossless, and lossy [42,43]. While based 
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on HS, the image coding process is subdivided into seven 

types: Predictive Coding (PC) [44], Vector Quantization 

(VQ) [45], Transform Coding (TC) [46], Compressive 

Sensing (CS) [47], Tensor Decomposition (TD) [48], 

Learning-Based Compression (LC) [49] and hybrid 

compression algorithms [50]. 

 

Among the above-mentioned types of HSICAs, 

transform coding based HSICA has optimum performance as 

these HSICAs can work with lossy and lossless compression. 

Because of coding efficiency, LC-based HSICA has the best 

coding efficiency. Except for TC-based HSICAs, the rest of 

the HSICA work with lossless compression only [51].  

 

In this manuscript, focusing on the previously discussed 

challenges, a novel mathematical (contourlet) transform-

based lossy compression algorithm for HS images addresses 

image sensors' difficulties. This manuscript makes a 

significant contribution to the following sub-areas,  

 The contourlet transform is a geometric image 

transformation method designed to capture and represent 

contours and textures in HS images effectively. 

 Due to the listless version of the compression algorithm, 

the fixed coding memory was required independent of 

the bit rate and depended only on the size of the HS 

image under test. 

 The proposed compression algorithm (3D-CT-LSK) has 

a lower coding complexity than other state-of-the-art HS 

image compression algorithms. 

 

However, this research analysis is carried out using 

seven research sections. Section 2 introduced the principle of 

contourlet transform with a short survey of different 

mathematical transform-based compression algorithms. 

Section 3 gives the detailed architecture of the proposed 

compression algorithm with associated pseudo code.  

 

Section 4 discusses the implications of the results, 

deployment considerations, and outstanding challenges. 

Section 5 provides this study's main conclusions and 

identifies potential future research directions.    

 

2. Related Work  
In this section, the associated work with the compression 

algorithm is defined. The first sub-section describes the 

contourlet transform, while the second section covers a 

detailed description of the set partition-based HS image 

compression algorithm with a short survey. 

 

2.1. Contourlet Transform   
It has been known that a single HS image is a 

combination of highly correlated HS image frames that have 

many intrinsic geometrical structures [52]. Fourier, cosine, 

and wavelet transform have limited ability to identify the 

smoothness of curves present in any image [53]. Thus, a new 

transform is required, which is more powerful for 

representing the curve's smoothness [54]. The contourlet 

transform, an extension of the wavelet transform, has 

multiresolution, localization, directionality, critical sampling, 

and anisotropy properties [55].  

 

The basic functions of contourlet transform are 

multiscale and multidimensional [56]. The contourlet 

transform builds upon the curvelet transform while 

incorporating principles of human visual perception, 

enabling effective representation of image contours with 

diverse elongated geometries and multidirectional 

orientations [57]. 

  

The contourlet transform is successfully applied in 

multiple algorithms related to hyperspectral image fusion 

[58], denoising [59] and feature extraction [60]. 

 

2.2. Mathematical Transform-Based Set Partition 

Hyperspectral Image Compression Algorithms 

Mathematical transform-based set partition compression 

algorithms are a special type of compression algorithms that 

utilise the set structure of wavelet transform of HS image to 

define the large number of insignificant coefficients at high 

bit rates. It has been clear from the energy compaction 

property of the wavelet curvelet or contourlet transform that 

this mathematical transform packs the energy into the few 

low-frequency uncorrelated transform coefficients [61-62].  

 

This mathematical transform works as a decorrelator, 

which acts as a decorrelate for the HS image [63]. These 

mathematical transform compression algorithms can work 

for the lossy (till the bit budget is available with the 

compression algorithm) and lossless compression [43, 64]. 

 

Among these mathematical transform-based 

compression algorithms, a special type of compression 

algorithm that exploits the property of wavelet transform 

(energy compaction) or its advanced version of transform 

(curvelet, shearlet, etc.) and uses the set structure to define 

much insignificant coefficient at the high bit level to achieve 

the high coding efficiency. Apart from this property, low 

coding complexity, small coding memory requirement and 

embeddedness are the significant properties of these 

compression algorithms [51].  

 

From the orientation of the set structure (grouping of the 

insignificant coefficients), these algorithms are divided into 

the zerotree, zero block cube and zero block cube tree [43]. 

3D-SPECK [65], 3D-LSK [68] and 3D-ZM-SPECK [72] are 

the major zero block cube-based compression algorithms. 

Similarly, 3D-SPIHT [66], 3D-NLS [69] and 3D-BPEC are 

the major zerotree based compression algorithms. In the 

same way, 3D-WBTC [67] and 3D-LMBTC [70]  are the 

major zero block cube tree compression algorithms. 
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3. 3D Contourlet Transform Based Listless 

SPECK (3D-CT-LSK)  
A transform-based sub-band ‘δ’ whose coefficient ‘η’ is 

located at the position (α, β, γ) is denoted as C α, β, γ in the 

linear array. Any sub-block cube ‘B’ of sub-band ‘δ’ is 

significance is as per Equation (1) concerning the bit plane 

‘n’ 

max
(α,β,γ)  ∈  𝐵

[|𝐶𝛼 𝛽 𝛾|]   ≥   2𝑛 (1) 

 

The other condition is insignificance and will be 

mentioned as ‘0.’ 

 

Γ𝑛 (𝐵)    =  {
1 𝑖𝑓 2𝑛  ≤    ≤  2𝑛+1

0 𝑒𝑙𝑠𝑒
 (2) 

 

3D-CT-LSK uses the block cube structure to define the 

insignificant coefficients. Three markers are used to define 

the significant/insignificant sets or coefficients.  

