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Abstract - A bone disorder with decreased Bone Mineral Density (BMD), rendering bones weaker and susceptible to fractures, 

even from minor falls or daily activities, is osteoporosis. An accurate diagnosis is crucial for effective therapy to reduce the 

fracture risk, yet existing diagnostic procedures are time-consuming. The traditional models relied on manual radiological 

evaluation and hand-crafted Machine Learning (ML) features to diagnose knee osteoporosis. However, these approaches had 

limitations in accuracy and efficacy due to radiologists’ subjective interpretations and manual feature extraction. Early 

detection with X-ray imaging allows timely intervention and facilitates proper treatment. This study proposes a novel 

osteoporosis detection model using a Deep Learning (DL)-based approach enhanced by an attention mechanism to improve 

classification performance using knee X-ray dataset images. The DenseNet-121 model is the backbone, improving the vanishing 

gradient problem and ensuring efficient data flow across layers. Channel-wise and spatial attention techniques are utilized with 

a Convolutional Block Attention Module (CBAM) to refine feature representation. The model demonstrated superior 

performance in classifying osteoporotic and healthy knees from X-ray images, attaining a remarkable accuracy of 97.43%. This 

study enhances osteoporosis detection by employing knee X-ray images with excellent prediction and efficient classification, 

thereby reducing the socioeconomic burden of osteoporosis-related fracture risks and improving patient outcomes. 

Keywords - Osteoporosis, Deep Learning, DenseNet 121, Convolutional block attention module, Attention mechanism. 

1. Introduction  
Osteoporosis is a prevalent bone disease characterized by 

a progressive loss of bone density and structural degeneration, 

increasing the likelihood of fractures. It is frequently denoted 

as a “silent disease” because it appears unrecognized and 

remains undetected until a fracture occurs, typically in weight-

bearing bones such as the backbone and hip. Osteoporosis is 

an important cause of morbidity and mortality, in addition to 

the noticeable physical effects of a fracture, such as pain and 

inconvenience [1]. However, early osteoporosis detection and 

treatment reduces a person’s fracture risk to a minimum. 

Osteoporosis disrupts the bone growth process, leading to 

faster bone loss. It is crucial to analyze bone health to prevent 

osteoporosis. Timely detection of osteoporosis through bone 

density tests employs X-rays to determine the deposition of 

calcium and other minerals in the bones. This is crucial for 

diagnosing osteoporosis and enables early intervention. Such 

tests reduce the time needed for treatments like bone 

modelling, which promotes targeted bone growth at specific 

regions, enhancing bone density and reducing skeletal 

fragility. Unlike bone remodelling, which sometimes leads to 

loss, bone modelling effectively focuses on rebuilding bone 

structure. Figure 1 illustrates osteoporotic and normal healthy 

bone.  

 
Fig. 1 Healthy bone Vs. Osteoporotic bone 

Conventional techniques for diagnosing osteoporosis 

involve Fracture Risk Assessment Tools (FRAX), Dual-

Energy X-ray Absorptiometry (DEXA), and Quantitative 

Computed Tomography (QCT) [2]. While these techniques 

offer valuable insights, they pose limitations such as high cost, 

limited accessibility, radiation exposure, and reliance on 

subjective interpretation. Furthermore, DXA imaging mainly 

evaluates BMD, which fails to capture other essential factors 
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such as bone quality, microarchitecture, and biomechanical 

characteristics. Existing models confront considerable 

challenges that limit their widespread clinical application, as 

most osteoporosis models rely on a single dataset with few 

diversities, which confines their generalizability to wider 

populations. Anatomical regions emphasize particular parts, 

such as the spine and hips, while ignoring other essential areas, 

such as the knee, which provide valuable insights into bone 

health. Methodological constraints such as data imbalance, 

feature selection, and interpretability remain substantial 

challenges in developing a reliable osteoporosis prediction 

model. These drawbacks highlight the necessity of 

sophisticated, automated, and cost-effective methods to 

improve osteoporosis detection [3].  

Artificial Intelligence (AI) and ML techniques have 

significantly impacted the healthcare industry, enabling the 

development of automated medical solutions with accurate 

results [4]. The DL in osteoporosis prediction has attracted 

much attention, with studies examining various imaging 

techniques, namely MRI, CT scans, and X-rays, with the 

intent of predicting fracture risk and identifying early signs of 

bone loss, which result in better osteoporosis medical care and 

diagnosis [5, 6]. In order to enhance osteoporosis prediction, 

this research suggests an effective DL-based model with an 

attention mechanism using knee X-ray images. The suggested 

approach intends to enhance the efficacy of the proposed 

model in real clinical environments. The contributions of the 

study include: 

 To develop a DL-based classification model with an 

attention mechanism for detecting osteoporosis detection 

using knee X-ray imaging. 

