
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 6, 206-214, June 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I6P116 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Fine-Tuning and Performance Optimization of a Hybrid

Load Balancing Algorithm for Efficient Cloud

Computing in a Python-Based Simulation

F. Niyasudeen1, M. Mohan2

1Department of Computer Science, SRM University Delhi-NCR, Sonepat, Haryana, India.
2Department of Computer Science and Engineering, SRM University Delhi-NCR, Sonepat, Haryana, India.

1Corresponding Author : niyasudeenresearch24@gmail.com

Received: 09 April 2025 Revised: 10 May 2025 Accepted: 11 June 2025 Published: 27 June 2025

Abstract - Cloud computing environments require efficient load-balancing mechanisms to prevent bottlenecks, maximize

resource utilization, and ensure optimal system performance. While Hybrid Load Balancing Algorithms (HLBA) have superior

adaptability compared to existing methods, the effectiveness of these algorithms depends on the fine-tuning of parameters such

as load thresholds, balancing approaches, and decision-making models. This study focuses on HLBA optimization by analyzing

and adjusting these parameters within the Python-based cloud simulation. The proposed fine-tuning process minimizes

response time, increases throughput, and improves server utilization by involving adaptive threshold adjustments, decision-

tree optimization, and heuristic-driven enhancements. The results are shown below with different simulated cloud workload

environments, assessing the control of parameter tuning on system performance. The comparative analysis with traditional

and baseline HLBA implementations confirms that parameter-optimized HLBA achieves a 20–30% development in efficiency.

The outcomes provide valuable insights into dynamic parameter tuning for real-time cloud load balancing, paving the way for

future AI-driven autonomous load-balancing frameworks.

Keywords - Adaptive load distribution, Hybrid load balancing, Cloud computing, Optimization, Python simulation.

1. Introduction
Cloud computing allows businesses and individuals to

access on-demand computing resources and has become the

backbone of modern digital services over the internet. Cloud

infrastructures support different applications, from

enterprise-level systems to real-time data processing. Hence,

maintaining efficient workload distribution is critical to

prevent server bottlenecks and performance reduction. Load

balancing confirms that computational workloads are evenly

distributed across multiple Virtual Machines (VMs) or cloud

nodes, optimizing system throughput and response time.

Existing load balancing methods, including Round Robin

(RR), Least Connection (LC), and Weighted Least

Connection (WLC), operate using predefined static rules,

which can lead to inefficient resource allocation in dynamic

cloud environments [1]. These methods fail to adjust real-

time workloads dynamically, leading to delays, server

overload, and resource wastage under modifying traffic

conditions [2].

The HLBAs have been proposed as an advanced solution

that combines multiple strategies and improves scalability

and adaptability. To optimize cloud resource utilization,

hybrid models combine heuristic techniques, machine

learning-based decision-making, and real-time monitoring

[3]. Though hybrid algorithms significantly recover response

time, system throughput, and overall efficiency, they still face

some issues related to parameter optimization. The HLBA’s

effectiveness is determined by load thresholds, VM variety

criteria, and strategy-switching conditions, which also play

an important role [4]. Without proper fine-tuning, even the

finest hybrid models can experience performance

inconsistencies, increased task execution time, and

suboptimal workload balancing [5]. Therefore, to attain

maximum efficiency in cloud computing environments, fine-

tuning HLBA parameters is important.

This research applies optimisation with HLBA’s

parameter configurations, mainly targeting load balancing

thresholds, decision weights, and transition strategies. This

study proposes a dynamic tuning approach that adapts to real-

time workload changes, unlike previous studies that rely

uniquely on predefined static parameter settings [6]. The

research uses Python-based cloud simulation to analyze

HLBA’s parameters under diverse workload scenarios,

evaluating the response time, throughput, and server

http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

207

utilization. This research aim is to improve HLBA’s decision-

making process by introducing adaptive parameter

adjustments, ensuring continuous performance

improvements across diverse cloud environments [7, 8].

A research gap continues in their optimal parameter

tuning, though HLBAs offer improved scalability and

adaptability by joining multiple strategies. Existing HLBA

implementations often rely on static or predefined parameter

settings, which include fixed load thresholds and decision-

making weights. This static nature inherently limits their

effectiveness in highly dynamic cloud environments, leading

to performance inconsistencies, increased task execution

times, and suboptimal workload balancing when faced with

fluctuating traffic conditions. Therefore, a crucial problem

lies in developing an adaptive and dynamic parameter fine-

tuning mechanism for HLBAs that can respond quickly to

diverse cloud workload changes, ensuring continuous

performance improvement and resource optimization. The

key objective of this study is to improve cloud system

efficiency by optimizing HLBA through adaptive fine-tuning

mechanisms. The study offers a systematic analysis of HLBA

parameter configurations, compares its performance against

baseline HLBA and traditional load balancing methods, and

highlights key developments in performance metrics. This

research makes the following key contributions:

 Develops an adaptive fine-tuning approach to optimize

HLBA’s load balancing parameters, improving

workload distribution. This approach dynamically

adapts thresholds and weights based on real-time system

metrics, unlike existing works that use predefined static

parameter settings.

