
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 6, 279-292, June 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I6P122 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimized Service Migration in MEC Using Deep

Recurrent Actor-Critic Learning

B. Rajani1, J.M. Kanthi Tilaka2, V.U.P. Lavanya3 , P. Hemachandu4, Kurra Venkateswara Rao5, Sana Vani6

1,3,5,6Department of Electrical and Electronics Engineering, Aditya University, Surampalem, Andhra Pradesh, India.

2Department of Humanities and Basic Sciences, Aditya University, Surampalem, Andhra Pradesh, India.
4Department of EEE Sasi Institute of Technology and Engineering, Tadepalligudem, Andhra Pradesh, India.

5Corresponding Author : kvrao6061@gmail.com

Received: 12 April 2025 Revised: 13 May 2025 Accepted: 14 June 2025 Published: 27 June 2025

Abstract - Multi-access Edge Computing (MEC) is a modern computing technology. It allows mobile users to offload tasks to

nearby edge servers. This helps in reducing latency and improving service performance. However, the service needs to migrate

when users move between different locations. The process of deciding when to migrate services is complex. The main challenge

is the lack of complete system information at all times. Many existing approaches assume full knowledge of the network state.

However, gathering such information is slow and resource-intensive. To overcome this limitation, a deep reinforcement learning

method is proposed. The proposed method models the service migration problem as a Partially Observable Markov Decision

Process (POMDP). It allows decisions to be made based on limited system knowledge. The method introduces a novel Deep

Recurrent Actor-Critic Migration (DRACM) algorithm. The algorithm uses an encoder network with Long Short-Term Memory

(LSTM). This helps extract hidden information from past observations. The off-policy actor-critic learning technique improves

decision-making and training stability. The DRACM approach provides near-optimal performance in different MEC

environments. It enables efficient service migration while maintaining a high Quality of Service (QoS) for users. The overall

system framework integrates online decision-making with offline training. This balances computational efficiency and

adaptability. The communication delay is close to 90 milliseconds as compared to traditional methods. These results show that

the deep recurrent actor-critic migration method reduces latency. This research demonstrates that service migration is managed

effectively using deep reinforcement learning. The approach provides scalable and adaptive solutions for real-world MEC

applications. The proposed DRACM method achieves significant performance improvements compared to existing solutions. It

reduces latency, improves service reliability and minimizes unnecessary migrations.

Keywords - MEC, POMPD, Service migration, DRACM, Offline training.

1. Introduction
The increasing demand for real-time mobile applications

led to the emergence of MEC [1]. Traditional cloud computing

is not always efficient for latency-sensitive applications. The

delay caused by data transmission between mobile users and

centralized cloud servers affects QoS [2]. MEC addresses this

issue by placing computing resources at the network edge.

This lets mobile devices offload resource-intensive tasks to

nearby MEC servers [3]. It significantly reduces latency.

Mobile applications like augmented reality, virtual reality,

online gaming and smart healthcare rely on real-time data

processing [4].

These applications generate high computational loads that

exceed the capabilities of mobile devices. MEC extends cloud

functionalities to the edge of the network [5]. It allows

efficient task execution. When a user moves to a new location,

service efficiency decreases. The edge server does not perform

well. Communication delay increases, causing inefficiency

[6]. In such cases, migrating the service to a more suitable

edge server is necessary to maintain performance. Service

migration in MEC is a complex problem. The dynamic nature

of mobile users and varying network conditions make

deciding the right time for service migration challenging. It is

difficult to choose the most suitable target for the migration

[7]. Migration decisions consider network bandwidth, server

workloads, user mobility and communication latency. Many

existing solutions assume complete knowledge of the network

state [8]. However, collecting complete system-level

information requires high communication overhead. It makes

it impractical in real-world scenarios.

Additionally, centralized decision-making approaches

suffer from scalability issues as the number of users increases.

This paper proposes a novel learning-driven approach for

service migration in MEC. The key idea is to enable users to

http://creativecommons.org/licenses/by-nc-nd/4.0/

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

280

make migration decisions using partial system information.

The service migration problem is modelled as a POMDP [9].

A DRACM algorithm is introduced to optimize migration

decisions. This approach uses Deep Reinforcement Learning

(DRL) to learn effective migration policies over time [10]. A

major challenge in service migration is the unpredictability of

user mobility. Traditional methods based on rule-based

policies fail to adapt to dynamic environmental changes [11].

The proposed DRACM method overcomes this challenge by

using an LSTM-based encoder network. Another critical

aspect of service migration is minimizing migration costs [12].