 Assess the efficacy of the suggested classification 

models, such as DenseNet 121 and CBAM, to ensure 

generalizability and robustness. 

 To evaluate the effectiveness of the suggested model with 

traditional osteoporosis prediction models. 

 

The remaining portion of the study is organized as 

follows: A thorough literature review is described in Section 

2, emphasizing previous studies and pointing out important 

research gaps. Section 3 explains the suggested model in 

detail. Section 4 presents the research findings. The study is 

concluded in Section 5, which summarises the key findings.  

2. Literature Review  
Sarhan et al. [7] presented a DL approach utilizing 

Convolutional Neural Network (CNN) architectures for 

detecting osteoporosis on X-ray images of the knee. A data 

sample comprising 1947 knee X-rays was collected and 

augmented to enhance classification performance, and the 

authors utilized transfer learning with the pre-trained CNN 

models for detection. The outcomes demonstrated that the 

VGG-19 model attained better accuracy, with 92.0% for 

multiclass and 97.5% for binary classification. The CNN 

models also showed a competitive performance. However, the 

study lacked the integration of clinical factors with image 

analysis, which reduced the comprehensive diagnostic 

accuracy.  

 

Jang et al. [8] investigated a DL model from simple hip 

radiographs to predict osteoporosis. The dataset comprised 

1001 proximal femur DXA scans from female patients aged 

55 years. The authors employed a deep CNN (DCNN) based 

on VGG-16, and the DCNN model attained an accuracy of 

81.2%. External validation on 117 datasets demonstrated 

71.8% accuracy, and Grad-CAM visualizations successfully 

highlighted relevant bone structures. However, the model had 

limitations in object detection accuracy, which affected its 

reliability in real-world scenarios. The study did not consider 

BMI and mortality rate. 

 

Dzierżak et al. [9] presented six pre-trained DCNN 

architectures for osteoporosis diagnosis from CT images of 

the lumbar spine, such as Inception-ResNet-V2, VGG-16, 

ResNet-50, VGG19, Xception, and MobileNetV2. The dataset 

included CT images from 100 patients. The VGG-16 model 

demonstrated better classification accuracy. The authors 

employed data augmentation and transfer learning to enhance 

model accuracy. The model lacked the automated 

segmentation algorithm for extracting tissue samples directly 

from a CT scanner. However, the study limited the analysis of 

CT images from the spine and other bone structures affected 

by this disorder. 

 

Fang et al. [10] explored a DL model for osteoporosis 

detection, using CNNs for automated image analysis. The 

authors utilized DenseNet-121 for BMD calculation and U-

Net for vertebral body segmentation in CT images. The dataset 

comprised 1449 patients, sourced from three different CT 

vendors. The QCT was used for BMD evaluation, and manual 

segmentation served as the ground truth. The U-Net model 

showed strong segmentation accuracy, and automated BMD 

calculations demonstrated high correlations with QCT values. 

However, the system was established from a single centre and 

trained from a single CT scanner. The study excluded patients 

with severe scoliosis, which limited its applicability to diverse 

populations. 

 

Nakamoto et al. [11] explored the DL models for 

osteoporosis detection using medical imaging. The authors 

developed a computer-aided screening system using three 

CNN models, consisting of VGG-16, GoogleNet, and 

AlexNet, which were trained on labelled radiographs 

classified by an oral radiologist. The model was evaluated 

using BMD data from the femoral neck and lumbar spine. The 

VGG-16 and GoogleNet showed a better accuracy rate of 

75%. However, the study relied on the judgement of a single 

radiologist, which led to inaccuracies in classifying the 

cortical bone assessment groups. 
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Sukegawa et al. [12] explored the application of the DL 

model for classifying osteoporosis using dental panoramic 

radiographs, which offered a cost-effective screening method. 

A dataset comprised 778 images from individuals who 

underwent dental panoramic radiography and skeletal BMD 

assessments. The model was trained to classify osteoporosis 

using CNN models, such as ResNet (152, 50, and 18) 

EfficientNet (B7, B3, and B0), and an ensemble approach with 

clinical covariates was added. The ResNet-152 and 

EfficientNet-B7 demonstrated better accuracy. The authors 

utilized CNN models with a limited data sample, leading to 

potential overfitting and inadequate generalization. The model 

lacked the implementation of a Region Of Interest (ROI), and 

the dataset images were manually cropped for preprocessing, 

delaying the model’s performance in real-world applications. 