 

The compression algorithm is started from the 

initialization of the fixed size of coding memory ‘SB’ of 

Npix/8 (Npix is total coefficients in HS image) elements with 

SB (0) stated as ‘MIB’ and SB (Npix / 8 L+1) stated as MI with 

rest of the elements are denoted as ‘0’. The initial Threshold 

is denoted as ‘T’. Each bit plane has two passes: the sorting 

pass and the refinement pass. ‘MRB’ represents that all eight 

coefficients of the block cube are found significant in the 

previous bit plane. 

 

The sorting pass of the bit plane is initiated by scanning 

all elements present in the ‘SB’, SB(k) = ‘MIB’. The size of 

an S block is determined by counting the consecutive '0' 

elements in SB (representing block cubes of fixed size). The 

S block is then evaluated against a threshold, and its 

significance is encoded. 

 If the S block is deemed insignificant, it is omitted, and 

the SB index is adjusted accordingly. 

 When the S block is significant, it undergoes splitting 

into eight segments, and the corresponding entries in SB 

are tagged as 'MIB' (Marked for Further Partitioning). 

The resulting octa blocks are then tested against the 

Threshold. 

 Quad-tree partitioning is applied to significant octa-

blocks, continuing until a base '2 × 2 × 2' block cube is 

obtained. 

 When a '4 × 4 x 4' block reaches significance, it 

transitions to an 'MNB' state, initiating individual 

coefficient evaluation against the Threshold with parallel 

significance encoding. 

 Their sign information is included in the encoding for 

coefficients that meet the significance threshold. 

This process ensures efficient hierarchical encoding of 

significant data while skipping irrelevant regions. In the 

refinement pass of any bit plane, the refinement bits are 

generated for all past significant coefficients (last bit planes). 

In the last bit plane, state ‘MNB’ denoted that this block 

cube of size ‘8’ is significant in the current bit plane and 

requires no refinement. For a block marked as 'MSB', each 

coefficient requiring refinement (i.e., those with a magnitude 

greater than twice the current Threshold) has its refinement 

bit encoded. Once all coefficients in the block have been 

refined, the block's state is updated from 'MSB' to 'MRB' 

(Marked as Refinement Completed), indicating that no 

further refinement is needed for that block at the current 

Threshold. This ensures efficient progressive refinement 

while tracking the completion status of each block. 

In Table 1, the pseudo-code for the introduced compression 

algorithm is given. 

 

 
Table 1. Algorithm outline for the proposed compression algorithm 

 Algorithm: HS image data encoding workflow in the proposed compression approach 

 Input: Transform HS image (cube) ‘Z’ of size ‘N x N x N’ with ‘L’ level of transform applied 

              Bit rate is defined as Bit Per Pixel Per Band (BPB) 

 Output: Embedded Bit Stream 

  Initialization : Number of coefficients contained in the HS image cube after transformation 

   A 1D array representation of the 3D HS image cube is generated via Morton ordering 

from its original 3D form. 

   Number of binary (bit plane) planes 𝑛 =  log2[max{𝑚𝑎𝑥{max{𝑍}}}]  
   Number of coefficients in the array (embedded bit stream) λ = ‘N x N x N x bob’ 

   Maximum (initial) Threshold T = 2n 

   Size of linear array Npix = 8n 

   
Initial SB size = (

𝑁𝑝𝑖𝑥

8𝐿⁄ ) 

   Set : SB(0) = ‘MIB’  

   Set : SB(8 m-L-1) = ‘MI’ 

   Set: The rest of the coefficient is marked as ’0’ 
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  Sorting Pass for (i = 0 : 2N x 2N x 2N – 1) 

   {  

    if (mark[i] = MIP) 

    {  

     Output S(i) 

     if (S(i) = 1) 

     {  

      Calculate the sign bit to the coefficient C α β γ  

      Mark [i] = MNP 

      i = i+1 

      else 

      {  

       if (mark [i] = MNK ) 

       { 

        Scan block cube B for every coefficient  

        if (Γ𝑛 (𝛿) = 1) 

        {  

         Partition the block cube into eight new block cubes. 

         else 

         { 

          FindNext() 

         }  

        }   

       }   

      }    

     }     

    }      

    i = i +1 

   }       

.          

  Refinement 

Pass 

For (i = 2N x 2N x 2N – 1) 

  {       

    if (mark [i] = MSP) 

    then 

    {      

    {      

     Output the nth most significant bit of the block 

    }      

    i = i +1 

    Elseif (mark [i] = MNP) 

    {      

     then 

     {     

      mark [i] = MSP 

     }     

    i = i +1 

   }       

          

  Quantization 

Step 

Decrement of n (bit plane) by 2 and go to the sorting pass till the bit budget is 

available.   

          

4. Experiment Result 
The proposed compression method is benchmarked 

against leading compression algorithms, considering coding 

efficiency, memory requirements, and processing 

complexity. The simulation work has been carried out on the 

four publicly named Washington DC Mall (Image I), 

Yellowstone Scene 0 (Image II), Yellowstone Scene 3 

(Image III), and Yellowstone Scene 18 (Image IV), available 

with Matlab simulation tool. The HS image is cropped from 

the top of the left-hand side and made into an HS image cub 
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used in the experiment. The performance metrics Peak Signal 

to Noise Raito (PSNR), Structural Similarity Index (SSIM) 

and Feature Similarity Index (FSIM) are used for the 

calculation of the coding efficiency while BD-PSNR is the 

derive comparative performance metric for the determine 

performance of proposed compression algorithm [43]. 

Coding memory is measured by the memory in kilobytes 

[72]. Coding complexity is calculated by the time required to 

calculate the encoding and decoding of the coefficients [73]. 

All the simulation experiments were conducted on the i5 

(11th generation) processor, which has 20 GB RAM with a 

Windows 11 operating system. 