 Implements a Python-based cloud simulation to analyze

the impact of parameter tuning on response time,

throughput, and server utilization.

 Evaluate HLBA performance under low, medium, and

high workload conditions, ensuring scalability and

adaptability.

 Compares the optimized HLBA with its baseline version

and traditional load balancing techniques, demonstrating

20–30% efficiency improvements. This comparative

analysis employs the advantages of dynamic parameter

tuning over less adaptive or static methods in the

literature.

 Provides insights into future AI-driven load balancing

mechanisms, paving the way for self-adaptive cloud

computing solutions.

While existing HLBA research often relies on fixed

thresholds and predetermined weights or combines various

strategies, the Optimized HLBA (O-HLBA) uniquely

combines real-time adaptive threshold adjustments and

dynamic weight allocation. In contrast to reactive or statically

configured methods in the existing literature, this proactive

adaptation to real-time workload fluctuations allows O-

HLBA to consistently achieve superior performance across

diverse traffic scenarios, significantly improving response

time, throughput, and server utilization.

Section 2 reviews some recent works done in hybrid load

balancing optimization. Section 3 discusses the methodology

and experimental setup for parameter fine-tuning. Section 4

presents the result, its analysis, and a discussion of findings.

Section 6 concludes the research with future directions in AI-

driven cloud load balancing.

2. Literature Review
Efficient load balancing in cloud computing remains a

challenging yet critical area of research due to the dynamic

nature of cloud workloads and the increasing demand for

optimized resource allocation. Traditional load balancing

algorithms such as RR, LC, and WLC are widely used but

lack adaptive capabilities, leading to bottlenecks and

inefficient workload distribution under varying conditions by

Krishna and Vali [4]. HLBA were introduced to address these

limits by combining multiple balancing techniques, allowing

dynamic adaptation to workload fluctuations. However, even

hybrid models can lead to suboptimal performance, high

latency, and poor resource utilization without proper

parameter tuning, as per Jayaseelan [10]. Recent studies have

highlighted the importance of fine-tuning hybrid load

balancing parameters, such as decision thresholds, transition

conditions, and adaptive weighting mechanisms, to improve

cloud system efficiency. This section reviews recent hybrid

load balancing optimization advancements, key

methodologies, advantages, and limitations.

Integrating machine learning and heuristic-based

optimization techniques has significantly better HLBA’s

adaptability. Basharat & Huma [3] proposed a deep learning-

based load balancing model, which utilizes real-time system

data to predict the most efficient resource allocation strategy.

This method required high computational power for training

deep learning models and displayed improved response times

and reduced resource wastage. Jayaseelan [10] introduced

Generative AI-assisted workload balancing, which

dynamically applies AI-driven decision-making to optimize

workload distribution across hybrid cloud environments.

Although this approach achieved high scalability, its

dependency on large-scale data processing models improved

computational overhead. Likewise, Rasaq [11] established a

microservices-based hybrid cloud model for load balancing

in IoT workloads, demonstrating reduced latency and

improved scalability but facing integration challenges with

legacy cloud architectures.

For dynamic load balancing, some researchers have

discovered nature-inspired and heuristic-driven algorithms.

An existing work proposed a Cloud Migration Strategy

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

208

(CMS) model using bio-inspired algorithms to optimize load

distribution between private and public clouds, which

achieved energy efficiency and cost optimization. However,

under unpredictable workload spikes, its performance was

not good. Hegde et al. [13] introduced the Hybrid

Adam_Pufferfish Optimization Algorithm (Hybrid

Adam_POA) for dynamic task allocation in cloud computing,

demonstrating higher resource utilization and lower task

execution time. This model suffered from computational

complexity, requiring improved parameter tuning. Cao et al.

[5] developed a Hybrid Genetic and Particle Swarm

Optimization (HG-PSO) Model, which optimized server

deployment and workload scheduling, significantly

improving throughput and fault tolerance. However, fine-

tuning PSO parameters remained an issue while achieving

optimal efficiency.

Recent research highlighted the requirement for adaptive

thresholding mechanisms in load balancing. Pradhan et al. [6]

presented a Hybrid Neuro-Fuzzy Inference System (ANFIS)

with Binary Quantum Navigation Algorithm (QANA), which

combined fuzzy logic and quantum computing to make real-

time task allocation decisions. This study established high

adaptability to dynamic workloads but required careful

parameter tuning to avoid convergence delays. Similarly,

another work explored Deep Reinforcement Learning (DRL)

for load balancing in fog-cloud hybrid environments,

attaining superior task offloading capabilities but having

increased training time complexity. Thus, these studies

highlighted the need to fine-tune hybrid load balancing

parameters, including optimal response times, throughput,

and resource utilization in dynamic cloud computing

environments.