Oh et al. [13] evaluated the DL-based (DL-QCT) solution and 

analyzed 112 clinical CT scans. The automatically generated 

BMD values (DL-BMD) for L1 and L2 vertebrae are 

compared with manual MBD (m-BMD) assessments 

employing DXA and QCT. The diagnostic performance was 

evaluated using ROC analysis, where DL-BMD attained an 

Area Under Curve (AUC) of 0.847 for normal and 0.770 for 

osteoporosis. The model’s reliability was limited due to using 

a single CT scanner, which primarily focused on patients with 

normal spine BMD and abnormal pelvis BMD.  

 

A superfluity mechanism was employed by Naguib et al. 

[14] for categorizing the X-ray images from the knee into 

osteoporosis categories. The mechanism concatenates various 

layers, allowing features to flow into distinct branches. The 

study employed two knee X-ray datasets for model evaluation. 

The authors utilized the pre-trained models and compared 

their performance with the Superfluity DL architecture. The 

approach showed an accuracy of 5.42% for Dataset 1 and 

79.39% for Dataset 2, outperforming other pre-trained 

models. The superfluity mechanism required more 

computational resources, limiting their clinical application 

performance. Superfluity affected the model’s complexity, 

and excessive features led to model degradation. 

 

Liu et al. [15] investigated three distinct layers as a 

hierarchical system to predict osteoporosis using clinical data 

and CT scans of the lumbar vertebral bodies of 2210 

individuals over the age of 40. The authors utilized six ML 

models for classification, such as Random Forest (RF), 

Artificial Neural Network (ANN), Logistic Regression (LR), 

Support Vector Machine (SVM), XGBoost, and stacking. The 

hierarchical LR-based model attained the highest AUC of 

0.962 among the three distinct layers in classifying individuals 

with normal BMD and osteoporosis. The study utilized 

manual segmentation of the lumbar vertebral bodies, leading 

to feature extraction variations. 

 

Ou Yang et al. [16] developed a predictive model for 

osteoporosis screening utilizing ML algorithms, including LR, 

ANN, SVM, K-Nearest Neighbours (KNN), and RF. The 

dataset consisted of 2929 women and 3053 men from a clinical 

checkup in Taiwan. The system was trained separately for 

women and men using clinical data as input features. The 

results showed that the ML models outperformed the 

conventional Osteoporosis Self-assessment Tool for Asians 

(OSTA) system, demonstrating their potential for improving 

osteoporosis screening. The DXA results in the database were 

categorical rather than continuous, limiting their potential for 

more precise learning. The medical history was used to record 

the input features for the study, which reduced the model’s 

performance. 

 

Wani et al. [17] utilized transfer learning with DL-based 

CNNs, including VGGNet-19, ResNet-18, AlexNet, and 

VGGNet-16, to categorize X-ray images from the knee into 

osteoporosis. The dataset comprised 381 medically validated 

knee X-rays classified based on T-scores from a quantitative 

ultrasound system. The results demonstrated that AlexNet 

achieved a better accuracy rate of 91.1%, with a 0.09 error 

rate, while the VGGNet-19 showed the lowest accuracy rate. 

The models relied only on image-based analysis without 

considering clinical factors affecting diagnostic accuracy. 

Additionally, the authors focused only on knee osteoporosis 

without exploring its relationship with osteoporosis in other 

skeletal areas, limiting its applicability as a universal 

diagnostic system. 

 

Khanna et al. [18] utilized an open-source dataset of 1493 

patients and the ML framework to predict osteoporosis risk, 

which comprised physical examination data, bone density, and 

blood test results. The model analyzed thirteen feature 

selection methods to detect the most relevant predictors. The 

forward feature algorithm was applied, followed by a multi-

level ensemble learning-based stacking classifier for risk 

prediction. Explainable AI (XAI) techniques were 

implemented to enhance model interpretability and 

understand the important features. The best-performing 

pipeline, which included an algorithm for feature selection, 

achieved an accuracy of 89%, demonstrating its effectiveness 

in risk prediction. BMD was identified as the most relevant 

predictor. The study lacked advanced optimization 

algorithms, reducing the accuracy of the decision-making.  

