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Abstract - The software package faults stance an important trial, impacting systems’ reliability, functionality, and security. 

Traditional methods for defect detection, including manual inspections and static tools, are often insufficient for handling large, 

complex codebases. Current progress in ML and DL provides more robust solutions by identifying complex patterns within data. 

It presents a hybrid model that combines Code2Vec for feature extraction, Improved LinkNet for spatial data processing, and 

Bi-LSTM for sequential pattern analysis, leveraging score-level fusion to improve software defect classification. Code2Vec 

transforms unstructured source code into dense vector representations, capturing critical semantic and syntactic features. 

Improved LinkNet excels in extracting high-level structural features, while Bi-LSTM captures long-term dependencies in code 

sequences. The proposed score-level fusion integrates the outputs of these models to harness their complementary strengths, 

reducing noise sensitivity and enhancing accuracy. The fused scores are passed to a soft-max classifier to foresee a given snippet 

code that is fault-motionless or non-defect-prone. The final output classifies the software defect into specific categories, if 

applicable, based on the trained dataset. It demonstrates that the hybrid model outperforms metrics, accuracy, precision, recall, 

and F1 scores, existing methods in package fault prophecy. The study also highlights the significance of hyperparameter tuning 

and training large, labelled datasets. This research contributes to scalable, efficient defect detection methods that address real-

world challenges in software development, setting a foundation for future improvements in predictive analytics and automated 

software quality assurance. The proposed model, implemented in Python, enhances classification performance, achieving an 

accuracy of 92%. 

Keywords - Software defect classification, Deep learning, Code2Vec, Bi-LSTM, Score-level fusion. 

 

1. Introduction  
Software defects are a significant issue for software 

development processes across the software development life 

cycle, affecting the software systems’ reliability, 

functionality, and sometimes security. Detecting the software 

defects at earlier stages of the development life cycle has been 

imperative for reducing the cost of bug fixes while at the same 

time enhancing software quality. The prior methods used 

traditionally include visual examination of the code, manual 

inspections, and static tools and rules [1]. However, these 

methods fail to exercise large and complex codebases and 

most of the time, they need active human intervention, which 

makes them time-consuming and error-pragmatic. In the past 

decade, ML techniques and, more recently, DL techniques 

have increasingly applied in software defect prediction 

context due to their capability of ‘learning’ and identifying 

complex and quite ‘hidden’ patterns in a large number of 

datasets that would commonly aid in automating and very 

much improving the defect inspection process. A recent 

development in the field is to train deep learning models that 

will be able to learn the underlying structure of the 

unstructured data present in the form of source code efficiently 

without much influence of manual feature extraction [2]. One 

such research could be the improvement of multiple deep 

learning paradigms and implementing them in a hybrid 

manner so that the best of every architecture is harnessed. 

These models can be especially effective when used in 

software defect prediction because it may be the subtle 

architecture within these systems that identifies areas prone to 

defects. This research study aims to combine Code2Vec, 

Improved LinkNet and Bi-LSTM in score-level fusion to 

propose a probable solution to the defect forecast problem that 

is accurate, effective and scalable. This paper establishes that 

the feature extraction stage is crucial for properly functioning 

machine learning algorithms for defect detection [3]. Source 

code is highly unstructured, and therefore, it is usually 
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complicated to find meaningful features from relations that 

could be sparse, complex, and non-linear. It is addressed by 

Code2Vec, a new method designed for producing vectors for 

code. With Abstract Syntax Trees (ASTs), another feature 

extraction tool named Code2Vec is capable of parsing out 

semantic and syntactic features inherent in code. This method 

converts code into comprehensible vectors regarding the 

code’s components and their work, making it optimal for 

defect prediction tasks [4]. The model translates paths in the 

AST into sequences of elements in code constructs such as 

loops, variables, and functions and then aggregates the 

sequences into a vector of fixed dimensionality for each 

source code fragment. These vectors retain more information 

from the code. The information flow from encoded semantic 

and syntactic levels can be fed into the classification models 

[5]. However, the primary problem of attempting to analyse 

the data once the features have been extracted using 

Code2Vec is imperfect whether or not to classify. On this 

behalf, extracting features through Improved LinkNet and Bi-

LSTM presents improved features for processing and 

classification [6]. An extension of the network called 

Improved LinkNet, which is effective when dealing with 

complex data representations, has also been applied in this 

work to classify the software defects and to capture the spatial 

dependencies of the features extracted from the source code. 