Table 1. Comparative analysis of existing works on hybrid load balancing optimization

Author(s) Methodology Advantages Limitations

Mohammad [2]

Hybrid Metaheuristic

Optimization for Multi-Tier

Cloud Resource Provisioning

Optimized allocation,

improved efficiency

Complexity in multi-tier

environments

Siddiqui et al. [9]

AI-Based Network Traffic

Prediction for Load Balancing

Adaptive resource

allocation, reduced network

congestion

High data processing

overhead

Jayaseelan [10]
Generative AI-Assisted

Workload Balancing

Scalable, real-time

optimization

Computationally expensive

Rasaq [11]
Microservices-based Hybrid

Cloud Load Balancing for IoT

Low latency, better

scalability

Integration challenges with

legacy systems

Chen et al. [12]

Multi-Level Network

Optimization for Data Centers

Enhanced energy efficiency,

high-performance task

scheduling

Requires advanced network

topology configurations

Hegde et al. [13]
Hybrid Adam_POA for

Dynamic Task Allocation

Improved task execution

speed

Complex tuning required

Shah [14]

Systematic Review of

Optimized Load Balancing

Strategies in Cloud

Computing

Identifies best hybrid

strategies for efficiency

improvement

Lacks experimental validation

Keshria &

Vidyarthib [15]

Hybrid ACO-GWO Algorithm

for Task Offloading in Edge

Computing

Improved energy efficiency

and task allocation

Convergence rate issues

These studies underscore the challenge of achieving

optimal load balancing in dynamic cloud environments.

While advancements have been made by combining machine

learning and heuristic algorithms, a constant gap remains in

developing truly adaptive and self-tuning load-balancing

parameters. Many proposed hybrid models suffer from high

computational overheads for real-time application integration

complexities and rely on static thresholds and fixed decision

rules that fail under unpredictable workload spikes. This

comprehensive review highlights a vital need for a load-

balancing mechanism that can dynamically adjust its

operational parameters in real-time to maintain efficiency,

minimize response times, maximize throughput, and

optimize resource utilization, which is the proposed O-HLBA

aim.

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

209

3. Proposed Methodology
3.1. Overview of the Optimization Approach

By combining some load-balancing procedures, HLBA

has shown to be more efficient than conventional methods.

The key parameter settings, such as switching strategies for

threshold values, decision-making weight allocations, and

workload distribution rules, remain to have a significant

impact on their performance. Even if a static parameter can

operate well under specific scenarios, the inability to flexibly

adjust to changes in the workload results in suboptimal

resource utilization and higher latency. To make HLBA work

as efficiently as possible in numerous traffic scenarios, this

study presents a fine-tuning system that changes these

parameters in real-time inside a cloud simulation

environment based on Python.

Fig. 1 Optimized HLBA architecture (flow diagram)

The proposed Optimized HLBA (O-HLBA) departs

from conventional hybrid methods by integrating real-time

adaptive parameter tuning using a threshold-based decision

model. HLBA continually change task allocation algorithms

based on CPU utilization, active connections, and historical

load data.

This study uses adaptive parameter fine-tuning to self-

adjust load-balancing thresholds rather than depending on

predetermined values. The parameters such as response time,

throughput, and cloud resource utilization are much better in

O-HLBA. This is because O-HLBA dynamically adjusts

strategy-switching circumstances, resource allocation

weights, and workload balancing thresholds. The

optimization method and system architecture are illustrated

in Figure 1.

This diagram denotes the adaptive decision-making

process within the O-HLBA framework. Initially, the users

send requests to the load balancer in the client requests

module. The load balancer determines how tasks should be

allocated across available VMs.

The resource monitor continuously tracks the CPU

utilization, active connections, and memory usage of all

VMs. The decision engine decides to change balancing

tactics after analyzing the workload circumstances.

The optimized parameter tuning module dynamically

adjusts threshold values, resource allocation weights, and

balancing transitions. VMs like (VM1, VM2, and VM3)

execute assigned tasks while maintaining optimal resource

utilization. By this flow, the proposed O-HLBA system is

more efficient and scalable than traditional static hybrid

methods because parameters can be changed in real-time,

ensuring that the system can adapt dynamically to changes in

workload.

3.2. Optimization Strategy and Parameter Fine-Tuning

The HLBA's success lies in the parameters such as load

balancing thresholds, task allocation weights, and dynamic

switching circumstances. Conventional hybrid models are

inefficient in dynamic traffic environments because they use

static, predetermined parameter values. The proposed O-

HLBA uniqueness is its ability to tune its parameters in real-

time, allowing it to adapt its decision-making criteria to

changes in workload—these results in reduced system

bottlenecks and optimized resource utilization.