 

Sebro et al. [19] investigated the feasibility of 

osteoporosis screening using CT scans of the forearm and 

wrist with ML technique. A comprehensive analysis was 

conducted on 196 patients who underwent CT and DEXA 

scans. The multivariable SVM with a Radial-Bias-Function 

(RBF) kernel was employed for osteoporosis prediction and 

achieved an AUC of 0.818, outperforming other models. The 

result demonstrated that the CT attenuation of multiple bones 

was more precise in predicting osteoporosis than using a 

single bone. The study lacked concurrent DEXA studies, 

indicating insufficiency for osteoporosis screening. All CT 

scans were analyzed using Siemens scanners, which restricted 

generalizability.  
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Hidjah et al. [20] utilized a DCNN model to detect 

osteoporosis from dental periapical radiographs. The dataset 

comprised postmenopausal women with BMD measurements. 

The methodology involved feature extraction, image 

acquisition, ROI selection, and classification. The best model 

was developed using an input image size of 100 to 150 and 

employing a five-convolution layer. The results demonstrated 

that larger image blocks provided additional trabecular 

patterns with an accuracy of 92.50%. The model’s 

generalizability was limited due to its inability to fully capture 

the complexity of osteoporosis using BMD measurements as 

the reference standard.  

 

By analyzing balance parameters, Cuaya-Simbro et al. 

[21] explored computational methods to identify osteoporotic 

individuals at risk of falling. A study was conducted on 126 

community-dwelling older women with osteoporosis. The 

dataset was analyzed using various ML models, such as 

Random Forest Classifier (RFC) and Instance-Based k (IBk) 

KNN. Oversampling methods were applied to address the 

class imbalance, and the Feature Selection for the Minority 

Class (FMSC) technique was utilized to identify relevant 

balance parameters. The best-performing model, the RFC, 

used oversampling to demonstrate effective risk fall 

prediction. An imbalanced dataset reduced the effectiveness 

of the model.  

 

Despite the growing application of ML and DL in thyroid 

nodule classification, several challenges remain unaddressed, 

limiting their clinical applicability. Most studies focus only on 

image-based analysis without considering clinical parameters, 

such as BMI, mortality rates, and patient history, which limits 

diagnostic accuracy and real-world scenarios [8]. 

Furthermore, the datasets from a single centre lowered model 

generalizability across diverse populations. The exclusion of 

specific patient groups, especially those with scoliosis or 

abnormal bone abnormalities, further restricts model 

relevance [10]. Another critical concern is the lack of 

automated segmentation methods for extracting relevant 

features from medical images. Manual cropping of images 

increases the risk of unpredictability and human error [12]. 

The multi-site osteoporosis diagnosis gets less attention, as 

most models focus on a single skeletal region, rendering it 

challenging to predict disease progression in other bones [17]. 

The computational complexity also poses challenges in the 

real world, especially in clinical settings with limited 

resources. Furthermore, the lack of advanced optimization 

techniques limits clinical decision-making and interpretability 

[18]. Addressing these challenges by combining multi-source 

data, automating progress, and enhancing model 

generalizability considerably enhances osteoporosis detection 

and risk prediction. 

 

3. Materials and Methods  
Osteoporosis significantly impacts quality of life, 

rendering early detection crucial for identifying potential 

fracture risks. A novel osteoporosis classification model is 

proposed using a DL model with an attention mechanism to 

address these challenges. Figure 2 illustrates the proposed 

classification model for osteoporosis detection by analyzing 

knee X-ray images. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Layout of the suggested model

Knee X-Ray 

Images (Train 

Data) 

Knee X-Ray 
Images (Test 

Data) 
 

Data Preprocessing 

Data Preprocessing 

 

Proposed Classification Model 

Feature 

extraction block 
using 

DenseNet121 

Convolutional block 

attention module 

(CBAM) 

Global 
average 

pooling 

layer 

Fully 
Connected 

layer 

Sigmoid Classifier 

Trained Model Model 

Evaluation 

   Classification 

Output 



Athira O M & R Gunasudari / IJECE, 12(6), 215-226, 2025 
 

219 

The model begins with data preprocessing, where knee X-

ray images are resized, normalized, and augmented to ensure 

consistent input size and enhance the diversity of the training 

set. The dataset is then split into an 80:20 ratio for training and 

testing to improve model performance. The preprocessed 

images are passed through a DenseNet-121-based feature 

extraction block, capturing high-level and complex patterns 

within the X-ray images through densely connected 

convolutional layers. The extracted features are refined by the 

CBAM, which sequentially applies channel-wise and spatial 

attention mechanisms to emphasize the images’ most 

informative patterns and regions. These enhanced feature 

maps are subsequently processed through a Global Average 

Pooling (GAP) layer, which condenses spatial information 

into a compact feature vector. This vector is passed to a fully 

connected layer to enable further feature interaction and 

representation. Finally, the output is classified by a sigmoid 

classifier, which assigns each image a probability score 

indicating whether it is osteoporotic or healthy. The trained 

model is then assessed using the test images, and its 

performance is evaluated through standard metrics, generating 

the final classification output. 

