
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 6, 227-237, June 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I6P118 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Hybrid Deep Learning Model for Software Defect

Classification Using Code2Vec and LinkNet-BiLSTM

Score Level Fusion

Srinivasa Rao Katragadda1, Sirisha Potluri2

1,2Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad,

Telangana, India.

1Corresponding Author : ksrresearch1@gmail.com

Received: 10 April 2025 Revised: 11 May 2025 Accepted: 12 June 2025 Published: 27 June 2025

Abstract - The software package faults stance an important trial, impacting systems’ reliability, functionality, and security.

Traditional methods for defect detection, including manual inspections and static tools, are often insufficient for handling large,

complex codebases. Current progress in ML and DL provides more robust solutions by identifying complex patterns within data.

It presents a hybrid model that combines Code2Vec for feature extraction, Improved LinkNet for spatial data processing, and

Bi-LSTM for sequential pattern analysis, leveraging score-level fusion to improve software defect classification. Code2Vec

transforms unstructured source code into dense vector representations, capturing critical semantic and syntactic features.

Improved LinkNet excels in extracting high-level structural features, while Bi-LSTM captures long-term dependencies in code

sequences. The proposed score-level fusion integrates the outputs of these models to harness their complementary strengths,

reducing noise sensitivity and enhancing accuracy. The fused scores are passed to a soft-max classifier to foresee a given snippet

code that is fault-motionless or non-defect-prone. The final output classifies the software defect into specific categories, if

applicable, based on the trained dataset. It demonstrates that the hybrid model outperforms metrics, accuracy, precision, recall,

and F1 scores, existing methods in package fault prophecy. The study also highlights the significance of hyperparameter tuning

and training large, labelled datasets. This research contributes to scalable, efficient defect detection methods that address real-

world challenges in software development, setting a foundation for future improvements in predictive analytics and automated

software quality assurance. The proposed model, implemented in Python, enhances classification performance, achieving an

accuracy of 92%.

Keywords - Software defect classification, Deep learning, Code2Vec, Bi-LSTM, Score-level fusion.

1. Introduction
Software defects are a significant issue for software

development processes across the software development life

cycle, affecting the software systems’ reliability,

functionality, and sometimes security. Detecting the software

defects at earlier stages of the development life cycle has been

imperative for reducing the cost of bug fixes while at the same

time enhancing software quality. The prior methods used

traditionally include visual examination of the code, manual

inspections, and static tools and rules [1]. However, these

methods fail to exercise large and complex codebases and

most of the time, they need active human intervention, which

makes them time-consuming and error-pragmatic. In the past

decade, ML techniques and, more recently, DL techniques

have increasingly applied in software defect prediction

context due to their capability of ‘learning’ and identifying

complex and quite ‘hidden’ patterns in a large number of

datasets that would commonly aid in automating and very

much improving the defect inspection process. A recent

development in the field is to train deep learning models that

will be able to learn the underlying structure of the

unstructured data present in the form of source code efficiently

without much influence of manual feature extraction [2]. One

such research could be the improvement of multiple deep

learning paradigms and implementing them in a hybrid

manner so that the best of every architecture is harnessed.

These models can be especially effective when used in

software defect prediction because it may be the subtle

architecture within these systems that identifies areas prone to

defects. This research study aims to combine Code2Vec,

Improved LinkNet and Bi-LSTM in score-level fusion to

propose a probable solution to the defect forecast problem that

is accurate, effective and scalable. This paper establishes that

the feature extraction stage is crucial for properly functioning

machine learning algorithms for defect detection [3]. Source

code is highly unstructured, and therefore, it is usually

http://creativecommons.org/licenses/by-nc-nd/4.0/

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

228

complicated to find meaningful features from relations that

could be sparse, complex, and non-linear. It is addressed by

Code2Vec, a new method designed for producing vectors for

code. With Abstract Syntax Trees (ASTs), another feature

extraction tool named Code2Vec is capable of parsing out

semantic and syntactic features inherent in code. This method

converts code into comprehensible vectors regarding the

code’s components and their work, making it optimal for

defect prediction tasks [4]. The model translates paths in the

AST into sequences of elements in code constructs such as

loops, variables, and functions and then aggregates the

sequences into a vector of fixed dimensionality for each

source code fragment. These vectors retain more information

from the code. The information flow from encoded semantic

and syntactic levels can be fed into the classification models

[5]. However, the primary problem of attempting to analyse

the data once the features have been extracted using

Code2Vec is imperfect whether or not to classify. On this

behalf, extracting features through Improved LinkNet and Bi-

LSTM presents improved features for processing and

classification [6]. An extension of the network called

Improved LinkNet, which is effective when dealing with

complex data representations, has also been applied in this

work to classify the software defects and to capture the spatial

dependencies of the features extracted from the source code.

Usually, a Recurrent Neural Network (RNN) is more

appropriate for sequential, Bidirectional-Long Short-Term

Memory (Bi-LSTM) as it handles long-term dependencies and

contextual information. In software packages, it enables the

model to capture that the code is sequential, where the order

of statements, functions or variables may form part of the

problem in detecting defects [7].