The optimisation process has two main steps: threshold

adjustment and adaptive weight allocation. The threshold

adjustment process changes guidelines for workload

distribution in real-time. Adaptive weight allocation adjusts

The decision weights for CPU load, active connections, and

memory availability. The optimal strategy-switching moment

is determined during the threshold adjustment stage by

continually monitoring server utilization. For mathematics,

the adaptive switching condition is defined as in Equation (1):

 𝑇𝑠𝑤𝑖𝑡𝑐ℎ =
1

𝑁
∑ 𝑈(𝑉𝑖) + 𝛼 × (

𝑑𝑈

𝑑𝑡
)𝑁

𝑖=1 (1)

Where 𝑇𝑠𝑤𝑖𝑡𝑐ℎ represents an adjusted threshold for

switching balancing strategies, 𝑈(𝑉𝑖) represents current

utilization of VM, 𝑁 is the total number of VMs, 𝛼 is the

adaptive weight for workload fluctuation impact, and
𝑑𝑈

𝑑𝑡

represents a rate of change in server utilization over time.

This equation describes that HLBA dynamically

switches between RR, LC, and AI-based heuristics based on

real-time workload monitoring. It also does not rely on static

thresholds.

Virtual Machine 3

(VM3)

Load

Balancer

Decision

Engine

Optimized

Parameter

Tuning

Resource

Monitor

Client

Requests

Virtual Machine

1 (VM1)

Virtual Machine

2 (VM2)

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

210

Table 2. Optimized HLBA parameter configurations

Parameter Traditional HLBA
Optimized HLBA

(O-HLBA)
Impact on Performance

Strategy Switch

Threshold
Fixed at 70% CPU usage

Dynamically adjusted

based on server load trend

Reduces response time by

20–30%

Task Allocation

Weights

CPU: 50%, Active

Connections: 50%

CPU: Adaptive, Active

Connections: Adaptive

Maximizes throughput

efficiency

Server Utilization

Monitoring
Periodic (every 10s)

Continuous real-time

monitoring

Prevents overload

situations

Workload Prediction

Mechanism
Not included

An AI-based heuristic for

future load prediction

Enhances proactive task

allocation

Table 2 highlights how parameter fine-tuning improves

HLBA’s adaptability, improving performance metrics such

as response time, throughput, and server utilization.

3.3. Adaptive Weight Allocation for Resource Optimization

On the other hand, when making task allocation

decisions, adaptive weight allocation dynamically modifies

the priority given to several resource metrics, such as CPU

load, active connections, and memory availability.

The traditional HLBA allocates a fixed importance to

every factor, which is ineffective under changing traffic

conditions. So, the proposed O-HLBA introduces an adaptive

weight allocation as in Equation (2).

 𝑊𝑖(𝑡) = 𝑊𝑖,0 + 𝛽 × (
𝑑𝐿

𝑑𝑡
) (2)

Where 𝑊𝑖(𝑡) signifies the adjusted weight of metric 𝑖 at

time 𝑡, 𝑊𝑖,0 denotes the initial weight of metric 𝑖 , 𝛽 is the

adaptation coefficient, and
𝑑𝐿

𝑑𝑡
 is the rate of change in

workload demand. As a result, the system will automatically

give CPU-based task allocation more importance when CPU

utilization grows quickly.

The system confirms the optimal balance between

workload distribution techniques by shifting weights toward

the LC approach when active connections vary. The unique

feature of O-HLBA is its capacity to dynamically modify

parameters, allowing for real-time adaptation to changes in

workload. O-HLBA combines real-time monitoring, adaptive

thresholding, and dynamic weight allocation.

This will reduce response time by 25–35% when

workloads are high. This also increases throughput by 20–

30% compared to traditional hybrid models. Moreover, this

makes better use of workloads, ensuring that all virtual

machines work at their best.

Due to these updates, O-HLBA is a practical option for

load balancing in contemporary cloud computing

infrastructures. This algorithm is also intelligent, scalable,

and can optimize itself.

4. Results and Discussion

4.1. Experimental Setup

Using NumPy, SciPy, and Matplotlib, the proposed O-

HLBA is used in a cloud simulation environment that is built

on Python. The experimental setup included 10 VMs with

different CPU speeds and network bandwidths to simulate a

real-world cloud environment. This work tested the system's

efficiency in three distinct workload scenarios: low traffic

with 100 requests/sec, medium traffic with 500 requests/sec,

and high traffic with 1000+ requests/sec. The low traffic

corresponds to the minimal load conditions with uniform task

distribution. The medium traffic corresponds to moderate

load fluctuations with mixed computational requirements.

The high traffic corresponds to intensive workloads with

unpredictable spikes.

Performance metrics are collected over multiple

simulation runs, comparing O-HLBA, traditional HLBA, RR,

and LC. The key metrics analyzed include response time,

throughput and server utilization. The response time

measures how quickly requests are processed, denoted by ms.

Throughput (requests/sec) determines the number of

successful requests handled per second. Server utilization

(%) evaluates how efficiently computing resources are

utilized.

4.2. Response Time Analysis

The response time, which directly impacts user

experience and system efficiency, is one of the key

performance factors in cloud computing. Optimized resource

allocation and quicker task execution show a lower response

time. Figure 2 compares different load-balancing approaches

and displays the response times.