Moving a service from one edge server to another introduces

delays due to data transfer and reconfiguration.

Frequent migrations lead to increased system overhead

and degraded user experience [13]. The proposed approach

balances the trade-off between migration cost and service

quality by optimizing the decision-making process. The

tailored off-policy actor-critic algorithm enhances sample

efficiency and stabilizes training [14]. It confirms robust

performance in real-world deployments. Extensive

experiments using real-world mobility traces validate the

effectiveness of the proposed approach. The results

demonstrate that the DRACM method outperforms heuristic

and state-of-the-art learning-based algorithms. It makes

migration decisions with incomplete system information [15].

This makes it useful for large-scale MEC deployments. The

key contributions of this paper are as follows:

 To formulate the POMDP-based service migration

problem, capture the complex system dynamics and user

mobility patterns.

 To design an innovative encoder network that integrates

LSTM and an embedding matrix to extract hidden

information from past observations to improve decision

accuracy.

 To tailor off-policy actor-critic learning algorithm that

enhances training efficiency, improves policy stability,

and accelerates convergence.

 A scalable framework that supports online decision-

making while maintaining offline training, reducing

computational overhead and improving adaptability.

 To evaluate performance using real-world mobility

traces, demonstrating superior performance in various

MEC scenarios.

This work provides a significant advancement in the field

of MEC service migration. Integrating deep reinforcement

learning with partial observability offers an adaptive and

efficient solution to a longstanding challenge in edge

computing.

2. Related Work
MEC service migration is widely studied due to the

growing demand for low-latency mobile applications. Many

approaches aim to improve service migration strategies. Here,

focus on optimizing resource allocation and reducing

migration overhead. Handle partial observability in dynamic

MEC environments. This section reviews related research in

centralized and decentralized migration strategies, learning-

based approaches and optimization techniques. Many early

solutions to service migration rely on centralized decision-

making. These approaches assume a central controller has

access to complete system information. It includes network

conditions, resource availability, and user mobility patterns.

Several works have formulated service migration as an

optimization problem and applied mathematical models like

Markov Decision Processes (MDP) and Lyapunov

optimization [16, 17]. Ouyang et al. [16] proposed an MDP-

based framework that dynamically selects the optimal

migration target while minimizing service disruption. Wang et

al. [17] developed a queueing model that considers edge server

workloads and optimizes migration decisions using Lyapunov

optimization techniques.

To address the limitations of centralized solutions,

researchers explored decentralized methods. In these

approaches, migration decisions are made by individual users.

The Multi-Armed Bandit (MAB) framework is a common

approach for learning-based migration. It enables users to

select migration targets based on partial observations [18, 19].

Ouyang et al. [18] introduced a Thompson Sampling-based

MAB method that learns to migrate services adaptively. Sun

et al. [19] proposed a contextual bandit model that accounts

for varying network conditions and user demands. These

methods improve decision-making under uncertainty but

struggle with high-dimensional state spaces. DRL gained

significant attention for addressing service migration

problems in dynamic MEC environments. Several studies

leveraged DRL models, namely Deep Q-Networks (DQN),

Actor-Critic frameworks and Proximal Policy Optimization

(PPO) to learn optimal migration policies [20-22]

Wang et al. [20] applied a DQN-based approach to

service migration, optimizing microservice coordination in

MEC. Wu et al.[21] integrated mobility prediction with DRL

to enhance migration efficiency. Yuan et al. [22] formulated

joint service migration and mobility optimization using an

independent Q-learning model. Researchers have investigated

game-theoretic models, heuristic algorithms and hybrid

approaches combining rule-based and learning-based methods

[23]. Zhou et al. [23] proposed an energy-efficient migration

framework using particle swarm optimization. Previously

designed a multi-agent reinforcement learning model. In this

model, each MEC server functions as an independent

decision-maker. Centralized methods provide globally

optimal decisions but face scalability challenges.

Decentralized models enhance adaptability but require

effective state estimation mechanisms. DRL-based

approaches offer automation and learning capabilities but

demand careful training and fine-tuning.

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

281

3. Problem Formulation of Service Migration
MEC enables computational tasks to be executed at the

network edge, reducing latency and improving service quality.

However, the mobility of users requires continuous

monitoring of resource availability and optimal placement of

services. The process of determining when to migrate services

is a complex task. Choosing the appropriate destination adds

another layer to the optimization problem. The primary goal

is to minimize latency, reduce system overhead, and promote

efficient use of resources. In this section, we formulate the

problem mathematically, considering system constraints and

optimization objectives. Here, consider a MEC system with a

set of mobile users U, indexed by u and a set of MEC servers

M, indexed by m. The users move dynamically across

different geographical locations covered by MEC servers.