Usually, a Recurrent Neural Network (RNN) is more 

appropriate for sequential, Bidirectional-Long Short-Term 

Memory (Bi-LSTM) as it handles long-term dependencies and 

contextual information. In software packages, it enables the 

model to capture that the code is sequential, where the order 

of statements, functions or variables may form part of the 

problem in detecting defects [7]. 

 

However, applying only one deep learning model for the 

defect classification is sometimes problematic because of the 

model bias and general capabilities for signal feature 

extraction from the input. This is where our theory of score-

level fusion comes into play. In score-level fusion, the results 

of Improved LinkNet and Bi-LSTM models are combined at 

the score level to produce a final output. The idea is that one 

or another model can complement the advantages of the other 

model in terms of more minor variance and better pattern 

identification. For instance, although Improved LinkNet may 

perform better in obtaining the high-level features linked to 

the structural characteristics of the code, BI-LSTM may 

perform better in sequences and temporal characteristics of the 

code. Combining multiple models through integration, the 

hybrid system provides more accuracy and less noise 

sensitivity. This research discusses identifying software as 

defective as the focal concern in the data analysis process of 

Code2Vec. Feature extraction is done using Improved 

LinkNet and Bi-LSTM for classification. The enhanced 

LinkNet performs well for the elaborate formation of data 

representation. Bi-LSTM deals with Long-term and 

contextual information. The score-level fusion theory fuses 

Improved LinkNet and Bi-LSTM models on the score level to 

adopt both advantages while reducing variation and enhancing 

pattern recognition. This system has less noise sensitivity and 

better accuracy than the old one. The fusion process often 

combines the outputs of one or more models, for example, 

probabilities or classes, by simple or complex methods [8]. 

The proposed hybrid deep learning model at the score level 

fusion minimises the errors, enhances the generality, and 

augments the efficiency of multiple models for defect 

classification. It is, therefore, compared with current methods 

for demonstrating improvements brought by score-level 

fusion and the hybrid deep Learning model. To train a 

combined model, highlight that it requires a large dataset of 

code annotated with defects labels. These are fed into 

Improved LinkNet and Bi-LSTM models before being 

subjected to the score-level fusion strategy. Hyperparameter 

neural networks based on size, layers, and reading rate, which 

are so important, will be selected using feature selection 

methods. The research concern of this paper is to improve 

software defect detection through the integration of Code2Vec 

for feature representation and Improved LinkNet and Bi-

LSTM for classification outcomes [9]. 

Key points are discussed as below:  

 Code2Vec transforms unstructured source code into 

dense vector representations, effectively capturing 

semantic and syntactic features for accurate defect 

identification. 

 A modified LinkNet architecture extracts high-level 

spatial features, ensuring robust analysis of code 

structures for defect classification. 

 Bi-LSTM captures that enhancing the understanding of 

temporal and contextual relationships. 

 Score-level fusion combines outputs from LinkNet and 

Bi-LSTM, leveraging their complementary strengths to 

reduce noise and boost classification performance. 

 The model detects defect-prone code and categorizes 

defects into specific types based on the dataset, aiding 

deeper insights. 

 Achieving 92% accuracy, the model outperforms 

traditional methods, demonstrating scalability and 

suitability for large, complex codebases. 

  

It is organized as follows: The relevant work is given in 

section 2. The problem statement is defined in section 3. The 

suggested approach is explained in section 4. The experimental 

results are obtainable in Section 5. The conclusion and future 

work are delivered in Section 6. 

 

2. Related Works 
Borandag [10] focuses on the growing importance of 

retaining machine learning and deep learning. It adopts the 

SFP XP-TDD dataset from three software projects and 

compares five classifiers and their hybrids. The research 

discovers that DL algorithms perform better than ML models 

when dealing with large sets and include RNN-based models 
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tested using Eclipse and Apache Active MQ datasets. The 

obtained results demonstrate the significance of DL in the SFP 

in terms of the sample size of the datasets. However, it has 

certain drawbacks, such as the restriction of the analysis to 

specific datasets, limited appropriateness of the proposed 

method for comparatively small datasets, and issues 

concerning the overall generality of the results to real-life 

realistic composite software applications. 

 

Batool and Khan [11] examine SFP through DL 

techniques, including LSTM, BiLSTM, and RBFN, with 

datasets derived from Chidamber and Kemerer (CK) features. 