However, applying only one deep learning model for the

defect classification is sometimes problematic because of the

model bias and general capabilities for signal feature

extraction from the input. This is where our theory of score-

level fusion comes into play. In score-level fusion, the results

of Improved LinkNet and Bi-LSTM models are combined at

the score level to produce a final output. The idea is that one

or another model can complement the advantages of the other

model in terms of more minor variance and better pattern

identification. For instance, although Improved LinkNet may

perform better in obtaining the high-level features linked to

the structural characteristics of the code, BI-LSTM may

perform better in sequences and temporal characteristics of the

code. Combining multiple models through integration, the

hybrid system provides more accuracy and less noise

sensitivity. This research discusses identifying software as

defective as the focal concern in the data analysis process of

Code2Vec. Feature extraction is done using Improved

LinkNet and Bi-LSTM for classification. The enhanced

LinkNet performs well for the elaborate formation of data

representation. Bi-LSTM deals with Long-term and

contextual information. The score-level fusion theory fuses

Improved LinkNet and Bi-LSTM models on the score level to

adopt both advantages while reducing variation and enhancing

pattern recognition. This system has less noise sensitivity and

better accuracy than the old one. The fusion process often

combines the outputs of one or more models, for example,

probabilities or classes, by simple or complex methods [8].

The proposed hybrid deep learning model at the score level

fusion minimises the errors, enhances the generality, and

augments the efficiency of multiple models for defect

classification. It is, therefore, compared with current methods

for demonstrating improvements brought by score-level

fusion and the hybrid deep Learning model. To train a

combined model, highlight that it requires a large dataset of

code annotated with defects labels. These are fed into

Improved LinkNet and Bi-LSTM models before being

subjected to the score-level fusion strategy. Hyperparameter

neural networks based on size, layers, and reading rate, which

are so important, will be selected using feature selection

methods. The research concern of this paper is to improve

software defect detection through the integration of Code2Vec

for feature representation and Improved LinkNet and Bi-

LSTM for classification outcomes [9].

Key points are discussed as below:

 Code2Vec transforms unstructured source code into

dense vector representations, effectively capturing

semantic and syntactic features for accurate defect

identification.

 A modified LinkNet architecture extracts high-level

spatial features, ensuring robust analysis of code

structures for defect classification.

 Bi-LSTM captures that enhancing the understanding of

temporal and contextual relationships.

 Score-level fusion combines outputs from LinkNet and

Bi-LSTM, leveraging their complementary strengths to

reduce noise and boost classification performance.

 The model detects defect-prone code and categorizes

defects into specific types based on the dataset, aiding

deeper insights.

 Achieving 92% accuracy, the model outperforms

traditional methods, demonstrating scalability and

suitability for large, complex codebases.

It is organized as follows: The relevant work is given in

section 2. The problem statement is defined in section 3. The

suggested approach is explained in section 4. The experimental

results are obtainable in Section 5. The conclusion and future

work are delivered in Section 6.

2. Related Works
Borandag [10] focuses on the growing importance of

retaining machine learning and deep learning. It adopts the

SFP XP-TDD dataset from three software projects and

compares five classifiers and their hybrids. The research

discovers that DL algorithms perform better than ML models

when dealing with large sets and include RNN-based models

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

229

tested using Eclipse and Apache Active MQ datasets. The

obtained results demonstrate the significance of DL in the SFP

in terms of the sample size of the datasets. However, it has

certain drawbacks, such as the restriction of the analysis to

specific datasets, limited appropriateness of the proposed

method for comparatively small datasets, and issues

concerning the overall generality of the results to real-life

realistic composite software applications.

Batool and Khan [11] examine SFP through DL

techniques, including LSTM, BiLSTM, and RBFN, with

datasets derived from Chidamber and Kemerer (CK) features.

As can be inferred, both LSTM and BiLSTM perform better

than the traditional models, whereas the RBFN model has

been seen to be faster in computation. Moreover, k-fold

authentication is used, and the accuracy of the models is better

than that of the other available accuracy models. The paper

emphasizes that DL can improve SFP mechanisms while

revealing weaknesses, such as reliance on data sets, difficulty

extending the results to different environments, and high

computational overhead related to training effective DL

models. [12] recommends using CNN and MLP merging to

develop a DL approach for predicting software faults based on

twelve datasets from the PROMISE repository. Carrying out

class imbalance with SMOTEND, the lowest accuracy, 0.195

for MLP, is established, surpassing CNN. Some of the

significant advantages of the model include the following:

First, it is relatively simple; second, it is flexible, as is

demonstrated by its capability to accommodate input data.

There are several limitations: synthetic oversampling

techniques, the possibility of overfitting with relatively small

samples, and no direct comparison between the proposed

architectures and other DL structures aside from MLP and

CNN.

Das et al. [13] present the PM2-CNN model that

combines the transformer architecture with the multi-channel

CNN for SFP. It integrates defect-related data that consists of

natural language inputs, such as comments within the code and

commit messages with the code’s programming for a richer

representation. The results show a positive shift in generic

evaluation metrics. Constraints include computational

processing needs due to transformer elements, difficulties

combining different input types, and dependence on pre-

trained language models, which may be suboptimal for all

scenarios.

Rathi et al. [14] assesses SFP employing six feature

selection procedures, nine sampling methods, and six

classifiers over 56 OSPs. Concluding the class imbalance and

redundancy, the present study identifies that SMOTEE with

the correlation-based Feature Selection (FS2) delivers the best

results. Using these techniques, it records enhanced AUC of

more than 75 per cent of projects’ post implementing the

techniques. Lack of constraints includes the large number of

evaluations per project equal to 792 dataset combinations, the

risk of overfitting due to high parameter tuning, and

difficulties applying these methods to SFP pipelines.