 

Nine different HSICAs are used for the simulation test 

with the proposed compression algorithm on the four 

different HS images. 3D-SPECK (CA-I) [65], 3D-SPIHT 

(CA-II) [66], 3D-WBTC (CA-III) [67], 3D-LSK (CA-IV) 

[68], 3D-NLS (CA-V) [69], 3D-LMBTC (CA-VI) [70], 3D-

LCBTC (CA-VII) [71], 3D-ZM-SPECK (CA-VIII) [72] and 

3D-LBCSPC (CA-IX) [73] are set partition based 

compression algorithms used for the simulation test and 

simulation result shows the comparative analysis with 

proposed compression algorithm.  

 

4.1. Coding Efficiency 

The Compression Ratio (CR) measures how much the 

original Hyperspectral (HS) image is reduced in size after 

compression [70]. It is a smaller parameter. The 

mathematical equation in Equation (3) defines CR. 

𝐶𝑅 =  [
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐻𝑆 𝑖𝑚𝑎𝑔𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑐𝑢𝑡𝑒𝑑 𝐻𝑆 𝑖𝑚𝑎𝑔𝑒
] (3) 

 

PSNR is the ratio of the maximum possible power of a 

signal, which is the original image, to the power of noise, 

which is based on the disparity between the original and 

processed HS images [74] 

𝑃𝑆𝑁𝑅 =   20 log10 [
𝑀𝑎𝑥

𝑀𝑆𝐸
] (4) 

The highest possible pixel value of the HS image is 

denoted by the letter ‘Max’ and the Mean Square Error 

(MSE) of the reconstructed HS image compared to the 

original HS image. It is calculated as Equation (5) 

 

𝑀𝑆𝐸 =  
1

𝑁𝑝𝑖𝑥

∑ [𝑓(𝑥, 𝑦, 𝑧) − 𝑔(𝑥, 𝑦, 𝑧)]2

𝑥,𝑦,𝑧

 (5) 

 

The results in Table 2 indicate that the proposed 

algorithm delivers superior PSNR performance over other 

leading compression algorithms. It is clear from Table 3 that 

the proposed compression algorithm had a greater number 

(sum) of Newly Significant Coefficients (NSC) and 

Refinement Coefficients (RC) at the mentioned bit rates. 

Also, it has a slightly high number of refinement coefficients, 

which makes the coding efficiency higher than the other 

compression algorithms. The HS Image Quality (HSIQ) is 

defined in PSNR terms. 

 

3D Contourlet Transform Based Listless SPECK has no 

list (listless) and has only markers; a short comparative 

analysis of PSNR has been covered in Table 4 for coding 

efficiency of the different listless compression algorithms for 

the higher bit rates, which is almost similar for every 

algorithm. This is because the HS image is reconstructed at a 

higher bit rate.  BD -PSNR gain has been covered in Table 5 

for the seven-bit rates. 

 

SSIM and FSIM are the other performance-measuring 

metrics for determining the coding efficiency of compression 

algorithms [75-77]. It has been clear from Table 6 (for 

SSIM) and Table 7 (for FSIM) that 3D-CT-LSK performs 

better than other compression algorithms because it fetches a 

significant coefficient at a higher bit level. Due to the 

contourlet transform's property, it can capture the 

geometrical variation more efficiently than the other 

mathematical transform. 

 

 

 
Table  2. Performance comparison of the 3D-CT-LSK with other transform-based set-partitioned HSICA techniques in terms of PSNR 

BR 

 
CR 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA-

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

3D-CT- 

LSK 

Image I 

0.001 14000 26.28 26.28 26.25 26.14 25.90 26.26 26.41 26.32 26.39 27.11 

0.005 2800 28.95 28.95 28.93 28.71 28.71 28.70 28.66 28.73 29.01 29.78 

0.01 1400 30.08 30.08 30.04 29.99 29.83 29.98 30.01 29.99 30.14 30.94 

0.05 280 34.23 34.23 34.21 34.04 33.81 33.99 34.29 34.06 34.37 35.02 

0.1 140 37.22 37.22 37.20 36.96 37.00 36.83 37.34 36.87 37.29 37.98 

0.25 56 42.17 42.17 42.16 41.62 41.69 41.34 42.28 41.37 42.01 43.02 

0.5 28 48.02 47.99 47.97 47.01 47.79 47.51 48.11 47.55 47.74 48.89 
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Image II 