A critical performance measure that shows how well a

cloud system processes requests is the response time.

According to the data, the proposed O-HLBA has the

quickest response time in every traffic scenario. O-HLBA

decreases response time to 50 ms with low traffic, while RR

takes 120 ms. Compared to previous approaches, O-HLBA

significantly improves performance, maintaining latency

below 90 ms and 120 ms under medium and heavy traffic.

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

211

Fig. 2 Response time comparison of O-HLBA vs. Traditional methods

This improvement comes from O-HLBA's adaptive

thresholding mechanism, which can switch between RR, LC,

and AI heuristics based on real-time monitoring of resources.

By allocating workloads according to current server

utilization patterns, O-HLBA avoids overwhelming nodes

with heavy traffic, in contrast to RR's blind task distribution.

While the LC method outperforms RR, it cannot be adjusted

in real time to accommodate changes in processing

workloads. Unlike O-HLBA, which constantly fine-tunes its

balancing choices to provide higher workload efficiency

under all scenarios, traditional HLBA increases response

time but stays static in parameter switching.

4.3. Throughput Analysis

This study can see how well a system handles several

users' requests at once by looking at its throughput. Higher

throughput demonstrates improved cloud scalability. Figure

3 displays the results of the throughput performance

comparison.

Fig. 3 Throughput comparison of O-HLBA vs. Traditional methods

Throughput measures how many requests are

successfully handled per second in the cloud. It represents the

efficiency of resource utilization. Regardless of the

workload, the findings show that O-HLBA is far more

effective than conventional load-balancing methods. When

faced with heavy traffic, O-HLBA manages 1100

requests/sec, which is higher than traditional HLBA (900),

LC (850), and RR (750).

Owing to its real-time adaptive load distribution, O-

HLBA can achieve greater throughput. By analyzing real-

time workload measurements, O-HLBA dynamically

distributes jobs to the virtual machines with the lowest

utilization rates, rather than previous systems that depend on

predefined allocation criteria. Although O-HLBA allows for

adaptive fine-tuning, traditional HLBA outperforms RR and

LC in terms of throughput. These results show that O-

HLBA's high scalability makes it ideal for large-scale cloud

environments that require efficient resource management.

4.4. Server Utilization Analysis

Server utilization determines the efficiency of cloud

resource utilization. If the utilization rate is high, resources

are used efficiently; if it is low, computing power is wasted.

Figure 4 compares O-HLBA and conventional methods for

server utilization.

Fig. 4 Server utilization comparison of O-HLBA vs.

Traditional methods

According to the findings, O-HLBA prevents overload

while achieving the best utilization rate across all workload

circumstances. This guarantees that no server goes

underused. While traditional HLBA obtains 75% utilization

with low traffic, LC 70%, and RR 60%, O-HLBA reaches

85% utilization. Under heavy traffic, this trend persists, with

O-HLBA reaching 95% utilization while traditional HLBA

hits 90%, LC 88%, and RR 85%.

Because of its real-time decision-making engine and

adaptive thresholding, O-HLBA achieves better results in

0

200

400

600

800

1000

Low Workload

(100 req/sec)

Medium

Workload (500

req/sec)

High Workload

(1000+ req/sec)

R
es

p
o

n
se

 t
im

e
(m

s)

Traffic Load Scenarios

Response Time

Proposed O-HLBA Traditional HLBA

Least Connection (LC) Round Robin (RR)

0

200

400

600

800

1000

1200

Low

Workload

(100

req/sec)

Medium

Workload

(500

req/sec)

High

Workload

(1000+

req/sec)T
h
ro

u
g
h
p

u
t

(r
eq

u
es

ts
/s

ec
)

Traffic Load Scenarios

Throughput

Round Robin (RR) Least Connection (LC)

Traditional HLBA Proposed O-HLBA

0
100
200
300
400

Low Workload

(100 req/sec)

Medium

Workload (500

req/sec)

High Workload

(1000+ req/sec)

S
er

v
er

 U
ti

li
za

ti
o

n
 (

%
)

Traffic Load Scenarios

Server Utilization

Round Robin (RR) Least Connection (LC)

Traditional HLBA Proposed O-HLBA

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

212

server utilization than conventional techniques. By

dynamically adjusting workload allocations, O-HLBA

guarantees that all available resources are optimally

employed at all times, in contrast to conventional techniques

that depend on predefined rules. According to the findings of

the experiments, O-HLBA is always better than the existing

load-balancing methods. Table 3 summarizes the key

performance enhancements.

Table 3. Performance comparison of O-HLBA vs. Traditional load balancing techniques

Metric RR LC Traditional HLBA O-HLBA

Response Time (ms) 120–250 100–210 90–190 50–120

Throughput (requests/sec) 400–750 450–850 500–900 700–1100

Server Utilization (%) 60–85% 70–88% 75–90% 85–95%

O-HLBA delivers up to 30–40% faster response times,

handles 20–30% more requests per second, and optimizes

cloud resource utilization more effectively than traditional

methods.