 Yang et al. [15]. present a weighted association rule-based

algorithm for SFP with an emphasis on the degree of

contribution of features to generate satisfactory rules and

enhance the prediction rate. Thus, by handling class imbalance

and improving rule generation and ranking, the proposed

model significantly acquires the average F1 score

improvement of about 6.4% and the average MCC

improvement of about 9.8% compared to the existing approach

on the PROMISE dataset. Still, there are specific problems,

such as increased computational time for large datasets,

difficulty in generating rules, and finally, the applicability of

this rule-based system is not easy with the changing trends in

the software development paradigm.

3. Problem Statement
The proposed model struggles to generalize across diverse

datasets and environments. While DL models, such as RNN-

based architectures, CNN, and MLP k-fold cross-validation,

have shown superior performance in handling large datasets,

they face challenges related to high computational overhead,

reliance on specific data characteristics, and difficulties in

extending results to real-world, composite software

applications. Additionally, approaches incorporating hybrid

models or feature selection techniques often contend with

issues like class imbalance, overfitting, and computational

inefficiencies. Notwithstanding, it is developing SFP methods

to efficiently handle diverse, real-life scenarios while

minimizing the need for extensive data preprocessing and

feature tuning. To address these challenges, this research

proposes “Score-Level Fusion in Hybrid Deep Learning with

Extractive Feature Sets for Software Defect Classification.”

This approach leverages score-level fusion to combine and

identify defects in diverse software environments. By

integrating different learning models and optimizing feature

selection, this method aims to improve generalization, reduce

overfitting, and provide more efficient, scalable solutions for

real-world SFP tasks.

4. Hybrid Code2Vec-Improved LinkNet-

BiLSTM Score Level Fusion Model
A Hybrid Deep Learning Model for software defect

classification uses advanced techniques to boost accuracy. It

first involves data gathering and processing where missing

values are resolved, and features of the codes are extracted

from Code2Vec, thus converting snippets of code into their

corresponding vector forms, using the extracted feature for two

architectures models that are classification in LinkNet

modified for this classification. In contrast, bidirectional input

in time was provided for the Bi-LSTM architecture. Finally, a

score-level fusion combines the outputs from both models to

achieve better classification accuracy by leveraging the

strength of each approach. This structured methodology

guarantees robust defect identification, as shown in Figure 1.

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

230

Fig. 1 Block diagram of proposed methodology for enhancing robotic performance

4.1. Data Collection

The data used in this work is drawn from the PROMISE

repository, a commonly used software project repository

containing data on software project defects. Each dataset

contains project names, names of the source files with defects,

versions, number of defects and 20 traditional features. These

features characterize the software metrics frequently used to

predict a defect. To match prior work and replicate their

findings, source code was downloaded. There are two project

models, the Within-Project Defect Prediction (WPDP) and

Cross-Project Defect Prediction (CPDP), with one project as

the source project and the other as the target project. Due to this

setup, it is possible to comprehensively evaluate the defect

prediction models across various conditions [16].

4.2. Data Preprocessing

Data preprocessing is a significant process utilized to clean

and set up the data before feeding it for model development.

4.2.1. Handling Missing Values

Missing values are detrimental to machine learning

techniques, as they may hinder the software’s performance in

providing important sources. As for it, numerical features with

missing values can be filled with mean or median to keep the

magnitude beneficial without taking much bias. In the case of

categorical data, their mean can be used in its place. In ordinal

data, the median Reply can be used instead of it. If missing

data is disproportionately high in a feature, then that feature

can be completely trimmed off. It was done to guarantee that

the data set would not be altered in the process of modeling

and that key information is preserved.

4.2.2. Feature Normalization and Scaling

Feature extraction in Code2Vec is complex and leverages

the conversion of source code into dense vectors. Using this

methodology on datasets like the one presented here with

projects like Camel, Lucene, and Log4j, the methodology can

ideally pick out important features crucial to defect prediction

and other uses of software analysis. It uses the abstract syntax

tree and path-oriented representations to identify the logic

used in code.

Step 1: Parsing Source Code into AS

The feature extraction starts with parsing the Abstract

Syntax Tree (AST). It connects to the tree of the language, for

example, a variable declaration, a method call or a control

structure. Another feature of this tree structure is the

identification of relations such as parent-child relations of

loops and conditions or inheritance.

For example, the AST separated initialization, condition,

and increment statements in the for-loop case as different yet

related elements. In the given dataset, each file of the projects,

for example, Lucene or Xalan, would be transformed to the

corresponding AST. This process means that the structural

elements expressed in the extracted features include relations

like either depth of inheritance or the coupling between

objects to reflect the traditional metrics as captured.

Step 2: Path-Based Representations

After the construction of the AST, the process of analysis

in Code2Vec yields path-based representations, which are the

core Kent features. A path in the AST implies one specific

path between two nodes and describes the system. For

example, a path may link a variable declaration site to the site

of the method call, showing how data is processed in the

program.

Regarding the position of projects in the buggy rate, it is

reasonable to expect that, for example, projects on POI or

Lucene exhibit specific defect-related patterns in their

pathways. Some routes could highlight where logical mistakes

can happen, such as when checking invalid pointers, like the

null pointer, or where a loop ought to be and whether it exists.