0.001 16000 27.11 26.75 27.09 26.83 26.61 26.75 26.87 26.82 27.19 28.01 

0.005 3200 29.45 29.31 29.43 29.27 29.25 29.24 29.41 29.25 29.55 30.34 

0.01 1600 30.28 30.19 30.27 30.27 30.15 30.31 30.53 30.33 30.38 30.96 

0.05 320 33.76 33.61 33.73 33.56 33.59 33.51 33.69 33.54 33.87 33.64 

0.1 160 35.57 35.44 35.56 35.49 35.41 35.45 35.55 35.46 35.67 36.31 

0.25 64 39.30 39.19 39.29 39.26 39.17 39.22 39.37 39.23 39.29 40.09 

0.5 32 43.62 43.65 43.51 43.57 43.26 43.55 43.62 43.58 43.68 44.59 

Image III 

0.001 16000 27.82 27.49 27.8 27.78 27.28 27.88 28.07 27.92 27.97 28.69 

0.005 3200 30.24 30.09 30.22 30.03 30.03 30.01 30.44 30.02 30.38 30.87 

0.01 1600 31.27 31.14 31.25 31.17 31.1 31.13 31.42 31.14 31.37 31.94 

0.05 320 34.57 34.39 34.55 34.58 34.27 34.44 34.67 34.51 34.71 35.21 

0.1 160 36.63 36.49 36.64 36.42 36.49 36.35 36.74 36.37 36.81 37.27 

0.25 64 40.83 40.63 40.84 40.46 40.59 40.29 40.81 40.31 40.65 41.51 

0.5 32 45.88 45.66 45.87 45.39 45.57 45.13 45.58 45.15 45.69 46.32 

Image IV 

0.001 16000 28.11 27.94 28.06 28.08 27.88 28.07 28.14 28.16 28.21 28.94 

0.005 3200 30.44 30.32 30.43 30.27 30.03 30.26 30.22 30.28 30.51 31.21 

0.01 1600 31.41 31.29 31.39 31.32 31.1 31.29 31.57 31.43 31.55 32.02 

0.05 320 34.46 34.3 34.45 34.41 34.27 34.25 34.62 34.28 34.54 35.15 

0.1 160 36.43 36.29 36.43 36.25 36.49 36.19 36.51 36.2 36.53 37.08 

0.25 64 40.08 39.93 40.07 39.92 40.59 39.8 40.19 39.84 39.82 40.79 

0.5 32 44.51 44.47 44.5 44.31 44.46 44.22 44.63 44.22 44.24 45.04 

 
Table 3. Image quality of 3D-SPECK [65], 3D-LSK [68], 3D-ZM-SPECK [72], 3D-LBCSPC [73 ] and proposed 3D-CT-LSK  

B
R

 

Image I 

3D-SPECK [65] 3D-LSK [68] 3D-ZM-SPECK [72] 3D-LBCSPC [73] 3D-CT-LSK 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

0.001 26.28 2601 883 26.14 2413 685 26.32 2495 833 26.39 2681 927 27.11 2711 951 

0.005 28.95 16563 4134 28.71 14905 4134 28.73 14297 4174 29.01 16821 4194 29.78 16997 4219 

0.01 30.08 29621 12018 29.99 27742 12018 29.99 27034 17916 30.14 30817 12918 30.94 31102 12992 

0.05 34.23 159915 36960 34.04 154678 36960 34.06 144247 107342 34.37 161495 95823 35.02 164002 96008 

0.1 37.22 330216 112621 36.96 314919 112621 36.87 291818 231642 37.29 337414 123568 37.98 339574 123002 

R
 

Image II 

3D-SPECK [65] 3D-LSK [68] 3D-ZM-SPECK [72] 3D-LBCSPC [73] Proposed Algorithm 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

H
S

IQ
 

N
S

C
 

R
C

 

0.001 27.11 3780 1577 26.83 3348 1577 26.82 3094 1913 27.19 3894 1624 28.01 3916 1684 

0.005 29.45 17212 7129 29.27 15469 7129 29.25 14481 9433 29.55 18002 8154 30.34 18111 8267 

0.01 30.28 29247 12415 30.27 29196 12415 30.33 27583 13814 30.38 30017 12989 30.96 30958 13344 

0.05 33.76 170267 47234 33.56 158703 47234 33.54 148700 46602 33.87 165268 47008 33.64 168714 47108 

0.1 35.57 314698 142703 35.49 302729 142703 35.46 290236 142472 35.67 310523 143651 36.31 315108 146222 
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Table 4.  Coding efficiency of listless HS image compression algorithms at the higher bit rates 

B
R

 

C
A

-I
V

 

[6
8

] 

C
A

-V
 

[6
9

] 

C
A

-V
I 

[7
0

] 

C
A

-V
II

 

[7
1

] 

C
A

-V
II

I 

[7
2

] 

C
A

-I
X

 

 [
7

3
] 

3
D

-C
T

- 

L
S

K
 

C
A

-I
V

 

[6
8

] 

C
A

-V
 

[6
9

] 

C
A

-V
I 

[7
0

] 

C
A

-V
II

 

[7
1

] 

C
A

-V
II

I 

[7
2

] 

C
A

-I
X

 

 [
7

3
] 

3
D

-C
T

- 

L
S

K
 

 Image I Image II 

1 55.96 56.1 55.42 55.64 55.44 56.04 56.06 49.51 49.53 49.25 49.47 49.26 49.55 49.54 

2 66.75 66.77 66.01 66.18 66.02 66.78 66.97 59.52 59.29 59.49 59.51 59.51 59.61 59.67 

3 75.72 75.47 75.48 75.41 75.50 75.69 76.02 66.66 66.71 66.07 66.24 66.08 66.7 66.69 

4 82.99 83.07 82.75 82.64 82.76 83.04 83.25 72.43 72.50 71.60 71.97 71.60 72.5 72.5 

5 87.9 87.43 88.43 88.17 88.44 88.27 88.41 78.92 78.76 77.77 78.08 77.78 78.9 78.91 

6 95.68 95.17 95.68 95.61 95.68 95.71 95.77 84.51 84.41 84 84.09 84.00 84.6 84.61 

7 96.8 96.71 96.72 96.52 96.77 96.84 96.89 89.12 88.88 89.21 89.28 89.21 89.2 89.25 

8 97.71 97.65 97.87 97.58 97.69 97.88 97.9 96.94 96.02 96.94 96.91 96.94 96.9 96.9 

 Image III Image IV 

1 53.38 53.15 52.89 53.08 52.93 53.49 53.51 50.96 53.15 50.43 50.47 50.45 51.21 51.22 

2 64.15 63.91 64.15 64.16 64.11 64.31 64.31 61.12 60.91 60.62 60.94 60.63 61.28 61.3 

3 70.59 70.70 70.44 70.52 70.45 70.68 70.7 67.98 67.82 67.50 67.61 67.51 67.95 67.95 

4 76.27 76.10 75.97 76.09 75.97 76.41 76.44 73.81 73.65 72.94 73.24 72.95 73.91 73.9 

5 82.39 82.21 82.16 82.11 82.17 82.41 82.47 79.86 79.68 78.60 79.37 78.61 79.88 79.87 

6 87.17 87.00 87.26 87.29 87.27 87.22 87.23 85.27 85.12 84.68 84.91 84.68 85.37 85.36 

7 96.15 95.87 96.35 95.97 96.15 96.39 96.39 90.55 90.1 90.7 90.77 90.71 90.67 90.66 