As can be inferred, both LSTM and BiLSTM perform better 

than the traditional models, whereas the RBFN model has 

been seen to be faster in computation. Moreover, k-fold 

authentication is used, and the accuracy of the models is better 

than that of the other available accuracy models. The paper 

emphasizes that DL can improve SFP mechanisms while 

revealing weaknesses, such as reliance on data sets, difficulty 

extending the results to different environments, and high 

computational overhead related to training effective DL 

models. [12] recommends using CNN and MLP merging to 

develop a DL approach for predicting software faults based on 

twelve datasets from the PROMISE repository. Carrying out 

class imbalance with SMOTEND, the lowest accuracy, 0.195 

for MLP, is established, surpassing CNN. Some of the 

significant advantages of the model include the following: 

First, it is relatively simple; second, it is flexible, as is 

demonstrated by its capability to accommodate input data. 

There are several limitations: synthetic oversampling 

techniques, the possibility of overfitting with relatively small 

samples, and no direct comparison between the proposed 

architectures and other DL structures aside from MLP and 

CNN. 

 

Das et al. [13] present the PM2-CNN model that 

combines the transformer architecture with the multi-channel 

CNN for SFP. It integrates defect-related data that consists of 

natural language inputs, such as comments within the code and 

commit messages with the code’s programming for a richer 

representation. The results show a positive shift in generic 

evaluation metrics. Constraints include computational 

processing needs due to transformer elements, difficulties 

combining different input types, and dependence on pre-

trained language models, which may be suboptimal for all 

scenarios. 

 

Rathi et al. [14] assesses SFP employing six feature 

selection procedures, nine sampling methods, and six 

classifiers over 56 OSPs. Concluding the class imbalance and 

redundancy, the present study identifies that SMOTEE with 

the correlation-based Feature Selection (FS2) delivers the best 

results. Using these techniques, it records enhanced AUC of 

more than 75 per cent of projects’ post implementing the 

techniques. Lack of constraints includes the large number of 

evaluations per project equal to 792 dataset combinations, the 

risk of overfitting due to high parameter tuning, and 

difficulties applying these methods to SFP pipelines. 

 

 Yang et al. [15]. present a weighted association rule-based 

algorithm for SFP with an emphasis on the degree of 

contribution of features to generate satisfactory rules and 

enhance the prediction rate. Thus, by handling class imbalance 

and improving rule generation and ranking, the proposed 

model significantly acquires the average F1 score 

improvement of about 6.4% and the average MCC 

improvement of about 9.8% compared to the existing approach 

on the PROMISE dataset. Still, there are specific problems, 

such as increased computational time for large datasets, 

difficulty in generating rules, and finally, the applicability of 

this rule-based system is not easy with the changing trends in 

the software development paradigm. 

 

3. Problem Statement 
The proposed model struggles to generalize across diverse 

datasets and environments. While DL models, such as RNN-

based architectures, CNN, and MLP k-fold cross-validation, 

have shown superior performance in handling large datasets, 

they face challenges related to high computational overhead, 

reliance on specific data characteristics, and difficulties in 

extending results to real-world, composite software 

applications. Additionally, approaches incorporating hybrid 

models or feature selection techniques often contend with 

issues like class imbalance, overfitting, and computational 

inefficiencies. Notwithstanding, it is developing SFP methods 

to efficiently handle diverse, real-life scenarios while 

minimizing the need for extensive data preprocessing and 

feature tuning. To address these challenges, this research 

proposes “Score-Level Fusion in Hybrid Deep Learning with 

Extractive Feature Sets for Software Defect Classification.” 

This approach leverages score-level fusion to combine and 

identify defects in diverse software environments. By 

integrating different learning models and optimizing feature 

selection, this method aims to improve generalization, reduce 

overfitting, and provide more efficient, scalable solutions for 

real-world SFP tasks. 

4. Hybrid Code2Vec-Improved LinkNet-

BiLSTM Score Level  Fusion Model 
A Hybrid Deep Learning Model for software defect 

classification uses advanced techniques to boost accuracy. It 

first involves data gathering and processing where missing 

values are resolved, and features of the codes are extracted 

from Code2Vec, thus converting snippets of code into their 

corresponding vector forms, using the extracted feature for two 

architectures models that are classification in LinkNet 

modified for this classification. In contrast, bidirectional input 

in time was provided for the Bi-LSTM architecture. Finally, a 

score-level fusion combines the outputs from both models to 

achieve better classification accuracy by leveraging the 

strength of each approach. This structured methodology 

guarantees robust defect identification, as shown in Figure 1. 
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Fig. 1 Block diagram of proposed methodology for enhancing robotic performance 

4.1. Data Collection 

The data used in this work is drawn from the PROMISE 

repository, a commonly used software project repository 

containing data on software project defects. Each dataset 

contains project names, names of the source files with defects, 

versions, number of defects and 20 traditional features. These 

features characterize the software metrics frequently used to 

predict a defect. To match prior work and replicate their 

findings, source code was downloaded. There are two project 

models, the Within-Project Defect Prediction (WPDP) and 

Cross-Project Defect Prediction (CPDP), with one project as 

the source project and the other as the target project. Due to this 

setup, it is possible to comprehensively evaluate the defect 

prediction models across various conditions [16]. 