Code2Vec cleans up the relationship database, ensuring it only

contains pertinent data, and eliminates these paths to stop

noisy components from entering as input.

Data Collection Handling Missing values

Feature Extraction using

Code2vec

Feature Extraction using

Code2vec

Model Development for

classification

Score Level Fusion LinkNet Bi-LSTM

Data Pre Processing

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

231

Step 3: Token Embedding’s

The obtained AST path is then converted to a series of

dense vector embeddings per each node and edge in this path.

Like Word2Vec in NLP, it uses the neural network-based

embedding technique to map tokens such as the variable

names, operators, and keywords to a continual vector space.

Such embeddings are designed to capture similarity, so

working elements (such as “sum” and “total”) would be

nearer.

For instance, in the dataset files, code smell patterns are

such things as unused variables or inadequate exception

management, which likely have shared embeddings between

projects. These are then quantified, thanks to Code2Vec, and

the buggy or non-buggy behavior patterns across different

projects can be generalized.

Step 4: Aggregating Path Embeddings

Code2Vec summarizes all the path embedding related to

a given file into a compact representation of the fixed

dimensionality. This vector gives structural and contextual

information on all the paths in the AST of the code snippet,

which sums up the snippet. There are methods, including the

attention mechanism, which help to increase the weight of

critical paths so that necessary features, such as high

cyclomatic complexity or deep nesting, are considered. For the

appearance of bugs, this step would group strings of paths

often associated with bugs, such as deep recursion in Xalan

tightly coupled classes in Log4j, among others. These

aggregated embeddings are used as inputs to the defect

prediction models and hence identify some features that are

not always included in the features, such as LOC or WMC.

Due to the features extracted from Code2Vec described

above, one can solve problems when analyzing the given

dataset. It can easily surpass antiquated qualitative metrics

such as inheritance depth or cohesion by learning domain

patterns unseen by traditional methods. This is particularly

important in high buggy rate scenarios, which often require

recognizing pesky but utterly important bugs like misuse of

library functions or improper usage of inheritance. Therefore,

the feature extraction of Code2Vec transforms large code

patterns into simpler and semantically dense features. Using

AST paths, token embeddings, and aggregation techniques

gives a strong and self-organizing method for dissecting the

code patterns, which improves the defect prediction in any

dataset with different buggy rates and project complexities.

4.3. Feature Extraction Using Code2Vec

Feature extraction in Code2Vec is complex and leverages

the conversion of source code into dense vectors. Using this

methodology on datasets like the one presented here with

projects like Camel, Lucene, and Log4j, the methodology can

ideally pick out important features crucial to defect prediction

and other uses of software analysis. It uses the abstract syntax

tree and path-oriented representations to identify the logic used

in code.

4.4. Classification Using LinkNet for Software Defect

Detection

 LinkNet architecture takes data related to software

defects through its encoder and decoder segments, which

unlearn and relink the feature maps to maximize classification.

They added several convolutional layers to enhance light and

fit the real-time defect classification tasks. Improved

LinkNet’s structure incorporates elements present in ResNet,

with additional residual connections to enhance performance.

The Improved LinkNet34 architecture is employed for

software defect detection as described in the method

flowchart. Out of all the blocks in the model, the primary

block commences by performing convolution of input feature

maps using a kernel of sizes 7×7 times 7 and a fixed stride of

2. After this, maximum pooling again decreases the number of

parameters accepted as the input for the intensity of the

subsequent process. After that, a set of residual blocks with

small outputs relearn the representation of input features.

During the downsampling of the input, the first convolutional

layer of each residual block uses a stride of 2 for efficient

feature downsampling. The rest of the layers work with a

stride of 1 to preserve features in the spatial domain.

Architecture also embodies a sequence of decoder modules,

each connected to an encoder module. The decoder starts with

a 1 × 11 times 1 convolution layer to down ample individual

feature maps and ends with batch normalization and a

convolution transformation that up samples feature maps. This

design helps sustain the restoration of features and lowers

computational load [17].

In LinkNet architecture, dilated convolutions expand the

receptive field without expanding the parameters. The

variable 𝑑𝑟 controls the spacing between the kernel weights,

which affects the sampling density of the feature map. Let us

consider the kernel in Equation (1)

𝑘𝑠 = 𝑘𝑠 + (𝑘𝑠 + 1) × (𝑑𝑟 − 1) = 𝑑𝑟 × (𝑘𝑠 − 1) + 1 (1)

Where represents the original kernel size. The dilation

rate is defined 𝑑𝑟 . For a given layer, the receptive field

size𝑟 𝑓𝑛 can be expressed in Equation (2)

𝑟𝑓𝑛=𝑥𝑛−1 × 𝑟𝑓𝑛−1+𝑘𝑠𝑛−1-𝑥𝑛−1 (2)

Here, denotes the stride at layer n and 𝑘𝑠𝑛−1 is the

effective kernel size of the dilated convolution.

The main advantage of Improved LinkNet pertains to the

ability to integrate the encoder and decoder modules. The

decoding architectures of the prior art may discard valuable

spatial data as successive decoding occurs. To overcome this,

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

232

Improved LinkNet uses pooling indices as non-training

parameters to connect the encoder and decoder to maintain

spatial relationships. During oversampling, this connection

bypasses the encoder’s input directly to the decoder’s output

and is useful in reconstructing lost spatial details.