8 98.07 97.67 98.01 98.01 97.89 98.14 98.14 96.6 95.53 96.6 96.51 96.6 96.6 96.61 
 

Table 5. Rate-distortion performance evaluation: Average PSNR gains (BD-PSNR) of the novel HS compression approach versus benchmarks across 

seven bitrate levels 

HS Images under 

Test 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA- 

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

Image I 0.8237 0.8257 0.8499 1.0957 1.1319 1.1106 0.8396 1.0727 0.7866 

Image II 0.6432 0.7818 0.6661 0.7645 0.8516 0.7901 0.6315 0.7671 0.5569 

Image III 0.6591 0.8367 0.6712 0.8235 0.9097 0.8938 0.5488 0.8671 0.5734 

Image IV 0.6897 0.8226 0.7045 0.8097 0.8398 0.8734 0.6394 0.8199 0.65 

 
Table 6. Benchmarking the SSIM index of the 3D-CT-LSK against existing transform-based HSICA implementations employing set partitioning 

BR 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA- 

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

3D-CT- 

LSK 

 Image I 

0.001 0.078 0.078 0.077 0.073 0.063 0.075 0.074 0.077 0.076 0.08 

0.005 0.195 0.195 0.194 0.186 0.183 0.186 0.187 0.188 0.192 0.196 

0.01 0.232 0.232 0.23 0.235 0.218 0.233 0.237 0.238 0.237  0.238 

0.05 0.371 0.371 0.369 0.375 0.37 0.376 0.374 0.377 0.375 0.377 

0.1 0.422 0.422 0.421 0.436 0.424 0.429 0.428 0.437 0.434 0.44 

0.25 0.504 0.504 0.504 0.518 0.521 0.519 0.524 0.519 0.518 0.521 

0.5 0.589 0.591 0.591 0.593 0.591 0.592 0.589 0.591 0.592 0.599 

 Image II 

0.001 0.27 0.267 0.268 0.266 0.264 0.268 0.267 0.264 0.266 0.271 

0.005 0.373 0.365 0.372 0.367 0.362 0.367 0.374 0.364 0.371 0.375 

0.01 0.42 0.415 0.419 0.421 0.414 0.418 0.417 0.419 0.421 0.422 

0.05 0.608 0.601 0.607 0.611 0.602 0.608 0.611 0.610 0.607 0.61 

0.1 0.666 0.661 0.666 0.668 0.663 0.665 0.666 0.665 0.664 0.67 

0.25 0.764 0.762 0.764 0.766 0.763 0.764 0.763 0.765 0.765 0.767 

0.5 0.824 0.825 0.827 0.828 0.826 0.827 0.83 0.827 0.828 0.83 
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 Image III 

0.001 0.164 0.169 0.164 0.163 0.164 0.164 0.164 0.164 0.163 0.166 

0.005 0.291 0.285 0.291 0.29 0.284 0.285 0.283 0.286 0.285 0.286 

0.01 0.338 0.339 0.337 0.331 0.326 0.326 0.334 0.326 0.328 0.33 

0.05 0.482 0.477 0.483 0.488 0.478 0.478 0.481 0.479 0.478 0.481 

0.1 0.541 0.537 0.541 0.547 0.539 0.539 0.527 0538 0.541 0.542 

0.25 0.649 0.647 0.646 0.648 0.647 0.647 0.649 0.647 0.649 0.651 

0.5 0.723 0.721 0.723 0.733 0.724 0.724 0.728 0.724 0.724 0.728 

 Image IV 

0.001 0.213 0.208 0.212 0.212 0.204 0.207 0.211 0.203 0.211 0.218 

0.005 0.316 0.311 0.316 0.315 0.307 0.312 0.315 0.313 0.314 0.32 

0.01 0.365 0.366 0.363 0.362 0.366 0.359 0.364 0.359 0.362 0.366 

0.05 0.532 0.529 0.533 0.535 0.529 0.531 0.53 0.531 0.533 0.537 

0.1 0.598 0.594 0.597 0.604 0.601 0.604 0.603 0.603 0.603 0.608 

0.25 0.711 0.708 0.71 0.708 0.712 0.714 0.715 0.712 0.711 0.716 

0.5 0.787 0.784 0.787 0.791 0.789 0.788 0.79 0.789 0.79 0.792 

 
Table 7. Comparing the FSIM index of the 3D-CT-LSK with other transform-based set-partitioned HSICA approaches 