Each MEC server is connected to a base station. It enables task

offloading and service execution. The position of user u at

time slot t is given by:

u u up (t) = (x (t), y (t)) (1)

Here, u u(x , y) represents the coordinates of the user in a

two-dimensional space. Each MEC server m possesses finite

computational, storage, and bandwidth resources.

m m m mC = {f ,s ,b } (2)

Here, mf represents the available computational power

(GHz). ms Is the storage capacity (MB), and mb is the

available bandwidth (Mbps)? When a mobile user executes an

application, tasks are offloaded to an assigned MEC server.

The processing is performed at the selected edge server, and

the result is returned to the user. However, the current MEC

server is no longer optimal due to user mobility. The service

migrated to another MEC server to maintain optimal

performance. The migration decision variable is defined as:

ta = 1,if migration occurs at time t,

0, otherwise.
 (3)

When migration occurs, the service is transferred from

server m to a new server m'. The migration delay consists of:

mig trans comp configD (t) = D (t) + D (t) + D (t) (4)

Latency in service migration consists of three

components. Communication Delay represents the time taken

for a mobile user to transmit data to the MEC server:

u
comm

u

D (t)
D (t) =

r (t)
 (5)

Here uD (t) is the task data size and ur (t) the wireless

transmission rate. Computation Delay is the time required for

a task to be processed at the MEC server:

u
comp

m

C (t)
D (t) =

f (t)
 (6)

Here, uC (t) it represents the computational complexity

of the task, measured in CPU cycles. Migration Delay is when

service migration occurs. The delay due to data transfer and

reconfiguration is:

service
mig config

m,m

S
D (t) = + T

b

 (7)

Here, the size of the service state that needs to be

transferred is represented. Service migration aims to minimize

the delay and provide a seamless user experience. The total

delay is expressed as:

total comm comp t migD (t) = D (t) + D (t) +a D (t) (8)

The optimal migration policy
* minimizes the expected

total latency:

T
*

total

t=0

argmin E D (t)

 (9)

Server Resource Constraint is the total computational

demand should not exceed the available capacity of the MEC

server:

u m

u U

C (t) f (t), m M

 (10)

Bandwidth Constraints allocated for service migration

should not exceed the available bandwidth:

m,m m

u U

b b , m M

 (11)

In User Connectivity Constraint, each mobile user has

always be connected to at least one MEC server:

t

m M

a 1, u U

 (12)

The formulated problem is a sequential decision-making

task solvable using reinforcement learning. The system is

modelled as a POMDP. A deep learning-based approach

makes migration decisions based on real-time network

observations. To address this, a DRACM algorithm.

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

282

Fig. 1 The framework of DRACM empowered MEC system

4. Online Service Migration with Incomplete

Information
MEC enables real-time task execution by bringing

computational resources closer to mobile users. However, user

mobility requires continuous service migration to maintain

QoS. In practical MEC environments, complete system

information is often unavailable. It makes migration decisions

complex. This section discusses a framework for online

service migration under incomplete information, emphasising

learning-based decision-making techniques. The MEC system

includes mobile users represented by U. It consists of MEC

servers denoted by M. A wireless network connects users to

MEC servers. This enables efficient task offloading. A

backhaul network links the MEC servers. It supports data

transfer between them. This improves system performance and

connectivity. Each MEC server has limited computation

storage bandwidth resources. The location of a user u at time t

is given in (1). The available resources at MEC server m are

given in (2).

Figure 1 represents a hierarchical structure for service

migration in a MEC environment. It is divided into three

levels: user, edge, and remote. The user level consists of

mobile users who move between locations while running

applications on MEC servers. The experienced collector

gathers real-time user data and forwards it to the migration

decision-maker. This decision-maker analyzes network

conditions and determines whether a service migration is

needed. The edge level contains MEC servers that maintain

service lists and facilitate the migration of services between

different servers.

The migrating services mechanism updates the service list

dynamically based on user movement. At the remote level, an

off-policy training loop improves migration policies over time.

The experience pool stores past migration data for training a

target policy trainer. This loop helps in optimizing service

migration decisions. The arrows in the diagram show data flow

between different components. The numbers indicate the

sequence of actions in the migration process. The overall

system is designed to minimize disruption to user applications.

This allows for smooth transitions as users move between

different network regions. Reinforcement learning techniques

are applied to enhance migration efficiency. It improves

performance in dynamic MEC environments. In real MEC

deployments, collecting full system information is difficult.