Furthermore, by making this direct connection from the

encoder to the decoder, the architecture scales down the

parameters, thus making it very efficient for real-time analysis

of software defect classification. This design is superior to

prior arts because it provides a good trade-off between

precision and complexity, and the practical application of

solving large-scale defect datasets is feasible.

Fig. 2 Architecture of LinkNet

4.5. Classification using Bi LSTM

In mathematical notations, let us first introduce the

forward and backward computations of the Bi-LSTM network

within a sequence modeling context, like software defect

prediction. Bi-LSTM sequential data is more appropriate for

problems that require understanding deep temporal features

such as defect detection of code. Below are the key

components and equations describing its operation:

4.5.1. Forget Gate

This forgets that. 𝑓𝑡 lies between 0 and 1, of ℎ𝑡−1 and 𝑥𝑡

with 0 signifying complete loss of information and 1, a

complete recall of information.-1) this is given in Equation (3)

 𝑓𝑡=𝜎(𝑊𝑓ℎ[ℎ𝑡−1], 𝑀𝑓𝑎[𝑎𝑡],𝑏𝑓) (3)

4.5.2. Input Gate

It has two parts: a sigmoid layer 𝑖𝑡that determines the

importance and a tanh layer 𝑐𝑡 that generates new candidate

values. The Equations are (4), (5)

𝑖𝑡= 𝜎(𝑤𝑖ℎ[ℎ𝑡−1], 𝑢𝑖𝑥[𝑥𝑡],𝑏𝑖) (4)

 𝑐𝑡=tanh (𝑤𝑐ℎ[ℎ𝑡−1], 𝑢𝐶𝑋[𝑥𝑡] (5)

While 𝑐𝑡 LSTM memory is filled with a vector of fresh

candidate values. 𝑖𝑡 Indicates whether the value should be

improved or not. Its numerical formula is shown in Equation

(6) in the following formula.

𝑐𝑡=𝑡𝑓*𝑐𝑡−1+𝑖𝑡*𝑐𝑡 (6)

While 𝑡𝑓 determines the result of forgetting the gate

number within zero, and one represents the final value that

was attained; one represents the final value that was retained

4.5.3. Exit Gate

A sigmoid function 𝑜𝑡 determines the importance, and

the final hidden state ℎ𝑡 is obtained by applying a 𝑡𝑎𝑛ℎ

function to the updated cell state 𝑐𝑡 this is mathematically

shown in Equation (7)(8)

𝑜𝑡=𝜎(𝑤𝑜ℎ[ℎ𝑡−1], 𝑀𝑜𝑥[𝑥𝑡]𝑏𝑜) (7)

 ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡) (8)

Where 𝑤𝑜 , 𝑢𝑜 , 𝑏𝑜 are the weights and biases for the

output gate.

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

233

A Bi-LSTM involves using both forward and backward

LSTMs to capture both direction’s dependencies. The

forward hidden state ℎ𝑡 Moreover, Equation (9) offers the

final output:

ℎ𝑡=[ℎ𝑡; ℎ𝑡] (9)

The defect prediction on the combined output ℎ𝑡 Passed

to a fully connected layer and softmax activation, Equation

(10) provides a method for calculating the probabilities of

each class.

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎ𝑡+𝑏𝑦) (10)

Here: 𝑊𝑦 and 𝑏𝑦 are weights and biases for the output

layer. Using the bidirectional nature of Bi-LSTM, the

network learns both the preceding and succeeding context,

which is important in tasks such as software defect

prediction, where errors may depend on long-range

relationships in the sequence [18]. BILSTM Architecture is

presented in Figure 3.

Fig. 3 BILSTM Architecture

4.6. Score-Level Fusion

The score-level fusion procedure is employed to mix the

results of several models to provide a more precise and reliable

prediction result. This work employs the point scores

calculated based on Improved LinkNet and Bi-LSTM models

that indicate the possibility of a defect being contained in the

corresponding software. The concept of fusion is intended to

combine these scores in a way that takes advantage of the

individual capabilities of each model in the general decision-

making process. Below is a detailed explanation of the fusion

strategies:

4.6.1. Weighted Averaging

With weighted averaging, scores from the two models are

mixed by providing different weights to the output of each

model depending on their value or accuracy. This method

ensures that the model with better performance or higher

confidence in its decision makes a bigger value contribution

to the final decision in Equation (11)

𝑆𝑓𝑖𝑛𝑎𝑙 =𝑤1.𝑆𝑙𝑖𝑛𝑘𝑛𝑒𝑡+ 𝑤2. 𝑆𝐵𝑖−𝐿𝑆𝑇𝑀 (11)

Where: 𝑆𝑓𝑖𝑛𝑎𝑙 is the fused score. 𝑆𝑙𝑖𝑛𝑘𝑛𝑒𝑡 And

𝑆𝐵𝑖−𝐿𝑆𝑇𝑀 are the scores from Improved LinkNet and Bi-

LSTM, respectively.

𝑤1 𝑎𝑛𝑑 𝑤2 are weights such that 𝑤1+𝑤2

4.6.2. Learned Fusion Models

For all the fusion strategies mentioned in this paper,

learned fusion models are preferred due to their versatility and

capacity to fuse Improved LinkNet and Bi-LSTM more

effectively. Here, a meta-model relying on the evaluation

results for the two models is built using other models, such as

neural networks or logistic regression, to define the most

suitable pair for defect prediction.