 

4.2. Data Preprocessing 

Data preprocessing is a significant process utilized to clean 

and set up the data before feeding it for model development. 

 

4.2.1. Handling Missing Values 

Missing values are detrimental to machine learning 

techniques, as they may hinder the software’s performance in 

providing important sources. As for it, numerical features with 

missing values can be filled with mean or median to keep the 

magnitude beneficial without taking much bias. In the case of 

categorical data, their mean can be used in its place. In ordinal 

data, the median Reply can be used instead of it. If missing 

data is disproportionately high in a feature, then that feature 

can be completely trimmed off. It was done to guarantee that 

the data set would not be altered in the process of modeling 

and that key information is preserved. 

 

4.2.2. Feature Normalization and Scaling 

Feature extraction in Code2Vec is complex and leverages 

the conversion of source code into dense vectors. Using this 

methodology on datasets like the one presented here with 

projects like Camel, Lucene, and Log4j, the methodology can 

ideally pick out important features crucial to defect prediction 

and other uses of software analysis. It uses the abstract syntax 

tree and path-oriented representations to identify the logic 

used in code. 

Step 1: Parsing Source Code into AS 

The feature extraction starts with parsing the Abstract 

Syntax Tree (AST). It connects to the tree of the language, for 

example, a variable declaration, a method call or a control 

structure. Another feature of this tree structure is the 

identification of relations such as parent-child relations of 

loops and conditions or inheritance.  

 

For example, the AST separated initialization, condition, 

and increment statements in the for-loop case as different yet 

related elements. In the given dataset, each file of the projects, 

for example, Lucene or Xalan, would be transformed to the 

corresponding AST. This process means that the structural 

elements expressed in the extracted features include relations 

like either depth of inheritance or the coupling between 

objects to reflect the traditional metrics as captured. 

 

Step 2: Path-Based Representations 

After the construction of the AST, the process of analysis 

in Code2Vec yields path-based representations, which are the 

core Kent features. A path in the AST implies one specific 

path between two nodes and describes the system. For 

example, a path may link a variable declaration site to the site 

of the method call, showing how data is processed in the 

program. 

Regarding the position of projects in the buggy rate, it is 

reasonable to expect that, for example, projects on POI or 

Lucene exhibit specific defect-related patterns in their 

pathways. Some routes could highlight where logical mistakes 

can happen, such as when checking invalid pointers, like the 

null pointer, or where a loop ought to be and whether it exists. 

Code2Vec cleans up the relationship database, ensuring it only 

contains pertinent data, and eliminates these paths to stop 

noisy components from entering as input. 

Data Collection Handling Missing values 

Feature Extraction using 

Code2vec 

Feature Extraction using 

Code2vec 

Model Development for 

classification 

Score Level Fusion LinkNet Bi-LSTM 

Data Pre Processing 
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Step 3: Token Embedding’s 

The obtained AST path is then converted to a series of 

dense vector embeddings per each node and edge in this path. 

Like Word2Vec in NLP, it uses the neural network-based 

embedding technique to map tokens such as the variable 

names, operators, and keywords to a continual vector space. 

Such embeddings are designed to capture similarity, so 

working elements (such as “sum” and “total”) would be 

nearer. 

For instance, in the dataset files, code smell patterns are 

such things as unused variables or inadequate exception 

management, which likely have shared embeddings between 

projects. These are then quantified, thanks to Code2Vec, and 

the buggy or non-buggy behavior patterns across different 

projects can be generalized. 

Step 4: Aggregating Path Embeddings 

Code2Vec summarizes all the path embedding related to 

a given file into a compact representation of the fixed 

dimensionality. This vector gives structural and contextual 

information on all the paths in the AST of the code snippet, 

which sums up the snippet. There are methods, including the 

attention mechanism, which help to increase the weight of 

critical paths so that necessary features, such as high 

cyclomatic complexity or deep nesting, are considered. For the 

appearance of bugs, this step would group strings of paths 

often associated with bugs, such as deep recursion in Xalan 

tightly coupled classes in Log4j, among others. These 

aggregated embeddings are used as inputs to the defect 

prediction models and hence identify some features that are 

not always included in the features, such as LOC or WMC. 