BR 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA-

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

3D-CT- 

LSK 

 Image I 

0.001 0.366 0.366 0.371 0.371 0.372 0.374 0.37 0.374 0.373 0.374 

0.005 0.433 0.433 0.432 0.434 0.436 0.435 0.435 0.436 0.434 0.438 

0.01 0.55 0.551 0.552 0.555 0.552 0.554 0.551 0.554 0.554 0.558 

0.05 0.685 0.681 0.686 0.687 0.677 0.681 0.684 0.682 0.686 0.69 

0.1 0.742 0.742 0.744 0.751 0.748 0.749 0.748 0.75 0.75 0.752 

0.25 0.802 0.799 0.803 0.804 0.801 0.802 0.801 0.803 0.804 0.805 

0.5 0.888 0.889 0.889 0.886 0.887 0.887 0.888 0.887 0.888 0.89 

 Image II 

0.001 0.587 0.577 0.586 0.589 0.583 0.584 0.586 0.584 0.588 0.589 

0.005 0.686 0.682 0.688 0.689 0.682 0.692 0.691 0.69 0.691 0.691 

0.01 0.699 0.699 0.699 0.702 0.701 0.702 0.701 0.701 0.702 0.703 

0.05 0.712 0.711 0.714 0.707 0.708 0.709 0.708 0.708 0.71 0.711 

0.1 0.734 0.736 0.74 0.738 0.741 0.742 0.738 0.74 0.741 0.742 

0.25 0.765 0.77 0.772 0.771 0.774 0.775 0.771 0.771 0.773 0.774 

0.5 0.807 0.805 0.807 0.807 0.806 0.805 0.806 0.806 0.807 0.808 

 Image III 

0.001 0.537 0.536 0.538 0.537 0.53 0.529 0.53 0.531 0.535 0.535 

0.005 0.661 0.657 0.657 0.657 0.664 0.663 0.659 0.662 0.666 0.667 

0.01 0.688 0.691 0.695 0.69 0.694 0.693 0.693 0.692 0.692 0.693 

0.05 0.709 0.707 0.71 0.709 0.709 0.709 0.71 0.709 0.711 0.711 

0.1 0.744 0.744 0.743 0.743 0.747 0.74 0.742 0.742 0.749 0.75 

0.25 0.768 0.771 0.775 0.772 0.771 0.773 0.774 0.772 0.775 0.775 

0.5 0.812 0.818 0.808 0.812 0.819 0.804 0.803 0.801 0.811 0.812 

 Image IV 

0.001 0.377 0.379 0.381 0.38 0.378 0.381 0.381 0.382 0.383 0.386 

0.005 0.579 0.577 0.581 0.582 0.58 0.581 0.58 0.581 0.582 0.582 

0.01 0.667 0.67 0.672 0.671 0.669 0.673 0.674 0.674 0.674 0.675 

0.05 0.726 0.73 0.731 0.732 0.731 0.729 0.728 0.73 0.733 0.734 

0.1 0.744 0.749 0.751 0.749 0.752 0.751 0.75 0.752 0.754 0.755 

0.25 0.779 0.784 0.786 0.783 0.788 0.789 0.791 0.789 0.791 0.79 

0.5 0.814 0.816 0.806 0.809 0.811 0.812 0.814 0.812 0.816 0.817 
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Table 8. Coding memory requirement between the 3D-CT-LSK with the other HSICA 

BR 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA-

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

3D-CT- 

LSK 

 Image I 

0.001 26.67 37.33 28.08 4096 8192 96 2318 0 4097 1666 

0.005 102.3 99.21 89.33 4096 8192 96 2318 0 4097 1666 

0.01 232.2 222.7 202.4 4096 8192 96 2318 0 4097 1666 

0.05 1084 1041 991.7 4096 8192 96 2318 0 4097 1666 

0.1 1846 1931 1756 4096 8192 96 2318 0 4097 1666 

0.25 4571 4463 4289 4096 8192 96 2318 0 4097 1666 

0.5 8644 8555 8514 4096 8192 96 2318 0 4097 1666 

 Image II 

0.001 22.58 21.51 22.69 4096 8192 96 2318 0 4097 1666 

0.005 91.12 98.91 91.29 4096 8192 96 2318 0 4097 1666 

0.01 265.9 267.8 266.4 4096 8192 96 2318 0 4097 1666 

0.05 982.4 1036 985.4 4096 8192 96 2318 0 4097 1666 

0.1 2219 2326 2229 4096 8192 96 2318 0 4097 1666 

0.25 5450 5611 5464 4096 8192 96 2318 0 4097 1666 

0.5 10005 9981 9832 4096 8192 96 2318 0 4097 1666 

 Image III 

0.001 25.28 24.94 25.06 4096 8192 96 2318 0 4097 1666 

0.005 101.2 105.8 101.5 4096 8192 96 2318 0 4097 1666 

0.01 205.1 218.9 208.6 4096 8192 96 2318 0 4097 1666 

0.05 1108 1149 1136 4096 8192 96 2318 0 4097 1666 

0.1 1855 1808 1854 4096 8192 96 2318 0 4097 1666 

0.25 4401 4449 4412 4096 8192 96 2318 0 4097 1666 

0.5 7918 7805 7935 4096 8192 96 2318 0 4097 1666 

 Image IV 

0.001 24.67 22.41 24.55 4096 8192 96 2318 0 4097 1666 

0.005 100.8 105.5 101.1 4096 8192 96 2318 0 4097 1666 

0.01 210.9 229.9 214.4 4096 8192 96 2318 0 4097 1666 

0.05 1088 1212 1106 4096 8192 96 2318 0 4097 1666 

0.1 1970 2083 1980 4096 8192 96 2318 0 4097 1666 

0.25 4867 5047 4878 4096 8192 96 2318 0 4097 1666 

 

4.2. Coding Memory  

The coding memory of the demand of the listless 

compression algorithm is fixed depending only on the size of 

the HS image, while for the listless, the demand of coding 

memory varies with the bit rate. It has been observed from 

Table 8 that the proposed compression algorithm has slightly 

higher coding memory demand than 3D-LMBTC [70], 3D-

ZM-SPECK [72] and 3D-BCP-ZM-SPECK [74]. At the low 

bit rate, list-based compression algorithms have low coding 

memory demand because the number of coefficients is 

smaller.  Table 9 covers the comparative analysis between 

the different compression algorithms (listless) for different 

image sizes. 