The learned fusion approach incorporates data characteristics

during the fusion process, and it is highly stable even in large,

complex and noisy data. It can also include other

functionalities or model outputs if required since it is scalable

for the new conditions. Despite more computational

complexity and data demands needed for implementation, this

method produces algorithms with better precision and

robustness than basic methods such as weighted mean or

maximum fusion.

LSTM

LSTM

σ

LSTM

LSTM

σ

LSTM

LSTM

σ

Forward layer

Backward layer

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

234

5. Result and Discussion
Accurateness increased from 85% to 92% after

hyperparameter tuning, highlighting its potential for precise

defect prediction. Training time analysis showed that the

hybrid model required approximately 200 seconds, compared

to 120 seconds for Improved LinkNet and 150 seconds for Bi-

LSTM, reflecting the trade-off between efficiency and

accuracy. The confusion matrix revealed that the model

correctly classified most defective and non-defective

components, with minor misclassifications. These findings

confirm the effectiveness of score-level fusion in combining

the strengths of multiple models for enhanced software defect

detection.

5.1. Training and Testing Accuracy of ARIMA - DRL

Figure 4 represents training and validation accuracy over

30 epochs. The training accuracy was high for comparison.

The blue trend shows training accuracy; however, this curve

rises straight with epochs, almost attaining a value of 92,

meaning it can better classify defects by epochs. The orange

line represents validation accuracy, which increases initially

but then starts to plateau and oscillates at approximately 0.9

after around 10 epochs. This behavior means the model

performs better with the validation set but has a saturation later

and might even begin to stabilize - perhaps because the model

is failing to generalize the things it is being fed. This plot plots

the performance curves of both training and validation sets

and shows some overfitting effects. The other software offers

projects for defect classification.

Fig. 4 Accuracy over Epoch

5.2. Training and Testing Loss of ARIMA -DRL

Figure 5 describes training and validation loss plots used

to classify software defects. It increases and approaches unity

with epochs on the horizontal axis as the model improves its

ability to classify defects in the training set. The orange line

indicates the validation accuracy, which initially improves but

stabilizes to around 0.9 and oscillates after 10 training epochs.

This behavior indicates that although set in the beginning, it

starts stalling, which indicates that the model might be having

problems generalizing new unseen data. This graph shows the

accuracy of the model and validation data sets and indicates

that the model is overfitted. As the previous sections pointed

out, training accuracy increased while validation accuracy

remained stagnant, which implied that the model might overfit

the data and not work well on other software projects for

defect classification.

Fig. 5 Loss over Epoch

5.3. Accuracy before and Hyper parameter Tuning

Figure 6 explains that The labels on the horizontal axis

are “Before Tuning” and “After Tuning,” while the accuracy

scale on the y-axis ranges from 0.800 to 1.000. The findings

acquired before and after tuning are displayed in bar charts

with values of 0.85 and 0.92. Understanding this pronounced

improvement in accuracy demonstrates that hyperparameter

adjustment is still essential for bettering the chosen model’s

performance and improving its capacity to anticipate software

flaws.

Fig. 6 Hyper parameter tuning graph

0.85

0.92

0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

Before Tuning After Tuning

A
cc

u
ra

cy

Accuracy Before and After

Hyperparameter Tuning

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

235

5.4. Training Time Comparison

Fig. 7 Model training time comparison

 Figure 7 equivalences, which are Improved LinkNet, Bi-

LSTM, and the Hybrid (Proposed), are shown for predicting

software defects. On the x-axis, there are the models, and on

the y-axis, the training time is in seconds. The above graph

shows that the training time needed by the model Improved

LinkNet is approximately 120 seconds, Bi-LSTM is

approximately 150 seconds, while the Hybrid (Proposed) took

the highest time of approximately 200 seconds. This

comparison illuminates the trade-off between accuracy and

efficiency, where while the hybrid model promises potentially

better prediction accuracy, it takes the maximum training time.

Hence, it is an essential choice regarding the practical

application of software defect prediction in software.

Fig. 8 Confusion matrix for software defect classification

Figure 8 evaluates a classification model’s performance

for software defect prediction. It shows that the model

correctly identified 7 defective items and 6 non-defective

items, while it misclassified 1 defective item as non-defective

and 1 non-defective item as defective. This matrix provides a

clear visualization component.

Table 1. Performance COMPARISON of methods

Method Accuracy Precision Recall
F1

Score

CNN +

MLP
85 84 77 83

RNN 78 76 89 78

Rule-

Based

Algorithm

81 79 73 81

Proposed 92 90 89 90

Table 1 shows the performance of the methods based on

Code2Vec and LinkNet-BiLSTM using score-level fusion in

the classification of software defects. The proposed method

outperforms all metrics because its accuracy is 92%, which

shows that it is highly efficient for correctly classifying

defects. A precision of 90% means that it has a low false

positive rate, and the recall is 89%, which tends to hint at the

capacity to find actual defects. The F1 score stands at 90%,

and the balance between precision and recall speaks for its

robustness in handling complex tasks concerning defect

classification. Therefore, This hybrid model incorporates the

best features of advanced representation and sequence

learning, surpassing the traditional method of CNN + MLP,

RNN, and Rule-Based Algorithms, setting a new benchmark

in software defect detection.