Mobile devices have limited measurement capability. This

restricts data accuracy and availability. Updating server

workload conditions takes time. Network states change

frequently due to user mobility. These factors make real-time

system monitoring and decision-making challenging. Here,

define the true system state at time t as:

Experience Pool Target Policy Trainer

Experience Collector Migration Decision Maker

Service List Service List 5

MEC Environment

Remote Level

Edge Level

User Level Moving

Off-Policy Training Loop

Migrating

Services

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

283

t u m mS = {p (t),C ,L (t)} (13)

Here mL (t) is the real-time workload at MEC server m.

A user observes a subset of this information, denoted as:

t u u m
ˆO = {p (t),R (t),L (t)} (14)

Here is the estimated wireless transmission rate and an

estimated workload measure. Each user offloads

computational tasks to an MEC server. Due to mobility,

migration is necessary to maintain low latency and efficient

resource utilization. The migration decision variable is given

in (3). The total delay in service execution is given in (8). The

goal is to minimize the expected total delay over a finite time

horizon. T is given in (9). The total computational demand at

an MEC server should not exceed its capacity:

u m

u U

C (t) f , m M

 (15)

The allocated bandwidth should not exceed the available

capacity (11). Each user will always be assigned to an MEC

server, as given in (12). Since full system information is

unavailable, reinforcement learning (RL) optimises migration

policies. The problem is formulated as a POMDP, defined as:

= {S,A,P,R,O, }M (16)

Here S is the state space, A which is the action space.

P The transition probability R is the reward function. O Is

the observation space the discount factor? The reward function

is defined as:

t comm comp t migR = -(D (t) + D (t) +a D (t)) (17)

A DRACM algorithm is used. The actor updates policy

parameters via:

t t tJ() = E log (a | O)A (18)

Here tA is the advantage function. The critic estimates

the state value function:

t t t+1V (O) = E R + V (O)
 (19)

The training process involves experience replay and

stochastic gradient descent. Online service migration under

incomplete information is a complex problem. Using

reinforcement learning-based approaches like DRACM allows

adaptive decision-making in uncertain environments. The

proposed framework enables seamless service continuity,

reduces latency, and optimizes network resource utilization.

Algorithm 1: Deep Recurrent Actor-Critic Based Service

Migration (DRACM)

1. Initialize policy network and value network V

with random weights

2. Initialize replay buffer D to store experience tuples.

3. For each episode e in the training phase, do

4. Initialize the hidden state 0h of LSTM.

5. Observe the initial state 0s and compute the initial

action. 0a

6. For each time step t, do

7. Execute action ta and observe reward tr and new

state. t+1s

8. Store t t t t+1 t(s ,a , r ,s ,h) in replay buffer D

9. If buffer D is full, then

10. Sample a mini-batch from D.

11. Compute advantage estimate

t t t+1 tA = r + V (s) -V (s)

12. Update policy using policy gradient.

J()

13. Update value function V using loss function

L()

14. end if

15. end for

16. end for

5. Simulation Analysis
Experiments were conducted to evaluate the online

service migration approach. Real-world mobility traces and

network conditions were used. The main goal was to assess

migration policy effectiveness. The focus was on latency,

computation efficiency and adaptability. The tests measured

performance in dynamic environments. The users generated

computational tasks following a Poisson distribution with an

average arrival rate of five per minute. The experiments

measured key performance metrics, including communication

delay, computation delay, migration delay and the total system

cost. Communication delay was defined as the time required

for data transmission between mobile users and MEC

servers—computation delay referred to the time taken for task

execution at the MEC server. Migration delay accounted for

the overhead caused by service migration between MEC

servers. The total system cost was the sum of all latencies,

including migration costs.

The performance of the proposed DRACM method was

compared against several existing approaches. The first

traditional method, No Migration (NM), maintained services

on the initially assigned MEC server without migration. The

second traditional Greedy Migration (GM) triggered migration

whenever a lower-latency MEC server was detected. The third

traditional method, MAB, used a contextual bandit model to

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

284

select migration targets. The final existing scheme, Deep Q-

Learning (DQL), applied reinforcement learning with deep Q-

networks for migration decision-making. The experimental

results demonstrated that DRACM achieved significant

improvements in system performance compared to the

traditional approaches.

Table 1 presents a comparison of average latency across

methods. The results show that DRACM reduced

communication and computation delays. It achieves a total

latency of 270 ms compared to 400 ms in NM, 340 ms in GM,

320 ms in MAB and 300 ms in DQL.