4.3. Coding Efficiency 

Coding efficiency is measured by the time the 

compression algorithm consumes [78-79]. Every transform-

based compression algorithm has two phases in the 

compression process: encoding and decoding. The encoded 

embedded bit stream is generated from the transform HS 

image after the compression in the encoding process. At the 

same time, decompression of this bit stream is performed 

during the encoding process. It has been known that the time 

duration of the encoding process is always greater than the 

decoding process [70]. This is because, in the encoding 

process, the significance of the sets or coefficients is always 

checked for each bit plane, while significance testing of 

partitioned sets or coefficients is not required in the decoding 

process [78]. The proposed compression algorithm has less 

number of markers than 3D-LSK [68] and 3D-NLS [69], 

which reduces the time requirement for read or write 

operation. Table 10 represents the encoding time, while 

Table 11 covers the decoding time. A short comparative 

analysis between the listless HSICA at bit rate is covered in 

Table 12. 
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Table 9. Coding memory requirement of listless HSICAs for different sizes of HS images (KB) 

Dimension of 

HS Image 

Cube C
A

-I
V

 

[6
8

] 

C
A

-V
 

[6
9

] 

C
A

-V
I 

[7
0

] 

C
A

-V
II

 

[7
1

] 

C
A

-V
II

I 

[7
2

] 

3
D

-B
C

P
-

Z
M

-

S
P

E
C

K
 

[7
4

] 

C
A

-I
X

 

[7
3

] 

3
D

-C
T

- 

L
S

K
 

64 64 KB 128 KB 1.5 KB 46.79 KB 0 0 65 KB 27 KB 

128 512 KB 
1024 

KB 
12 KB 300.59 KB 0 0 513 KB 209 KB 

256 4 MB 8 MB 96 KB 2318 KB 0 0 4097 KB 1666 KB 

512 32 MB 64 MB 768 KB 18.02 MB 0 0 
32769 

KB 
14 MB 

 
Table 10. Comparison of encoding time (coding complexity) between 3D-CT-LSK and other HSICA 

BR 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA-

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

3D-CT- 

LSK 

 Image I 

0.001 3.99 4.06 5.94 2.67 14.18 5.91 3.17 3.24 3.03 2.97 

0.005 9.85 9.73 8.2 2.78 61.33 8.35 3.35 4.83 3.41 3.11 

0.01 20.45 29.93 10.99 3.25 73.64 9.26 4.41 5.97 4.08 3.59 

0.05 222.2 303.4 94.36 5 90.57 19.45 5.49 12.18 5.57 5.28 

0.1 1163 1297 762.6 7.31 102.5 34.74 7.94 19.55 8.04 7.64 

0.25 6234 6871 4358 13.35 120.8 68.15 14.02 40.25 14.12 13.89 

0.5 17995 18742 19551 24.12 151.3 122.5 26.03 74.87 25.21 24.54 

 Image II 

0.001 3.42 4.33 5.94 2.35 15.97 5.73 2.47 2.94 2.91 2.56 

0.005 9.84 5.85 8.5 2.71 75.93 7.36 3.87 6.44 3.37 2.94 

0.01 22.53 9.41 10.83 2.88 90.43 16.99 4.29 10.28 3.94 3.08 

0.05 250.3 134.4 131.5 4.14 106.55 27.4 5.02 16.02 4.82 4.47 

0.1 966.7 570.8 632.6 6.04 125.87 36.27 7.21 18.42 6.76 6.23 

0.25 4973 3032 4100 10.24 134.4 96.34 12.21 56.67 11.02 10.87 

0.5 12007 10112 12975 17.25 154.41 177.73 18.95 67.74 19.23 17.84 

 Image III 

0.001 4.08 4.03 5.85 2.07 15.97 5.68 2.76 3.19 2.22 2.54 

0.005 9.12 5.96 7.87 2.89 75.93 7.78 3.28 4.74 3.01 3.11 

0.01 20.18 9.7 11.64 3.34 90.43 8.55 4.01 7.52 3.92 3.69 

0.05 204.3 125.2 89.77 4.57 106.55 19.48 5.31 22.88 5.07 4.97 

0.1 1183 775.8 835.9 5.91 125.87 32.46 6.47 30.14 6.24 6.65 

0.25 8499 5151 6309 10.41 134.14 70.4 11.91 43.49 11.92 11.21 

0.5 29849 18383 23861 16.19 154.41 125.42 17.09 72.62 16.87 17.35 

 Image IV 

0.001 4.56 5.6 7.23 2.39 6.03 5.74 2.89 2.82 2.52 2.61 

0.005 15.24 6.23 8.15 2.81 11.53 7.53 3.34 4.44 3.01 3.14 

0.01 21.67 10.2 12.64 3.18 18.44 8.93 3.98 5.64 3.54 3.52 

0.05 269.6 130.4 98.12 4.3 22.64 18.61 4.88 13.02 4.57 4.64 

0.1 1336 893.4 882.3 6.11 25.53 32.45 6.41 18.18 6.48 6.55 

0.25 8435 5133 5501 10.35 34.5 69.66 11.38 36.3 11.12 10.89 

0.5 27917 17945 18818 17.43 65.13 125.19 19.01 66.91 18.05 18.02 
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Table 11. Comparison of decoding time (coding complexity) between 3D-CT-LSK with the other HSICA 

BR 

CA- 

I 

[65] 

CA- 

II 

[66] 

CA- 

III 

[67] 

CA-

IV 

[68] 

CA- 

V 

[69] 

CA- 

VI 

[70] 

CA- 

VII 

[71] 

CA- 

VIII 

[72] 

CA- 

IX 

[73] 