5.5. Discussion

The proposed hybrid deep learning model has enormous

potential for accuracy improvements due to integration

between the Code2Vec model, Improved LinkNet, and

Bidirectional LSTMs. This principle makes it possible for

defect-relevant characteristics to be ascertained on a sound

basis, given the capability of the Code2Vec model to translate

the raw form of the source code into semantic and syntactic

vectors. LinkNet enhances the capture of structural data well,

while Bi-LSTM handles sequential data patterns, making it

very powerful when handling spatial and temporal data

occurrences with the source code. The evaluation process also

identifies score-level fusion as one of the critical aspects that

could be used to integrate a variety of outputs in a bid to

enhance the stability of predictions and reduce variance. The

improvement of the validation accuracy following hyper

parameter tuning presents a greater emphasis on optimising

such hyper parameters as the learning rate and size of batches.

However, from some epochs, the validation accuracy does not

improve, which strengthens the overfitting concept to address

which is used dropout or data augmentation.

0

50

100

150

200

250

Improved

LinkNet

Bi-LSTM Hybrid

(Proposed)

T
im

e
(s

ec
o

n
d

s)

Training Time Comparison

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

236

6. Conclusion and Future Works
A novel hybrid deep learning model that integrates the

Code2Vec model, the Improved LinkNet model, and

Bidirectional LSTM with score-level fusion for software

defect classification. Addressing traditional defect

identification methods’ limitations enhances classification,

achieving correctness of 92%. The hyperparameter tuning

process further improves precision and recall, confirming the

approach’s effectiveness. However, the model’s

computational complexity, especially its inability to handle

large amounts of data and potential overfitting, highlights

areas for further development. The integration of feature

extraction and classification elements significantly improves,

but the model’s generalisation still requires further refinement

to be deployed in real-life data implementation. It explores

incorporating dropout and cross-validation techniques to

mitigate overfitting and enhance generalization. Expanding

the dataset with larger, more diverse examples may yield

better results, along with using transfer learning for faster

training.

Using lightweight architectures and optimization

algorithms could also balance accuracy with computational

efficiency, making the model more suitable for industrial

applications. Finally, the model could be extended to predict

hardware or network defects for broader defect prediction

capabilities. This work proposes combining Code2Vec, the

Improved LinkNet model, and the Bidirectional LSTM with

score-level fusion. Eliminating the drawbacks of traditional

defect identification helps with classification in the proposed

model, where the accuracy rate is 92 %. Subsequently, the

hyperparameter tuning process enhances the model accuracy

and the recall rate, providing strong evidence for the proposed

strategy. However, some problems that still need

improvement are identified, such as increasing the model’s

applicability to extensive data and preventing overfitting. The

combination of feature extraction and classification elements

enhances the defect prediction, though the grand application

of the model still needs enhancements for practical use. The

subsequent studies could investigate dropout and cross-

validation strategies for obtaining better non-oversensitive

generalization. Using larger images can also increase the

coverage of a dataset, which, combined with a transfer

learning method, can help boost the efficiency of training on

the images. Furthermore, the fact that the model has been

developed with lightweight architectures and optimization

algorithms could support a functional accuracy-complexity

trade-off to make it more applicable in industry. The model

can provide predictions for hardware or network defects and

more generic predictions.

References
[1] Kun Zhu et al., “Software Defect Prediction based on Enhanced Metaheuristic Feature Selection Optimization and a Hybrid Deep Neural

Network,” Journal of Systems and Software, vol. 180, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Ning Li, Martin Shepperd, and Yuchen Guo, “A Systematic Review of Unsupervised Learning Techniques for Software Defect

Prediction,” Information and Software Technology, vol. 122, pp. 1-18, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Wei Zheng et al., “Interpretability Application of the Just-in-Time Software Defect Prediction Model,” Journal of Systems and Software,

vol. 188, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Hao Wang, Weiyuan Zhuang, and Xiaofang Zhang, “Software Defect Prediction based on Gated Hierarchical LSTMs,” IEEE Transactions

on Reliability, vol. 70, no. 2, pp. 711-727, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Fanqi Meng, Wenying Cheng, and Jingdong Wang, “Semi-Supervised Software Defect Prediction Model based on Tri-Training,” KSII

Transactions on Internet and Information Systems, vol. 15, no. 11, pp. 4028-4042, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Elena N. Akimova et al., “A Survey on Software Defect Prediction using Deep Learning,” Mathematics, vol. 9, no. 11, pp. 1-14, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Geanderson Esteves et al., “Understanding Machine Learning Software Defect Predictions,” Automated Software Engineering, vol. 27,

pp. 369-392, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[8] Amirabbas Majd et al., “SLDeep: Statement-level Software Defect Prediction using Deep-Learning Model on Static Code Features,”

Expert Systems with Applications, vol. 147, pp. 1-14, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Fei Deng et al., “Accelerating Magnetotelluric Forward Modeling with Deep Learning: Conv-BiLSTM and D-LinkNet,” Geophysics, vol.