Table 1. Average latency (ms) comparison across methods

Method
Communication

Delay

Computation

Delay

Total

Latency

NM 150 250 400

GM 120 220 340

MAB 110 210 320

DQL 100 200 300

DRACM 90 180 270

Another key finding of the experiments was that DRACM

minimized migration overhead. Table 2 presents the migration

overhead regarding data transfer and migration time. The

results indicate that DRACM required the least data transfer

(18 MB). It had the shortest migration time (1.3 seconds)

compared to the other methods. The NM method had no

migration overhead as expected, while GM, MAB and DQL

incurred higher migration costs.

Table 2. Migration overhead (MB) Across methods

Method Data Transferred
Migration Time

(s)

NM 10 1.1

GM 30 2.1

MAB 25 1.8

DQL 22 1.6

DRACM 18 1.3

Regarding system efficiency, DRACM showed the

highest overall improvement compared to NM. Table 3 shows

the latency reduction percentage and improvement in

computation efficiency across different methods. The

DRACM approach achieved a 32% latency reduction and a

25% improvement in computation efficiency. It was

significantly higher than the gains observed in GM, MAB and

DQL.

Table 3. System efficiency improvement (%) over NM

Method Latency

Reduction

Computation

Efficiency

GM 15% 10%

MAB 20% 15%

DQL 25% 20%

DRACM 32% 25%

The scalability of DRACM was evaluated by increasing

the number of users in the system. The results demonstrated

that DRACM effectively adapted to higher user densities

while maintaining stable performance. When the number of

users increased from 50 to 200, DRACM sustained an average

latency of 320 ms. GM and MAB exhibited significant

performance degradation due to increased migration overhead.

DRACM demonstrated superior adaptability to dynamic MEC

environments compared to traditional migration strategies.

Figure 2 represents the latency comparison among

different migration strategies. In the case of no-migration, the

total latency is more than 400 milliseconds. The computation

delay is about 250 milliseconds. The communication delay is

around 150 milliseconds. As migration strategies improve, the

total latency reduces. The greedy migration strategy has a total

latency of about 350 milliseconds. The computation delay is

around 225 milliseconds. The communication delay is nearly

125 milliseconds. The multi-armed bandit method performs

better. The total latency is about 320 milliseconds. The

computation delay is 210 milliseconds.

Fig. 2 Latency versus Migration Strategies

0

100

200

300

400

500

NM GM MAB DQL DRACM

L
at

en
cy

 (
m

s)

Migration Strategies

Communication Delay Computation Delay Total Latency

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

285

The communication delay is around 110 milliseconds.

The deep q-learning method performs better than the multi-

armed bandit method. The total latency is around 300

milliseconds. The computation delay is 200 milliseconds. The

communication delay is 100 milliseconds. The deep recurrent

actor-critic migration strategy has the lowest latency. The total

latency is about 270 milliseconds. The computation delay is

around 180 milliseconds. The communication delay is close to

90 milliseconds. These results show that the deep recurrent

actor-critic migration method reduces latency.

Figure 3 represents the total latency as a function of the

number of users for different migration strategies. The no-

migration strategy has the highest latency. It starts at 400

milliseconds for 50 users. It increases beyond 550

milliseconds for 200 users. The greedy migration strategy has

lower latency than no migration. It starts at about 350

milliseconds. It rises to nearly 500 milliseconds. The multi-

armed bandit method performs slightly better. Its latency

values range between 320 milliseconds and 470 milliseconds.

The deep q-learning strategy reduces latency. It begins at

around 300 milliseconds and reaches close to 440

milliseconds. The deep recurrent actor-critic migration

strategy has the lowest latency. It starts at about 280

milliseconds. It increases to around 370 milliseconds. The

greedy migration and multi-armed bandit methods perform

better. This still faces significant latency increases as the

number of users grows. The deep q-learning strategy reduces

latency more effectively, demonstrating better scalability. The

deep recurrent actor-critic migration method achieves the best

results, maintaining the lowest latency even as the number of

users increases.

Fig. 3 Total latency versus Number of users

Fig. 4 System efficiency improvements and migration strategies

0

50

100

150

200

250

300

350

400

50 100 150 200

T
o

ta
l

L
at

en
cy

 (
m

s)

Number of Users

NM GM MAB DQL DRACM

0

5

10

15

20

25

30

35

NM GM MAB DQL DRACM

Im
p

ro
v
em

en
t

(%
)

Migration Strategies

Latency Reduction Computation Efficiency

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

286

Fig. 5 Total latency versus Increasing user density

Figure 4 illustrates the impact of different migration

strategies on latency reduction and computation efficiency.