3D-CT- 

LSK 

 Image I 

0.001 1.78 2.92 1.59 2.08 12.79 2.48 2.21 3.02 2.07 2.57 

0.005 5.18 5.25 2.41 2.43 48.29 3.86 2.68 4.65 2.38 2.98 

0.01 10.78 14.31 4.51 2.68 57.16 4.04 3.08 5.61 2.74 3.16 

0.05 172.7 236.2 84.75 4.02 69.23 12.01 4.34 11.79 4.31 4.94 

0.1 1081 1078 762.11 6.24 77.57 21.79 6.71 18.36 6.47 7.11 

0.25 6012 6305 4703 11.68 90.45 50.91 12.02 37.86 12.79 13.21 

0.5 17597 18534 15400 22.65 100.5 96.84 25.07 69.02 24.43 22.95 

 Image II 

0.001 1.87 1.52 1.46 1.4 12.18 2.18 1.61 2.79 1.51 2.01 

0.005 5.4 2.45 2.77 2.49 66.24 3.21 3.01 6.05 2.78 2.78 

0.01 10.01 4.92 3.86 2.71 81.48 6.23 3.27 10.04 2.94 2.97 

0.05 207.2 127.8 130.1 3.38 94.49 14.94 3.94 11.35 3.33 3.98 

0.1 887.6 717.5 614.3 5.98 106.8 23.01 6.64 17.81 5.94 6.02 

0.25 4796 3129 4140 6.74 113.86 58.62 7.18 47.06 6.98 10.21 

0.5 11898 9954 12299 14.7 125.56 120.33 15.34 60.13 15.03 16.09 

 Image III 

0.001 1.74 1.39 1.32 1.89 8.43 4.1 2.11 3.02 2.01 2.33 

0.005 5.13 2.24 2.44 2.47 66.02 6.02 2.74 3.99 2.64 2.84 

0.01 12.51 5.18 5.14 2.69 84.96 7.06 3.02 6.33 2.94 2.98 

0.05 160.3 114.7 80.01 4.46 92.68 14.84 5.19 18.56 5.02 4.02 

0.1 1474 760.5 827.8 5.59 104.98 21.49 6.37 27.82 6.11 5.91 

0.25 8587 5832 6549 9.27 115.94 48.95 10.34 39.95 10.02 10.21 

0.5 26948 15672 23161 14.97 141.97 114.52 16.68 67.23 16.21 16.35 

 Image IV 

0.001 2.41 1.64 1.73 2.02 5.27 2.1 2.24 2.74 2.11 2.49 

0.005 9.57 2.33 2.55 2.34 8.26 2.88 2.47 4.28 2.31 3.05 

0.01 12.68 5.23 6.11 2.89 14.44 3.91 3.23 5.41 2.82 3.28 

0.05 226.5 120.5 89.08 3.74 19.5 11.48 4.29 11.36 4.01 4.22 

0.1 1241 829.1 866.3 5.96 21.07 21.02 6.57 17.22 6.22 6.07 

0.25 9067 4536 5494 6.62 29.65 48.91 7.08 33.79 6.89 9.74 

0.5 25042 17677 18136 12.03 55.03 92.97 12.87 62.31 12.12 13.08 

 
Table 12. Coding complexity (encoding time & decoding time) of listless HS image compression for two HS images at the high bit rate 

B
R

 

C
A
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C
A
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A

-V
I 

[7
0

] 

C
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C
A
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X
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] 
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C
A

-I
V

 

[6
8
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C
A
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[6
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] 

C
A

-V
I 

[7
0

] 

C
A
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1

] 

C
A
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[7
2

] 

C
A

-I
X

 

[7
3

] 

P
ro

p
o

se
d

 

A
lg

o
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m

 

 Encoding Time 

 Hyperspectral Image I Hyperspectral Image II 

1 48.9 247.9 241.7 50.04 150.1 44.19 50.2 31.93 221.66 274.24 33.19 139.07 29.74 33.9 

2 113.8 320.9 465.4 116.8 312.1 101.9 116.1 68.14 304.4 480.00 70.84 392.25 60.79 71.2 

3 192.1 366.3 666.4 209.2 465.4 174.8 198.3 110.58 341.38 866.77 117.9 568.82 98.17 119.1 

4 257.7 446.9 905.1 266.7 617.9 224.9 261.2 154.12 383.59 915.67 187.2 702.01 144.2 165.3 

5 327.4 467.8 1119.1 344.2 880.7 287.1 333.1 199.04 411.9 1289.2 209.8 754.85 184.8 208.9 

6 340.9 488.1 1165.4 357.9 854.3 304.8 357.3 249.9 446.29 1454.4 269.6 918.16 233.7 264.2 

7 356.9 501.2 1179.1 387.2 908.2 314.9 384.2 296.22 480.6 1603.5 308.3 1303.9 277.1 305.8 
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8 368.2 517.2 1187.0 398.1 960.4 322.8 398.5 346.45 505.28 1718.1 387.9 1718.2 306.8 355.5 

 Decoding Time 

 Hyperspectral Image I Hyperspectral Image II 

1 45.86 135.17 189.38 48.9 136.23 39.21 48.2 29.49 197.62 218.00 30.92 120.53 26.41 30.9 

2 104.8 294.8 385.4 107.1 269.2 91.98 111.2 54.01 289.05 395.17 63.27 326.39 48.87 67.9 

3 187.5 314.4 551.7 198.4 395.2 164.6 189.3 98.69 307.936 703.14 102.8 506.97 84.92 105.2 

4 232.4 402.2 741.4 247.6 516.2 204.9 248.2 133.11 330.404 756.75 144.9 690.78 108.95 147.2 

5 301.8 427.5 922.7 307.5 632.4 267.4 321.8 168.91 394.926 925.61 181.5 717.44 151.81 199.8 

6 328.1 449.5 958.0 334.2 677.9 298.4 344.7 234.92 415.639 1141.9 234.8 846.17 201.84 254.1 

7 332.8 461.7 977.3 341.9 777.8 307.2 361.8 268.36 430.549 1330.4 288.4 1207.8 222.31 297.2 

8 349.7 491.3 1067.44 366.1 812.4 311.9 389.1 282.52 468.749 1456.7 319.2 1440.3 251.73 314.7 

 

5. Conclusion 
In this manuscript, we proposed a novel contourlet 

transform-based compression algorithm (listless). From the 

results, it has been clear that the proposed compression 

algorithm performance has significantly improved in coding 

efficiency and complexity. The simulation experiment on 

four different HS images shows that the proposed algorithm 

has higher PSNR than other compression algorithms under 

test. Further, the demand for coding memory can be reduced 

by implementing the contourlet transform with the 3D-ZM-

SPECK [72] or 3D-BCP-ZM-SPECK [74]. Apart from the 

contourlet and wavelet transform, compression performance 

can be improved by using the radon transform and shearlet 

transform.  
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