4.5. Discussion

The O-HLBA improvement is owing to its adaptive

parameter tuning capabilities. Unlike existing methods and

some HLBA implementations that rely on fixed or predefined

thresholds and weights, the proposed O-HLBA dynamically

adjusts its load distribution thresholds in real time using the

adaptive switching condition defined in Equation (1).

Furthermore, its adaptive weight allocation Equation (2)

proactively modifies the priority given to various resource

metrics, ensuring optimal task distribution for rapid workload

demands. This proactive approach minimizes resource

bottlenecks and distinguishes O-HLBA from reactive task

reallocation methods described in existing literature, such as

those suffering from computational complexity or static rule

limitations.

4.5.1. Why O-HLBA Outperforms Traditional Load

Balancing Methods

The test results show that the proposed O-HLBA

consistently does better than other methods in all measures,

such as throughput, response time, and server utilization.

This improvement comes from O-HLBA's ability to change

its parameters. This means the system does not have to follow

fixed rules but can instead change load distribution thresholds

on the fly.

The proposed O-HLBA allocates workloads in real-time

according to system circumstances to avoid server overload

and underutilization, as opposed to RR's sequential

distribution. Similarly, LC enhances RR by prioritizing less

busy servers; it does not consider CPU utilization and

computational intensity, which causes workload delays that

rely heavily on execution. O-HLBA confirms that workloads

are allocated to the most optimal VMs at any given time by

constantly monitoring current CPU loads, active connections,

and memory availability, thus eliminating operational

inefficiencies.

Using adaptive weight modifications in task allocation,

the proposed O-HLBA's real-time workload prediction

method significantly contributes to its efficiency. The classic

HLBA model assigns set weights to CPU load and active

connections and struggles to manage workload fluctuations.

However, using O-HLBA's dynamic weight adaptation

methodology, the system prioritizes several factors

automatically according to traffic changes. This research

allows proactive load balancing and minimizes resource

bottlenecks instead of relying on reactive task reallocation as

in existing methods. Figure 2 displays the response time

evaluation after fine-tuning. Under severe workloads,

response time declines by up to 40%, proving that O-HLBA

can manage real-world cloud traffic fluctuations well.

4.5.2. The Impact of O-HLBA on Scalability and Cloud

Resource Utilization

The term scalability, or the capacity to effectively assign

resources as per rising demand, is the most challenging aspect

of cloud computing. Traditional load-balancing methods

often fail when faced with sudden, unexpected increases in

traffic, leading to server overload and heightened latency.

Depending on the workload intensity, O-HLBA has an

adaptive parameter tuning system that adjusts in real-time to

address this. This mechanism confirms that load balancing

thresholds are dynamically modified. Therefore, even when

traffic demand fluctuates frequently, it is a scalable solution

for contemporary cloud computing systems and allows

effective task distribution.

Table 3 shows that O-HLBA is used 85–95% of the time,

which is a lot more than regular HLBA (75–90%), LC (70–

88%), and RR (60–85%). This improvement guarantees

enhanced efficiency of cloud resources, protecting VMs from

underutilization and congestion. In layman's terms, this

implies that O-HLBA allows cloud service providers to

optimize computing efficiency while decreasing operational

expenses by avoiding wasteful resource allocation. The O-

HLBA confirms the best server performance by constantly

improving the criteria for choosing which VMs to use. This

differs from traditional HLBA models, which do not change

how work is distributed based on system trends.

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

213

4.5.3. Practical Applications and Real-World Implications of

O-HLBA

The developments demonstrated by O-HLBA make it a

highly effective solution for real-world cloud applications

where low response times and high scalability are important.

This includes E-commerce platforms, where thousands of

user requests must be processed per second. Online gaming

servers require real-time responsiveness to prevent latency

issues, big data analytics, where large-scale computations

must be efficiently distributed, and IoT networks, which

generate dynamic workloads that require adaptive balancing

strategies. O-HLBA, with its self-optimizing mechanism,

guarantees constant performance across several cloud

workloads, in contrast to existing models that fail to stay

efficient under changing traffic circumstances. As a result, by

presenting a new method for dynamic load balancing using

fine-tuned adaptive decision-making, O-HLBA provides an

important contribution to cloud computing research.

4.5.4. Future Enhancements and AI Integration in Load

Balancing

Even though O-HLBA increases performance

significantly, the proposed method has not shown significant

results regarding its flexibility. A helpful step is using deep

learning models to increase workload prediction accuracy. As

existing adaptive thresholding systems, o-HLBA might use

AI-driven prediction models to foresee workload changes

instead of depending on past workload patterns. This work

would enable proactive load balancing modifications to

decrease response time and increase efficiency further. Using

O-HLBA to optimize the utilization of container-based

microservices is another possible development that might be

made by interaction with containerized environments like

Kubernetes. Future research might investigate multi-cloud

interoperability to enhance flexibility and cost-effectiveness

further. This method would allow O-HLBA to balance

workloads between several cloud providers dynamically.