Two distinct elements are displayed: latency reduction and

computation efficiency. As migration strategies improve,

performance metrics get better. The no-migration strategy

shows no improvement. The greedy migration strategy

achieves about 15 percent latency reduction. It improves

computation efficiency by 10 percent. The multi-armed bandit

approach performs better. It reaches around 20 percent latency

reduction and 15 percent computation efficiency. Progressing

further, deep q-learning improves performance. It achieves

nearly 25 percent latency reduction and 20 percent

computation efficiency. The deep recurrent actor-critic

migration method shows the best improvements. It reduces

latency by nearly 32 percent. It increases computation

efficiency by 25 percent. The graph shows that reinforcement

learning-based strategies improve service migration. The deep

recurrent actor-critic migration method performs the best. It

reduces latency more effectively than other strategies. It

improves computational resource utilization in a dynamic

mobile edge computing system.

Figure 5 illustrates the total latency as a function of the

number of users for different migration strategies. The graph

includes five migration strategies: no migration, greedy

migration, multi-armed bandit, deep q-learning and deep

recurrent actor-critic migration. The results show that the total

latency increases across all strategies as the number of users

increases. The no-migration strategy has the highest latency.

It starts at 400 milliseconds for 50 users. It increases to over

540 milliseconds for 200 users. The greedy migration strategy

performs slightly better. It starts at about 350 milliseconds. It

rises to around 480 milliseconds. The multi-armed bandit

method reduces latency, with values between 320 milliseconds

and 450 milliseconds. It starts with a latency of 300

milliseconds. It increases to nearly 420 milliseconds for 200

users.

The deep recurrent actor-critic migration method has the

lowest latency. It begins at about 280 milliseconds. It rises to

around 370 milliseconds. The graph highlights that

reinforcement learning-based migration strategies result in

significantly lower latency than traditional methods. The deep

q-learning strategy provides better scalability. It reduces

latency effectively as the number of users grows. The deep

recurrent actor-critic migration method performs better than

all other approaches. It maintains the lowest latency even with

more users.

Figure 6 presents the variation in computation delay as the

number of users increases for different migration strategies.

The graph compares five migration strategies: no migration,

greedy migration, multi-armed bandit, deep q-learning and

deep recurrent actor-critic migration. As the number of users

rises, the computation delay increases for all strategies. The

no-migration method exhibits the highest computation delay.

It starts at around 260 milliseconds for 50 users and reaches

approximately 350 milliseconds for 200. The greedy migration

strategy slightly improves performance. It initially reduces the

delay to about 220 milliseconds and nearly 320 milliseconds

at 200 users. The multi-armed bandit approach reduces

computation delay. It keeps values between 210 milliseconds

and 300 milliseconds. The deep q-learning method reduces

computation delay effectively. It starts at 200 milliseconds. It

increases to around 290 milliseconds. The deep recurrent

actor-critic migration strategy has the lowest computation

delay. It ranges from 180 to 270 milliseconds as the number of

users increases.

0

50

100

150

200

250

300

350

400

50 100 150 200

T
o

ta
l

L
at

en
cy

 (
m

s)

Number of Users

NM GM MAB DQL DRACM

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

287

Fig. 6 Computational delay versus Number of users

Fig. 7 Training reward versus Episodes

Figure 7 represents the training reward progression of the

deep recurrent actor-critic migration model over multiple

training episodes. The curve shows a decrease. As training

progresses, the model improves its decisions. It gradually

converges to a more stable policy. Initially, at episode zero,

the reward value is close to 500. As training continues, the

reward decreases rapidly in the early episodes and gradually

stabilizes. By the time it reaches 100 episodes, the reward

value is around 270. It indicates that the model has improved

its performance through reinforcement learning. The figure

highlights how reinforcement learning improves decision-

making in service migration over time. The steep drop in the

reward value in the initial phase suggests rapid learning. The

model adjusts its policy significantly. As the episodes

progress, the changes become smaller. It reflects convergence

towards an optimal policy. This pattern confirms that the deep

recurrent actor-critic migration model adapts well to training

and handles service migration tasks more efficiently. The

reward decreases over time as the model reduces unnecessary

migrations. It optimizes latency. This improves performance

in mobile edge computing environments.

0

50

100

150

200

250

300

350

400

50 100 150 200

C
o

m
p

u
ta

ti
o

n
 D

el
ay

 (
m

s)

Number of Users

NM GM MAB DQL DRACM

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

288

Fig. 8 Migration time versus migration strategies

Fig. 9 Average total latency of service migration over time

Figure 8 displays the migration time for various migration

strategies. The graph bars indicate the time each method takes

to complete a migration. The no migration strategy shows the

lowest migration time of around 1.2 seconds since no

migration occurs. The greedy migration approach records the

highest migration time at approximately 2.2 seconds.