Due to the features extracted from Code2Vec described 

above, one can solve problems when analyzing the given 

dataset. It can easily surpass antiquated qualitative metrics 

such as inheritance depth or cohesion by learning domain 

patterns unseen by traditional methods. This is particularly 

important in high buggy rate scenarios, which often require 

recognizing pesky but utterly important bugs like misuse of 

library functions or improper usage of inheritance. Therefore, 

the feature extraction of Code2Vec transforms large code 

patterns into simpler and semantically dense features. Using 

AST paths, token embeddings, and aggregation techniques 

gives a strong and self-organizing method for dissecting the 

code patterns, which improves the defect prediction in any 

dataset with different buggy rates and project complexities. 

 

4.3. Feature Extraction Using Code2Vec  

Feature extraction in Code2Vec is complex and leverages 

the conversion of source code into dense vectors. Using this 

methodology on datasets like the one presented here with 

projects like Camel, Lucene, and Log4j, the methodology can 

ideally pick out important features crucial to defect prediction 

and other uses of software analysis. It uses the abstract syntax 

tree and path-oriented representations to identify the logic used 

in code. 

 

4.4. Classification Using  LinkNet for Software Defect 

Detection   

 LinkNet architecture takes data related to software 

defects through its encoder and decoder segments, which 

unlearn and relink the feature maps to maximize classification. 

They added several convolutional layers to enhance light and 

fit the real-time defect classification tasks. Improved 

LinkNet’s structure incorporates elements present in ResNet, 

with additional residual connections to enhance performance. 

The Improved LinkNet34 architecture is employed for 

software defect detection as described in the method 

flowchart. Out of all the blocks in the model, the primary 

block commences by performing convolution of input feature 

maps using a kernel of sizes 7×7 times 7 and a fixed stride of 

2. After this, maximum pooling again decreases the number of 

parameters accepted as the input for the intensity of the 

subsequent process. After that, a set of residual blocks with 

small outputs relearn the representation of input features. 

During the downsampling of the input, the first convolutional 

layer of each residual block uses a stride of 2 for efficient 

feature downsampling. The rest of the layers work with a 

stride of 1 to preserve features in the spatial domain. 

Architecture also embodies a sequence of decoder modules, 

each connected to an encoder module. The decoder starts with 

a 1 × 11 times 1 convolution layer to down ample individual 

feature maps and ends with batch normalization and a 

convolution transformation that up samples feature maps. This 

design helps sustain the restoration of features and lowers 

computational load [17]. 

In LinkNet architecture, dilated convolutions expand the 

receptive field without expanding the parameters. The 

variable 𝑑𝑟   controls the spacing between the kernel weights, 

which affects the sampling density of the feature map. Let us 

consider the kernel in Equation (1) 

𝑘𝑠 = 𝑘𝑠 + (𝑘𝑠 + 1) × (𝑑𝑟 − 1) = 𝑑𝑟 × (𝑘𝑠 − 1) + 1 (1)   

Where represents the original kernel size. The dilation 

rate is defined  𝑑𝑟 . For a given layer, the receptive field 

size𝑟 𝑓𝑛 can be expressed in Equation (2) 

𝑟𝑓𝑛=𝑥𝑛−1 × 𝑟𝑓𝑛−1+𝑘𝑠𝑛−1-𝑥𝑛−1                                   (2) 

Here, denotes the stride at layer n and  𝑘𝑠𝑛−1 is the 

effective kernel size of the dilated convolution.  

The main advantage of Improved LinkNet pertains to the 

ability to integrate the encoder and decoder modules. The 

decoding architectures of the prior art may discard valuable 

spatial data as successive decoding occurs. To overcome this, 



Srinivasa Rao Katragadda & Sirisha Potluri / IJECE, 12(6), 227-237, 2025 

232 

Improved LinkNet uses pooling indices as non-training 

parameters to connect the encoder and decoder to maintain 

spatial relationships. During oversampling, this connection 

bypasses the encoder’s input directly to the decoder’s output 

and is useful in reconstructing lost spatial details. 

Furthermore, by making this direct connection from the 

encoder to the decoder, the architecture scales down the 

parameters, thus making it very efficient for real-time analysis 

of software defect classification. This design is superior to 

prior arts because it provides a good trade-off between 

precision and complexity, and the practical application of 

solving large-scale defect datasets is feasible.