5. Conclusion and Future Work

This paper's study presented a new O-HLBA method for

improving cloud computing load-balancing efficiency. By

fine-tuning adaptive load weight allocation, threshold, and

decision-making, O-HLBA is better than traditional HLBA

models such as the RR and LC methods. Verified by testing

findings, O-HLBA guarantees optimal resource allocation by

decreasing response time by up to 40%, increasing

throughput by 30%, and maximizing server utilization to

95%. This work allows the load balancing system to self-

optimize depending on workload fluctuations, a significant

contribution of this study for real-time adaptive parameter

adjustment. O-HLBA's thresholding system constantly looks

at server static trends and changes how tasks are assigned

accordingly, whereas existing methods rely on fixed,

predetermined levels. The results proved O-HLBA's

scalability for dynamic cloud settings by displaying that it

retains efficiency under low, medium, and high traffic

circumstances. The improvements in the proposed O-HLBA

are excellent for network systems handling unexpected

workloads, such as IoT-based services, big data applications,

and real-time streaming workloads.

Despite the advances, some steps will be taken in future

studies to improve O-HLBA's predictive capabilities.

Integrating deep learning models to develop workload

forecasting accuracy will be among them. AI-driven

prediction algorithms could permit proactive workload

redistribution, reducing system delays even more. This

contrasts the proposed adaptive method, which changes

parameters based on how the system has behaved in the past.

It is recommended that multi-cloud integration be

investigated to guarantee cost-effective resource allocation

and interoperability across cloud environments further. Such

integration would allow O-HLBA to distribute workloads

dynamically across several cloud providers.

References
[1] M. Rohit Kapoor, “Optimizing Performance and Efficiency: Load Balancing’s Function in the Contemporary Cloud,” E-Sarthi, vol. 18,

no. 1, pp. 131-141, 2024. [Google Scholar] [Publisher Link]

[2] Omer K. Jasim Mohammad, “New Keys for Cloud Resource Provisioning Optimization Method in Multi-Tier Style,” Journal of

Intelligent Systems and Internet of Things, vol. 15, no. 1, pp. 175-184, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[3] Arooj Basharat, and Zillay Huma, “Scaling Deep Learning Models for High-Performance Computing Environments,” ResearchGate, pp.

1-7, 2024. [Google Scholar]

[4] Mallu Shiva Rama Krishna, and D. Khasim Vali, “Meta-RHDC: Meta Reinforcement Learning Driven Hybrid Lyrebird Falcon

Optimization for Dynamic Load Balancing in Cloud Computing,” IEEE Access, vol. 13, pp. 36550-36574, 2025. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Junjie Cao et al., “Server Deployment Strategies Considering Robustness and Resource Constraints in Edge Computing,” Journal of

Cloud Computing, vol. 14, pp. 1-24, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[6] Aliva Priyadarshini, Sateesh Kumar Pradhan, and Kaushik Mishra, “A Joint Adaptive Neuro-Fuzzy Inference System and Binary

Quantum-Based Avian Navigation Algorithm for Optimal Resource Monitoring, Task Scheduling and Migration in Cloud-based

System,” IEEE Access, vol. 13, pp. 43109-43126, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[7] V. Arulkumar et al., “A Performance Analysis on Load Balancing in Cloud Computing with Hybrid Approach,” Journal of Circuits,

Systems and Computers, pp. 1-25, 2025. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+Performance+and+Efficiency%3A+Load+Balancing%E2%80%99s+Function+in+the+Contemporary+Cloud&btnG=
https://e-sarthi.lpcps.org.in/uploads/naacHeadingnew3Documents/rohit_1.pdf
https://doi.org/10.54216/JISIoT.150115
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+Keys+for+Cloud+Resource+Provisioning+Optimization+Method+in+Multi-Tier+Style&btnG=
https://www.americaspg.com/articleinfo/18/show/3461
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scaling+Deep+Learning+Models+for+High-Performance+Computing+Environments&btnG=
https://doi.org/10.1109/ACCESS.2025.3544775
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Meta-RHDC%3A+Meta+Reinforcement+Learning+Driven+Hybrid+Lyrebird+Falcon+Optimization+for+Dynamic+Load+Balancing+in+Cloud+Computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Meta-RHDC%3A+Meta+Reinforcement+Learning+Driven+Hybrid+Lyrebird+Falcon+Optimization+for+Dynamic+Load+Balancing+in+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/10900381
https://doi.org/10.1186/s13677-025-00741-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+Deployment+Strategies+Considering+Robustness+and+Resource+Constraints+in+Edge+Computing&btnG=
https://link.springer.com/article/10.1186/s13677-025-00741-0
https://doi.org/10.1109/ACCESS.2025.3547057
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Joint+Adaptive+Neuro-Fuzzy+Inference+System+and+Binary+Quantum-Based+Avian+Navigation+Algorithm+for+Optimal+Resource+Monitoring%2C+Task+Scheduling+and+Migration+in+Cloud-based+System&btnG=
https://ieeexplore.ieee.org/abstract/document/10908808
https://doi.org/10.1142/S0218126625502482
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Performance+Analysis+on+Load+Balancing+in+Cloud+Computing+with+Hybrid+Approach&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218126625502482

F. Niyasudeen & M. Mohan / IJECE, 12(6), 206-214, 2025

214

[8] Mohaymen Selselejoo, and HamidReza Ahmadifar, “DT-GWO: A Hybrid Decision Tree and GWO-Based Algorithm for Multi-Objective

Task Scheduling Optimization in Cloud Computing,” Sustainable Computing: Informatics and Systems, vol. 47, pp. 1-26, 2025.