It suggests that frequent migrations lead to increased

overhead. The multi-armed bandit strategy has a high

migration time of nearly 2 seconds. It reflects its reliance on

adaptive decision-making. It occasionally results in

unnecessary migrations. Deep q-learning improves efficiency.

It reduces migration time to about 1.7 seconds. This makes it

a more optimized option. The deep recurrent actor-critic

migration method has the lowest migration time among

learning-based approaches. It reduces the duration to around

1.4 seconds.

Figure 9 presents the variation of average total latency

over time for different migration strategies. The graph

compares five migration strategies: no migration, greedy

migration, multi-armed bandit, deep q-learning and deep

recurrent actor-critic migration. The graph shows a decrease

in latency across all strategies as time progresses. The no-

migration strategy has the highest total latency. It starts at

around 400 seconds. It gradually decreases to about 360

0

0.5

1

1.5

2

2.5

NM GM MAB DQL DRACM

M
ig

ra
ti

o
n
 T

im
e

(s
)

Migration Strategies

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250

A
v
er

ag
e

T
o

ta
l

L
at

en
cy

 (
s)

Time Horizon (minutes)

NM GM MAB DQL DRACM

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

289

seconds at 250 minutes. The greedy migration strategy follows

a similar pattern. It starts at nearly 380 seconds. It reduces to

approximately 340 seconds. The multi-armed bandit method

shows a decrease. It starts at around 360 seconds. It drops to

nearly 320 seconds by the end of the time horizon. The deep

Q-learning strategy performs better. It starts with a latency of

nearly 340 seconds. It decreases to around 290 seconds over

time. The deep recurrent actor-critic migration strategy shows

the most improvement. It starts at about 320 seconds. It

steadily decreases to around 250 seconds at 250 minutes. The

results show that reinforcement learning-based strategies

reduce latency more efficiently.

Figure 10 shows the change in average total reward over

training episodes for different versions of the deep recurrent

actor-critic migration model. Three model variations are

compared: the standard deep recurrent actor-critic migration

model, the version without an encoder and the version without

a surrogate network. In the initial episodes, all three models

start with negative rewards. As training progresses, the

rewards increase steadily. The standard deep recurrent actor-

critic migration model gets the highest reward. It reaches

around 1900 by episode 100. The version without an encoder

follows. It attains approximately 1700. The model without a

surrogate network has the lowest reward. It stabilizes at about

1400.

The figure highlights the impact of different components

on training efficiency and overall model performance. The

standard model gets the highest reward. This shows that the

encoder and surrogate network improve learning and decision-

making. Without an encoder, the model struggles to capture

temporal dependencies. This leads to lower rewards.

Similarly, removing the surrogate network results in slower

training and a lower final reward value. The overall results

show that the encoder and surrogate network enhance

performance. It helps the deep recurrent actor-critic migration

model work better. It allows the model to optimize migration

decisions more efficiently.

Fig. 10 Average total reward of DRACM with mobility traces

Fig. 11 Loss function versus Training episodes

Figure 11 represents the change in the loss function value

over training episodes for various migration strategies. Five

migration strategies are compared: no migration, greedy

migration, multi-armed bandit, deep q-learning and deep

recurrent actor-critic migration. The overall results show a

steady reduction in loss across all strategies as training

progresses. Initially, the loss function value is around 1.1 for

all strategies. During the initial training phase, the loss

decreases sharply and stabilizes gradually. In episode 100, the

deep recurrent actor-critic migration method had the lowest

loss. It reaches approximately 0.15. The deep q-learning

strategy converges to around 0.2. The multi-armed bandit

strategy ends with a loss of about 0.25. The greedy migration

strategy has a final loss of around 0.3. The no-migration

strategy maintains the highest final loss value, remaining

above 0.4. The graph demonstrates the impact of

reinforcement learning-based techniques in minimizing the

loss of function value over time. The deep recurrent actor-

critic migration strategy shows the most efficient learning

curve with lower loss throughout training. The deep Q-

learning approach performs well but settles at a slightly higher

loss level. The multi-armed bandit and greedy migration

strategies improve moderately but do not reach the

optimization level of reinforcement learning models. The no-

migration strategy shows the slowest decline in loss. This

reflects its inefficiency in adapting to changes. The results

confirm that reinforcement learning-based migration

strategies improve system efficiency.