 

Fig. 2 Architecture of  LinkNet 

4.5. Classification using Bi LSTM 

In mathematical notations, let us first introduce the 

forward and backward computations of the Bi-LSTM network 

within a sequence modeling context, like software defect 

prediction. Bi-LSTM sequential data is more appropriate for 

problems that require understanding deep temporal features 

such as defect detection of code. Below are the key 

components and equations describing its operation: 

4.5.1. Forget Gate 

This forgets that. 𝑓𝑡 lies between 0 and 1, of ℎ𝑡−1 and  𝑥𝑡   

with 0 signifying complete loss of information and 1, a 

complete recall of information.-1) this is given in Equation (3) 

     𝑓𝑡=𝜎(𝑊𝑓ℎ[ℎ𝑡−1], 𝑀𝑓𝑎[𝑎𝑡],𝑏𝑓)               (3)                                      

4.5.2. Input Gate 

It has two parts: a sigmoid layer 𝑖𝑡that determines the 

importance and a tanh layer  𝑐𝑡  that generates new candidate 

values. The Equations are (4), (5) 

𝑖𝑡= 𝜎(𝑤𝑖ℎ[ℎ𝑡−1], 𝑢𝑖𝑥[𝑥𝑡],𝑏𝑖)                 (4) 

 𝑐𝑡=tanh (𝑤𝑐ℎ[ℎ𝑡−1], 𝑢𝐶𝑋[𝑥𝑡]                 (5) 

While 𝑐𝑡  LSTM memory is filled with a vector of fresh 

candidate values. 𝑖𝑡  Indicates whether the value should be 

improved or not. Its numerical formula is shown in Equation 

(6) in the following formula. 

𝑐𝑡=𝑡𝑓*𝑐𝑡−1+𝑖𝑡*𝑐𝑡               (6)           

While 𝑡𝑓  determines the result of forgetting the gate 

number within zero, and one represents the final value that 

was attained; one represents the final value that was retained 

4.5.3. Exit Gate 

A sigmoid function 𝑜𝑡  determines the importance, and 

the final hidden state  ℎ𝑡  is obtained by applying a  𝑡𝑎𝑛ℎ 

function to the updated cell state 𝑐𝑡  this is mathematically 

shown in Equation (7)(8) 

𝑜𝑡=𝜎(𝑤𝑜ℎ[ℎ𝑡−1], 𝑀𝑜𝑥[𝑥𝑡]𝑏𝑜)                           (7) 

 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡)                              (8) 

Where 𝑤𝑜 ,  𝑢𝑜 ,  𝑏𝑜 are the weights and biases for the 

output gate. 
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A Bi-LSTM involves using both forward and backward 

LSTMs to capture both direction’s dependencies. The 

forward hidden state ℎ𝑡  Moreover, Equation (9) offers the 

final output: 

ℎ𝑡=[ℎ𝑡; ℎ𝑡]                                               (9) 

The defect prediction on the combined output ℎ𝑡 Passed 

to a fully connected layer and softmax activation, Equation 

(10) provides a method for calculating the probabilities of 

each class. 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎ𝑡+𝑏𝑦)                  (10) 

Here: 𝑊𝑦 and 𝑏𝑦   are weights and biases for the output 

layer. Using the bidirectional nature of Bi-LSTM, the 

network learns both the preceding and succeeding context, 

which is important in tasks such as software defect 

prediction, where errors may depend on long-range 

relationships in the sequence [18]. BILSTM Architecture is 

presented in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 BILSTM Architecture 

4.6. Score-Level Fusion 

The score-level fusion procedure is employed to mix the 

results of several models to provide a more precise and reliable 

prediction result. This work employs the point scores 

calculated based on Improved LinkNet and Bi-LSTM models 

that indicate the possibility of a defect being contained in the 

corresponding software. The concept of fusion is intended to 

combine these scores in a way that takes advantage of the 

individual capabilities of each model in the general decision-

making process. Below is a detailed explanation of the fusion 

strategies: 

4.6.1. Weighted Averaging 

With weighted averaging, scores from the two models are 

mixed by providing different weights to the output of each 

model depending on their value or accuracy. This method 

ensures that the model with better performance or higher 

confidence in its decision makes a bigger value contribution 

to the final decision in Equation (11) 

𝑆𝑓𝑖𝑛𝑎𝑙 =𝑤1.𝑆𝑙𝑖𝑛𝑘𝑛𝑒𝑡+ 𝑤2. 𝑆𝐵𝑖−𝐿𝑆𝑇𝑀             (11) 

Where:  𝑆𝑓𝑖𝑛𝑎𝑙 is the fused score.  𝑆𝑙𝑖𝑛𝑘𝑛𝑒𝑡  And 

𝑆𝐵𝑖−𝐿𝑆𝑇𝑀  are the scores from Improved LinkNet and Bi-

LSTM, respectively. 