88, no. 2, pp. E69-E77, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Emin Borandag, “Software Fault Prediction Using an RNN-Based Deep Learning Approach and Ensemble Machine Learning

Techniques,” Applied Sciences, vol. 13, no. 3, pp. 1-21, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Iqra Batool, and Tamim Ahmed Khan, “Software Fault Prediction using Deep Learning Techniques,” Software Quality Journal, vol. 31,

pp. 1241-1280, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Wahaj Alkaberi, and Fatmah Assiri, “Predicting the Number of Software Faults using Deep Learning,” Engineering, Technology &

Applied Science Research, vol. 14, no. 2, pp. 13222-13231, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] H. Das et al., “Enhancing Software Fault Prediction Through Feature Selection With Spider Wasp Optimization Algorithm,” IEEE Access,

vol. 12, pp. 105309-105325, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sonika Chandrakant Rathi et al., “Empirical Evaluation of the Performance of Data Sampling and Feature Selection Techniques for

Software Fault Prediction,” Expert Systems with Applications, vol. 223, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.jss.2021.111026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+based+on+enhanced+metaheuristic+feature+selection+optimization+and+a+hybrid+deep+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121221001230
https://doi.org/10.1016/j.infsof.2020.106287
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+review+of+unsupervised+learning+techniques+for+software+defect+prediction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584920300379
https://doi.org/10.1016/j.jss.2022.111245
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interpretability+application+of+the+Just-in-Time+software+defect+prediction+model&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121222000218
https://doi.org/10.1109/TR.2020.3047396
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+based+on+gated+hierarchical+LSTMs&btnG=
https://ieeexplore.ieee.org/abstract/document/9326336
https://doi.org/10.3837/tiis.2021.11.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semi-supervised+software+defect+prediction+model+based+on+tri-training&btnG=
https://koreascience.kr/article/JAKO202102565086214.page
https://doi.org/10.3390/math9111180
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+software+defect+prediction+using+deep+learning&btnG=
https://www.mdpi.com/2227-7390/9/11/1180
https://doi.org/10.1007/s10515-020-00277-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+machine+learning+software+defect+predictions&btnG=
https://link.springer.com/article/10.1007/s10515-020-00277-4
https://doi.org/10.1016/j.eswa.2019.113156
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SLDeep%3A+Statement-level+software+defect+prediction+using+deep-learning+model+on+static+code+features&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417419308735
https://doi.org/10.1190/geo2021-0667.1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+magnetotelluric+forward+modeling+with+deep+learning%3A+Conv-BiLSTM+and+D-LinkNet&btnG=
https://pubs.geoscienceworld.org/seg/geophysics/article-abstract/88/2/E69/621239/Accelerating-magnetotelluric-forward-modeling-with
https://doi.org/10.3390/app13031639
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Fault+Prediction+Using+an+RNN-Based+Deep+Learning+Approach+and+Ensemble+Machine+Learning+Techniques&btnG=
https://www.mdpi.com/2076-3417/13/3/1639
https://doi.org/10.1007/s11219-023-09642-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+fault+prediction+using+deep+learning+techniques&btnG=
https://link.springer.com/article/10.1007/s11219-023-09642-4
https://doi.org/10.48084/etasr.6798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+the+Number+of+Software+Faults+using+Deep+Learning&btnG=
https://www.etasr.com/index.php/ETASR/article/view/6798
https://doi.org/10.1109/ACCESS.2024.3435333
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Software+Fault+Prediction+Through+Feature+Selection+With+Spider+Wasp+Optimization+Algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/10614173
https://doi.org/10.1016/j.eswa.2023.119806
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+evaluation+of+the+performance+of+data+sampling+and+feature+selection+techniques+for+software+fault+prediction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S095741742300307X

Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025

237

[15] Fengyu Yang et al., “Interpretable Software Defect Prediction Incorporating Multiple Rules,” 2023 IEEE International Conference on

Software Analysis, Evolution and Reengineering (SANER), Taipa, Macao, pp. 940-947, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[16] Ke Shi et al., “PathPair2Vec: An AST Path Pair-Based Code Representation Method for Defect Prediction,” Journal of Computer

Languages, vol. 59, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Abhishek Chaurasia, and Eugenio Culurciello, “Linknet: Exploiting Encoder Representations for Efficient Semantic Segmentation,” 2017

IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, pp. 1-4, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Ahmed Bahaa Farid et al., “Software Defect Prediction using Hybrid Model (CBIL) of Convolutional Neural Network (CNN) and

Bidirectional Long Short-Term Memory (Bi-LSTM),” PeerJ Computer Science, vol. 7, pp. 1-22, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

https://doi.org/10.1109/SANER56733.2023.00114
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interpretable+software+defect+prediction+incorporating+multiple+rules&btnG=
https://ieeexplore.ieee.org/abstract/document/10123636
https://ieeexplore.ieee.org/abstract/document/10123636
https://doi.org/10.1016/j.cola.2020.100979
https://scholar.google.com/scholar?q=PathPair2Vec:+An+AST+path+pair-based+code+representation+method+for+defect+prediction&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S2590118420300393
https://doi.org/10.1109/VCIP.2017.8305148
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linknet%3A+Exploiting+encoder+representations+for+efficient+semantic+segmentation&btnG=
https://ieeexplore.ieee.org/abstract/document/8305148
https://doi.org/10.7717/peerj-cs.739
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+using+hybrid+model+%28CBIL%29+of+convolutional+neural+network+%28CNN%29+and+bidirectional+long+short-term+memory+%28Bi-LSTM%29&btnG=
https://peerj.com/articles/cs-739/