3.1. Dataset 

The data from the publicly accessible Kaggle repository 

is used in this study [22]. The dataset comprises 372 knee X-

ray images, with 186 knee X-ray images labelled normal (0) 

and 186 as osteoporotic (1). Figure 3 presents sample data that 

compares a healthy knee with an osteoporotic knee. 

 
Fig. 3 Sample data of knee X-ray images  

 

3.2. Data Preprocessing and Augmentation 

Data preprocessing involves a data mining process 

involving cleaning and converting raw data for analysis. 

Subsequently, it improves data quality to enhance model 

performance and ensure accurate results. This study involves 

preparing the categorical data into a machine-readable format, 

addressing missing values, and scaling numerical features. 

The dataset images are resized to a standard size of 224 × 224 

pixels for a uniform input size. Additionally, the images are 

converted to RGB format and processed for binary 

classification tasks, resulting in standardized pixel values to 

improve the model training and convergence. The feature data 

is normalized by applying standardization, which involves 

scaling it to unit variance and subtracting the mean. This 

transformation is represented by Equation (1). 

                  𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝜇

𝜎
            (1) 

Where 𝑋  is the original feature value, 𝜎 and 𝜇 stand for 

standard deviation and arithmetic mean of the feature, 

respectively. 

Data augmentation enhances model optimization and 

generalisability by developing a new data sample from the 

pre-existing data. The data augmentations, including 

rescaling, shearing, zooming, flipping, and rotation, are used 

to preprocess and enhance images for training, testing, and 

validation. 

3.3. Model Development 

The study suggested a DL model based on DenseNet 121 

and CBAM to improve feature extraction and pattern 

recognition in osteoporosis classification. Combining these 

two models harnesses their strengths, yielding a more accurate 

and robust feature representation. 

 

3.3.1. DenseNet-121 Model 

The DenseNet, a CNN architecture, is known for its 

unique architecture. As illustrated in Figure 4, DenseNet-121 

employs a distinctive dense connectivity architecture. 

DenseNet differs from conventional CNN architectures in two 

important ways. In a dense block structure, every layer is fed 

forward to every other layer, which is its primary 

characteristic. In addition, it employs bottleneck layers, 

allowing for a reduction in the number of parameter numbers 

without lowering the network’s ability to learn. In particular, 

DenseNet-121 has 121 layers with three primary components: 

dense blocks, transition layers, and a global average pooling 

layer. Convolutional layers with dense connections are found 

in dense blocks, whereas transition layers restrict the number 

of parameters and lower the dimensionality. While 

considering all these things, DenseNet’s distinctive 

architecture effectively learns and encodes complex 

characteristics and provides an effective tool for computer 

vision tasks like image categorization [23]. 

DenseNet processes a single X-ray image (𝑌0) using a 

deep neural network (𝑌0). Convolution (Conv), pooling, batch 

normalization (BN), and ReLU are compound functions of 

operations that use the form 𝐾𝑙(. ). The output of the 𝑙𝑡ℎ  layer 
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is represented as 𝑌𝑙 . The  𝑙𝑡ℎ layer receives all previous feature 

maps ( 𝑦0 , 𝑦1, … … 𝑦𝑙−1 ) as inputs, as shown in Equation (2). 

                               𝑦𝑙 = 𝐾([𝑦0, 𝑦, … … 𝑦𝑙−1])       (2) 

where, [𝑦0, 𝑦, … … 𝑦𝑙−1] indicates attention to all preceding 

feature maps of the  𝑙𝑡ℎ layer. DenseNet addresses the issue of 

fading gradients by reusing features while decreasing the 

number of variables. DenseNet -121 employs four dense 

blocks.

 

 

 

  

 

 

 

 

 

 

Fig. 4 Basic Architecture of DenseNet 121 Model 

The transition layer within each block downsamples the 

feature maps to produce a 2 × 2 average pooling layer and a 

1 × 1 convolution layer. Dense blocks consisted of multiple 

convolutional layers connected sequentially to establish cross-

layer connections [24].  