𝑤1 𝑎𝑛𝑑  𝑤2 are weights such that  𝑤1+𝑤2 

 

4.6.2. Learned Fusion Models 

For all the fusion strategies mentioned in this paper, 

learned fusion models are preferred due to their versatility and 

capacity to fuse Improved LinkNet and Bi-LSTM more 

effectively. Here, a meta-model relying on the evaluation 

results for the two models is built using other models, such as 

neural networks or logistic regression, to define the most 

suitable pair for defect prediction. 

The learned fusion approach incorporates data characteristics 

during the fusion process, and it is highly stable even in large, 

complex and noisy data. It can also include other 

functionalities or model outputs if required since it is scalable 

for the new conditions. Despite more computational 

complexity and data demands needed for implementation, this 

method produces algorithms with better precision and 

robustness than basic methods such as weighted mean or 

maximum fusion. 
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5. Result and Discussion 
Accurateness increased from 85% to 92% after 

hyperparameter tuning, highlighting its potential for precise 

defect prediction. Training time analysis showed that the 

hybrid model required approximately 200 seconds, compared 

to 120 seconds for Improved LinkNet and 150 seconds for Bi-

LSTM, reflecting the trade-off between efficiency and 

accuracy. The confusion matrix revealed that the model 

correctly classified most defective and non-defective 

components, with minor misclassifications. These findings 

confirm the effectiveness of score-level fusion in combining 

the strengths of multiple models for enhanced software defect 

detection. 

 

5.1. Training and Testing Accuracy of ARIMA - DRL  

Figure 4 represents training and validation accuracy over 

30 epochs. The training accuracy was high for comparison. 

The blue trend shows training accuracy; however, this curve 

rises straight with epochs, almost attaining a value of 92, 

meaning it can better classify defects by epochs. The orange 

line represents validation accuracy, which increases initially 

but then starts to plateau and oscillates at approximately 0.9 

after around 10 epochs. This behavior means the model 

performs better with the validation set but has a saturation later 

and might even begin to stabilize - perhaps because the model 

is failing to generalize the things it is being fed. This plot plots 

the performance curves of both training and validation sets 

and shows some overfitting effects. The other software offers 

projects for defect classification. 

Fig. 4 Accuracy over Epoch 

5.2. Training and Testing Loss of ARIMA -DRL 

Figure 5 describes training and validation loss plots used 

to classify software defects. It increases and approaches unity 

with epochs on the horizontal axis as the model improves its 

ability to classify defects in the training set. The orange line 

indicates the validation accuracy, which initially improves but 

stabilizes to around 0.9 and oscillates after 10 training epochs. 

This behavior indicates that although set in the beginning, it 

starts stalling, which indicates that the model might be having 

problems generalizing new unseen data. This graph shows the 

accuracy of the model and validation data sets and indicates 

that the model is overfitted. As the previous sections pointed 

out, training accuracy increased while validation accuracy 

remained stagnant, which implied that the model might overfit 

the data and not work well on other software projects for 

defect classification. 

 

 

 
Fig. 5 Loss over Epoch 

 

5.3. Accuracy before and Hyper parameter Tuning  

Figure 6 explains that The labels on the horizontal axis 

are “Before Tuning” and “After Tuning,” while the accuracy 

scale on the y-axis ranges from 0.800 to 1.000. The findings 

acquired before and after tuning are displayed in bar charts 

with values of 0.85 and 0.92. Understanding this pronounced 

improvement in accuracy demonstrates that hyperparameter 

adjustment is still essential for bettering the chosen model’s 

performance and improving its capacity to anticipate software 

flaws. 

 
Fig. 6 Hyper parameter tuning graph 
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5.4. Training Time Comparison  

 
Fig. 7 Model training time comparison 

 

 Figure 7 equivalences, which are Improved LinkNet, Bi-

LSTM, and the Hybrid (Proposed), are shown for predicting 

software defects. On the x-axis, there are the models, and on 

the y-axis, the training time is in seconds. The above graph 

shows that the training time needed by the model Improved 

LinkNet is approximately 120 seconds,  Bi-LSTM is 

approximately 150 seconds, while the Hybrid (Proposed) took 

the highest time of approximately 200 seconds. This 

comparison illuminates the trade-off between accuracy and 

efficiency, where while the hybrid model promises potentially 

better prediction accuracy, it takes the maximum training time. 

Hence, it is an essential choice regarding the practical 

application of software defect prediction in software. 