[CrossRef] [Google Scholar] [Publisher Link]

[9] Syed Muhammad Shakir Bukhari et al., “Network Traffic Prediction: Using AI to Predict and Manage Traffic in High-Demand IT

Networks,” Policy Research Journal, vol. 2, no. 4, pp. 1706-1713, 2024. [Google Scholar] [Publisher Link]

[10] Vijayakumar Jayaseelan, “Hybrid Cloud Workload Optimization with Generative AI: Transforming Enterprise Infrastructure

Management,” International Journal of Information Technology and Management Information Systems, vol. 16, no. 2, pp. 994-1009,

2025. [CrossRef] [Publisher Link]

[11] Sodiq Oyetunji Rasaq, “Resource Optimization in Hybrid Cloud: Leveraging Microservices for IoT Workloads,” International Journal

of Novel Research in Engineering & Pharmaceutical Sciences, vol. 1, no. 1, pp. 1-10, 2025. [Google Scholar]

[12] Bing Chen, Yongjun Zhang, and Handong Liang, “Multi-Level Network Topology and Time Series Multi-Scenario Optimization

Planning Method for Hybrid AC/DC Distribution Systems in Data Centers,” Electronics, vol. 14, no. 2, pp. 1-21, 2025. [CrossRef]

[Google Scholar] [Publisher Link]

[13] Sandeep Kumar Hegde et al., “Hybrid Adam_POA: Hybrid Adam_Pufferfish Optimization Algorithm Based Load Balancing in Cloud

Computing,” SN Computer Science, vol. 6, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sonal Shah et al., “Optimized Load Balancing Techniques in Cloud Computing Environment: A Systematic Literature Review and Future

Trends,” Nanotechnology Perceptions, vol. 20, no. S16, pp. 1930-1952, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Rashmi Keshri, and Deo Prakash Vidyarthi, Hybrid ACO-GWO Based Optimization for Task Offloading in Mobile Edge Computing

Environments, Advances in Electronics, Computer, Physical and Chemical Sciences, 1st ed., CRC Press, pp. 294-299, 2025. [Google

Scholar] [Publisher Link]

https://doi.org/10.1016/j.suscom.2025.101138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DT-GWO%3A+A+Hybrid+Decision+Tree+and+GWO-Based+Algorithm+for+Multi-Objective+Task+Scheduling+Optimization+in+Cloud+Computing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210537925000599
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+Traffic+Prediction%3A+Using+AI+to+Predict+and+Manage+Traffic+in+High-Demand+IT+Networks&btnG=
https://theprj.org/index.php/1/article/view/209
http://dx.doi.org/10.34218/IJITMIS_16_02_063
https://iaeme.com/MasterAdmin/Journal_uploads/IJITMIS/VOLUME_16_ISSUE_2/IJITMIS_16_02_063.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+Optimization+in+Hybrid+Cloud%3A+Leveraging+Microservices+for+IoT+Workloads&btnG=
https://doi.org/10.3390/electronics14020264
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Level+Network+Topology+and+Time+Series+Multi-Scenario+Optimization+Planning+Method+for+Hybrid+AC%2FDC+Distribution+Systems+in+Data+Centers&btnG=
https://www.mdpi.com/2079-9292/14/2/264
https://doi.org/10.1007/s42979-024-03577-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+Adam_POA%3A+Hybrid+Adam_Pufferfish+Optimization+Algorithm+Based+Load+Balancing+in+Cloud+Computing&btnG=
https://link.springer.com/article/10.1007/s42979-024-03577-8
https://doi.org/10.62441/nano-ntp.vi.4839
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Sonal+Shah%2C+%E2%80%9COptimized+Load+Balancing+Techniques+in+Cloud+Computing+Environment%3A+A+Systematic+Literature+Review+and+Future+Trends%2C&btnG=
https://nano-ntp.com/index.php/nano/article/view/4839
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+ACO-GWO+Based+Optimization+for+Task+Offloading+in+Mobile+Edge+Computing+Environments&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+ACO-GWO+Based+Optimization+for+Task+Offloading+in+Mobile+Edge+Computing+Environments&btnG=
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003616252-49/hybrid-aco-gwo-based-optimization-task-offloading-mobile-edge-computing-environments-rashmi-keshri-deo-prakash-vidyarthi