3.3.2. Convolutional Block Attention Module 

The CBAM enhances feature extraction by sequentially 

applying the Spatial Attention Module (SAM) and Channel 

Attention Module (CAM), as shown in Figure 5. The process 

starts with an input feature, which then passes through the 

CAM. The SAM then processes the outputs, highlighting 

significant spatial regions within the feature map. After 

applying both mechanisms, the extracted feature map is 

enhanced to capture the essential patterns from the data. The 

CBAM module enhances feature extraction by adaptively 

extracting spatial and channel attention mechanisms for highly 

effective DL applications. From a transitional feature map, 

𝐹 ∈ 𝑅𝐶×𝐻×𝑊, CBAM successively concludes a 1D CAM 

𝑀𝑐 ∈ 𝑅𝑐×1×1 and a 2D SAM 𝑀𝑠 ∈ 𝑅1×𝐻×𝑊. 

The whole attention mechanism is summarized by 

Equations (3) and (4). 

                                   𝐹′ = 𝑀𝑐(𝐹) ⊗ 𝐹                        (3) 

                                  𝐹′′ = 𝑀𝑠(𝐹′) ⊗ 𝐹′                    (4) 

Where ⊗ signifies element-wise multiplication, and 𝐹′′ 

Indicates refined final result. The inter-channel relationship of 

structures is considered for the CAM. It reduces the spatial 

dimension of the input feature map to determine the channel 

attention [25]. Average pooling is employed for aggregating 

spatial data. Each attention map’s computing procedure is 

shown in Figure 6. 

 

 
Fig. 5 Visualization of CAM
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Fig. 6 Layout of each attention sub-module 

 

Two spatial context descriptors, such as 𝐹𝑎𝑣𝑔
𝑐  and  𝐹𝑚𝑎𝑥

𝑐 , 
are generated by combining the spatial data of a feature map 

through average pooling and max pooling. The CAM is 

developed by forwarding both descriptors to a shared 

network. 𝑀𝑐 ∈ 𝑅𝑐×1×1. The shared network comprises a 

single Multi-Layer Perceptron (MLP) and one hidden layer. 

Channel attention is calculated using Equations (5) and (6). 

𝑀𝑐(𝐹) =  𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))                                                                   

                                                                                             (5)                                             

            =𝜎 (𝑊1 (𝑊0(𝐹𝑎𝑣𝑔
𝑐 )) + 𝑊1(𝑊0(𝐹𝑚𝑎𝑥

𝑐 )))                   (6) 

Where  𝜎 represents the sigmoid function, 𝑊0 ∈ ℝ𝐶/𝑟×𝐶  

and  𝑊1 ∈ ℝ𝐶/𝑟×𝐶 . 𝑊0 and 𝑊1 have the same inputs and 𝑊0 

is followed by the ReLU activation function. Equations (7) 

and (8) represent the spatial attention.                          

 𝑀𝑠(𝐹) = 𝜎 (𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹)]))         (7)             

                           =𝜎(𝑓7×7([𝐹𝑎𝑣𝑔
𝑠 ;  𝐹𝑚𝑎𝑥

𝑠 ]))                        (8) 

Where 𝑓7×7 indicates the convolution operation of filter 

size 7 × 7.      

3.3.3. Proposed DL Model    

The suggested model architecture employs DenseNet 

121, a powerful pre-trained CNN known for its efficiency in 

feature extraction. The model relies on a distinctive dense 

connectivity pattern where each layer receives input from all 

previous layers. This ensures maximum data flow and allows 

the system to capture complex patterns within the data. The 

base model is configured to exclude the top fully connected 

layers, which are typically used for classification in the 

original DenseNet121 architecture. Instead, the model focuses 

solely on the convolutional layers, which process the input 

image data to extract relevant features. The input shape is 

defined according to the specific task, and the pre-trained 

ImageNet weights are used to leverage transfer learning. This 

initialization enables the model to begin with a strong basis, 

having already acquired general features from a large dataset. 

Following the DenseNet121 model, a CBAM is used to 

enhance feature representation.  

The CBAM block constitutes a lightweight, powerful 

attention mechanism that emphasizes the most informative 

features in the spatial and channel dimensions. The CAM first 

performs GAP and global max pooling across the spatial 

dimensions, followed by shared dense layers to capture 

channel relationships. The outputs from these two pooling 

operations are subsequently combined into a sigmoid 

activation and multiplied by the original input tensor to 

reweight the channel-wise features. This process helps the 

model focus on the most critical channels contributing to 

accurate predictions.  