 
Fig. 8 Confusion matrix for software defect classification 

 

Figure 8 evaluates a classification model’s performance 

for software defect prediction. It shows that the model 

correctly identified 7 defective items and 6 non-defective 

items, while it misclassified 1 defective item as non-defective 

and 1 non-defective item as defective. This matrix provides a 

clear visualization component. 

 
Table 1.  Performance COMPARISON of methods 

Method Accuracy Precision Recall 
F1 

Score 

CNN + 

MLP 
85 84 77 83 

RNN 78 76 89 78 

Rule-

Based 

Algorithm 

81 79 73 81 

Proposed 92 90 89 90 

 

Table 1 shows the performance of the methods based on 

Code2Vec and LinkNet-BiLSTM using score-level fusion in 

the classification of software defects. The proposed method 

outperforms all metrics because its accuracy is 92%, which 

shows that it is highly efficient for correctly classifying 

defects. A precision of 90% means that it has a low false 

positive rate, and the recall is 89%, which tends to hint at the 

capacity to find actual defects. The F1 score stands at 90%, 

and the balance between precision and recall speaks for its 

robustness in handling complex tasks concerning defect 

classification. Therefore, This hybrid model incorporates the 

best features of advanced representation and sequence 

learning, surpassing the traditional method of CNN + MLP, 

RNN, and Rule-Based Algorithms, setting a new benchmark 

in software defect detection. 

 

5.5. Discussion  

The proposed hybrid deep learning model has enormous 

potential for accuracy improvements due to integration 

between the Code2Vec model, Improved LinkNet, and 

Bidirectional LSTMs. This principle makes it possible for 

defect-relevant characteristics to be ascertained on a sound 

basis, given the capability of the Code2Vec model to translate 

the raw form of the source code into semantic and syntactic 

vectors. LinkNet enhances the capture of structural data well, 

while Bi-LSTM handles sequential data patterns, making it 

very powerful when handling spatial and temporal data 

occurrences with the source code. The evaluation process also 

identifies score-level fusion as one of the critical aspects that 

could be used to integrate a variety of outputs in a bid to 

enhance the stability of predictions and reduce variance. The 

improvement of the validation accuracy following hyper 

parameter tuning presents a greater emphasis on optimising 

such hyper parameters as the learning rate and size of batches. 

However, from some epochs, the validation accuracy does not 

improve, which strengthens the overfitting concept to address 

which is used dropout or data augmentation. 
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6. Conclusion and Future Works  
A novel hybrid deep learning model that integrates the 

Code2Vec model, the Improved LinkNet model, and 

Bidirectional LSTM with score-level fusion for software 

defect classification. Addressing traditional defect 

identification methods’ limitations enhances classification, 

achieving correctness of 92%. The hyperparameter tuning 

process further improves precision and recall, confirming the 

approach’s effectiveness. However, the model’s 

computational complexity, especially its inability to handle 

large amounts of data and potential overfitting, highlights 

areas for further development. The integration of feature 

extraction and classification elements significantly improves, 

but the model’s generalisation still requires further refinement 

to be deployed in real-life data implementation. It explores 

incorporating dropout and cross-validation techniques to 

mitigate overfitting and enhance generalization. Expanding 

the dataset with larger, more diverse examples may yield 

better results, along with using transfer learning for faster 

training. 

 

Using lightweight architectures and optimization 

algorithms could also balance accuracy with computational 

efficiency, making the model more suitable for industrial 

applications. Finally, the model could be extended to predict 

hardware or network defects for broader defect prediction 

capabilities. This work proposes combining Code2Vec, the 

Improved LinkNet model, and the Bidirectional LSTM with 

score-level fusion. Eliminating the drawbacks of traditional 

defect identification helps with classification in the proposed 

model, where the accuracy rate is 92 %. Subsequently, the 

hyperparameter tuning process enhances the model accuracy 

and the recall rate, providing strong evidence for the proposed 

strategy. However, some problems that still need 

improvement are identified, such as increasing the model’s 

applicability to extensive data and preventing overfitting. The 

combination of feature extraction and classification elements 

enhances the defect prediction, though the grand application 

of the model still needs enhancements for practical use. The 

subsequent studies could investigate dropout and cross-

validation strategies for obtaining better non-oversensitive 

generalization. Using larger images can also increase the 

coverage of a dataset, which, combined with a transfer 

learning method, can help boost the efficiency of training on 

the images. Furthermore, the fact that the model has been 

developed with lightweight architectures and optimization 

algorithms could support a functional accuracy-complexity 

trade-off to make it more applicable in industry. The model 

can provide predictions for hardware or network defects and 

more generic predictions.   
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