Next, the SAM is applied further for spatial feature 

extraction. The output of the CAM is processed by average 

pooling and max pooling operations along the channel axis, 

and the outcomes are concatenated to form a combined feature 

map. This map highlights the most relevant spatial regions in 

the feature map, enabling the model to emphasize significant 

elements of the image. The SAM is multiplied by the input 

feature map to finalize the attention process. This attention 

mechanism enables the model to dynamically alter its focus in 

response to the input data, thereby improving its ability to 

identify essential patterns. 
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Algorithm 1: DenseNet 121 - CBAM based Osteoporosis 

Prediction 

Input: Knee X-ray images 

Output: Efficient Osteoporosis Detection and Classification 

Model. 

Begin: 

 Load and preprocess data: 

 Collect dataset: D = {(𝑥𝑖 , 𝑦𝑖)}, where 𝑥𝑖  

is a Knee X-ray images and 𝑦𝑖 ∈ {0,1} (1: 

Osteoporosis, 0: Normal). 

 Preprocess: 

   - Resize: 𝑥𝑖   → R^ (224×224) 

   - Normalize: 𝑥𝑖   = (𝑥𝑖   - mean) / std 

   - Data Augmentation: (Shear, Zoom, 

Flip, Rotation) 

 Define Proposed Classification Model: 

 base_model = 

DenseNet121(weights='imagenet', 

input_shape= () 

 x = base_model. Output 

  x = cbam_block(x) 

 x = GlobalAveragePooling2D () (x) 

 x = Dense (256, activation='relu’) (x) 

 x = Dense (1, activation='sigmoid’) (x) 

 M = Model (inputs=base_model. input, 

outputs=x) 

 Model Compilation: 

 M.compile(optimizer=Adam (), 

loss='binary_crossentropy', 

metrics=['accuracy']) 

 Model Training: 

 M.fit(train_generator, 

validation_data=val_generator, 

epochs=50) 

 Model Evaluation:  

 metrics = M. evaluate (X_test, y_test) 

Save the model 

End 

3.4. Hardware and Software Setup 

The system is powered by an Intel Core i7-6850K 3.60 

GHz 12-core processor and equipped with an NVIDIA 

GeForce GTX 1080 Ti GPU with 2760 MB of memory, 

ensuring high computational performance. Google 

Collaborator was the DL platform, providing a robust model 

training and testing environment. The proposed model 

undergoes training and testing to achieve optimal 

performance, with its algorithms validated using ground truth 

data to ensure accurate and reliable results under multiple 

circumstances. Hyperparameters influence the training of DL 

models and are set before the training begins. Table 1 showed 

the list of hyperparameters employed in this study. 

 
Table 1. Hyperparameter specifications 

Hyperparameters Values 

Batch Size 16 

Optimizer Adam 

Number of Epochs 50 

Loss Function Binary Crossentropy 

 

4. Results and Discussion  
The accuracy and loss plots show the system’s learning 

progress and predictive capabilities over training epochs. 

Figure 7 illustrates the proposed system’s learning progress 

and predictive capabilities over 50 training epochs. Initially, 

the model attained a training accuracy of 75.6%, progressively 

improving to 83% by epoch 3, demonstrating rapid learning. 

The accuracy steadily increased as training continued, 

reaching a final accuracy of 97.43% by epoch 50. This 

outcome establishes the model’s ability to generalize the 

osteoporosis detection task effectively. During the early stages 

of training, the loss was relatively high, approximately 0.7, 

indicating initial prediction errors. By epoch 10, the loss had 

decreased below 0.4, reflecting model improvement. This 

trend continued, with the loss value reducing to 0.1 by epoch 

50, indicating efficient learning with minimal errors. These 

findings demonstrate the model’s ability to classify 

osteoporosis from knee X-ray images. 
 

 
Fig. 7 Graph illustrating the suggested model’s accuracy and loss 
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To assess the accuracy and robustness of the suggested 

system, several performance metrics are used based on 

classification performance, such as True Negative (TN), False 

Positive (FP), False Negative (FN), and True Positive (TP). 

These mathematical metrics provide insights into the model’s 

strength and serve as a benchmark for its classification 

performance, leading to a comprehensive assessment of the 

system’s capability in predicting osteoporosis. The evaluation 

is determined from the following Equations (9) to (12). 

                                                                     

                         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (9)     

                               𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                           (10)  

 

                                  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (11) 

 

             𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                      (12) 

 

The performance metrics shown in Figure 8 demonstrated 

that the system performed well in classifying osteoporosis 

from knee X-ray images.  

 

 

 
Fig. 8 Performance evaluation of the proposed model 

 

With an accuracy of 97.43%, the proposed classification 

model suggests that the model effectively predicts 

osteoporosis and proves to be an excellent tool for precisely 

classifying most samples. The precision score of 96.54% 

indicates an excellent prediction with a low rate of FP, 

ensuring an actual positive prediction. Finally, the recall of 

97.21% shows that the model easily identifies 97.21% of the 

actual positive cases, highlighting its reliability in real-world 

applications. An F1 score of 96.87% shows the ability of the 

model to maintain a balance between precision and recall.  

The confusion matrix is a perfect tool for assessing the 

effectiveness of the classification approach, representing 

actual vs. predicted outcomes, and is widely used in medical 

diagnostics and DL techniques. The efficacy of the proposed 

classification model is examined using the knee X-ray images, 

showing a high degree of reliability and accuracy. As shown 

in Figure 9, the suggested model achieved impressive 

predictive capabilities and accurately identified 62 typical and 

51 osteoporosis cases with few misclassifications. However, 

the overall performance in classification between osteoporosis 

and normal remains robust, enhancing its reliability and 

potential for accurate prediction. 

 
Fig. 9 Confusion matrix of the proposed model 

 

Figure 10 depicts the ROC curve, which plots the True 

Positive Rate (TPR) against the False Positive Rate (FPR) to 

demonstrate the system’s performance. The suggested model 

showed a superior AUC value of 0.97, representing accurate 

osteoporosis detection while reducing false prediction 

classification.  
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Fig. 10 ROC curve 

 

Figure 11 depicts the predicted classification output, 

illustrating the model’s accuracy and efficacy for detecting 

osteoporosis using knee X-ray images. Table 2 and Figure 12 

compare the proposed model by existing methods. The 

performance comparison of various models for osteoporosis 

detection revealed that the suggested DenseNet-121 with 

CBAM achieved the highest accuracy rate of 97.43%, 

surpassing existing methods. Traditional DL models such as 

DNN (81.2%) and AlexNet (91.1%) exhibited lower accuracy 

due to their limited feature extraction capabilities. Methods 

such as Deep CNN (90.7%) and CNN (92.5%) enhanced 

performance; however, they lacked efficient spatial and 

channel attention mechanisms, limiting their capacity to focus 

on important osteoporosis features. The VGG16 model 

attained 95% accuracy, which improved performance but fell 

short of the suggested model. DenseNet-121’s greater 

performance with CBAM can be due to its densely connected 

architecture, which promotes gradient flow, and the CBAM 

method, which improves feature refinement by emphasizing 

essential spatial and channel-based information. This 

combination efficiently addressed redundant features and loss 

of acceptable resolution, resulting in more accurate 

osteoporosis detection. 

 

 
Fig. 11 Classification output

 

Fig. 12 Visualization of accuracy comparison 
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Table. 2 Performance comparison with existing models 

Author Methodology Accuracy (%) 

Jang et al. [8] DNN, VGG16 architecture 81.2 (DNN) 

Naguib et al. [14] 
Superfluity mechanism, AlexNet and 

ResNet50. 
85.4(superfluity mechanism) 

Nakamoto et al. [11] Deep CNN 90.7 

Wani et al. [17] 
VGGNet−19, ResNet, VGGNet-16 and 

AlexNet 
91.1% (AlexNet) 

Hidjah et al. [20] CNN 92.5 

Dzierżak et al. [9] VGG 16 95 

Proposed model: DenseNet-121 - CBAM 97.43 
 

5. Conclusion  
Osteoporosis is a chronic bone disorder characterized by 

impaired bone density and a greater chance of fractures, 

necessitating early detection to prevent severe complications 

and enhance patient outcomes. Traditional diagnostic 

methods, including clinical risk factor assessments and 

DEXA, often struggle with high cost, limited accessibility, 

and the inability to detect osteoporosis at its initial stage. This 

research presents an effective DL strategy with an attention 

mechanism for detecting osteoporosis from X-ray images of 

the knee by combining DenseNet-121 with the CBAM to 

enhance feature extraction and improve the model to focus on 

critical bone structures in knee X-ray images. The model 

demonstrated high classification performance, achieving an 

accuracy of 97.43%, precision of 96.54%, recall of 97.21%, 

and F1-score of 96.87%, indicating its effectiveness in 

osteoporosis classification. Future research can explore the 

integration of multi-modal imaging, such as MRI and CT 

scans, to improve diagnostic accuracy. Furthermore, using 

explainable AI techniques can improve model interpretability, 

allowing healthcare practitioners to understand better and trust 

automated osteoporosis detection. 
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