Figure 12 represents the change in average total reward

over training episodes for different learning rates. Three

different learning rates are compared: 0.001, 0.005 and 0.01.

The higher learning rates lead to faster convergence and higher

final reward values. Initially, at episode zero, all models start

with a negative reward close to -500. As training progresses,

the reward values increase steadily. The learning rate of 0.01

achieves the highest reward. It reaches nearly 2800 by episode

100. The learning rate of 0.005 performs well. It stabilizes at

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

290

around 2200. The lowest learning rate of 0.001 has a final

reward of about 1700. The figure highlights the effect of

different learning rates on training efficiency. A higher

learning rate allows faster improvements in total reward risk

instability if set too high. The learning rate of 0.01 shows the

fastest increase. This suggests rapid learning.

Fig. 12 Reward comparison of different learning rates

The learning rate of 0.005 performs well. It has a slightly

slower convergence rate. The lowest learning rate of 0.001

results in the slowest learning process, with a more gradual

increase in reward. The results confirm that selecting an

optimal learning rate is crucial in reinforcement learning as it

balances learning speed and stability. It enhances decision-

making efficiency. This is important for reinforcement

learning-based migration strategies.

Figure 13 illustrates the improvement in latency over time

for different migration strategies. Five migration strategies are

analyzed: no migration, greedy migration, multi-armed bandit,

deep q-learning and deep recurrent actor-critic migration. The

no migration strategy stays at 0 percent improvement. It shows

no optimization. The greedy migration strategy improves

slowly. It starts at about 5 percent. It reaches around 8 percent

by the end.

The multi-armed bandit strategy performs better. It begins

at 10 percent. It increases to about 14 percent. The deep q-

learning method outperforms the previous strategies, showing

an initial improvement of 15 percent and rising to nearly 20

percent over time.

The deep recurrent actor-critic migration method

performs the best. It starts at 20 percent. It steadily increases

to about 30 percent. The reinforcement learning-based

strategies reduce latency better than conventional methods.

The steady improvement over time suggests continuous

adaptation. These models refine decision-making processes.

Fig. 13 Latency improvements versus Time

Figure 14 represents the variation of policy entropy over

training episodes for different migration strategies. The graph

compares five migration strategies: no migration, greedy

migration, multi-armed bandit, deep q-learning and deep

recurrent actor-critic migration. The result shows a consistent

decline in policy entropy across all strategies as training

progresses. At episode zero, the no migration strategy has the

highest policy entropy. It starts at about 0.85. The greedy

migration strategy follows. It begins at around 0.75. The multi-

armed bandit and deep q-learning strategies begin at

approximately 0.6 and 0.5, respectively. The deep recurrent

actor-critic migration strategy starts with the lowest entropy at

about 0.4. As training progresses, policy entropy decreases for

all strategies. This shows that models become more confident

in decision-making. By episode 100, the deep recurrent actor-

critic migration strategy has the lowest policy entropy. It

stabilizes at around 0.05. Deep Q-learning and multi-armed

bandit strategies follow. The final entropy values are close to

0.12 and 0.15, respectively. The greedy migration strategy

stabilizes at about 0.2. The no migration strategy has the

highest entropy, staying above 0.3. The figure shows that

reinforcement learning-based approaches improve policy

stability.

Fig. 14 Policy convergence versus Training episodes

0

10

20

30

40

0 50 100 150 200 250

L
at

en
cy

 I
m

p
ro

v
em

en
t

(%
)

Time (minutes)

NM GM MAB

DQL DRACM

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

291

Fig. 15 Computational resource utilization versus Number of users

Figure 15 illustrates how computation resource utilization

changes with the increasing number of users for different

migration strategies. The graph compares five migration

strategies: no migration, greedy migration, multi-armed

bandit, deep q-learning and deep recurrent actor-critic

migration. The results show that computation resource

utilization increases across all strategies as the number of users

grows. The no-migration strategy has the lowest utilization. It

starts at about 40 percent for 50 users. It increases to around

80 percent at 250 users. The greedy migration strategy

performs slightly better. Its utilization rises from about 45

percent. It reaches nearly 85 percent. The multi-armed bandit

approach improves efficiency. It starts at 50 percent. It

increases to around 88 percent. The deep q-learning strategy

enhances resource utilization. It begins at 55 percent. It

reaches about 90 percent. The deep recurrent actor-critic

migration method has the highest efficiency. Utilization rises

from 60 percent. It reaches nearly 95 percent as the number of

users increases. These results show that reinforcement

learning-based migration strategies improve resource

allocation. This performs better than traditional methods. The

overall suggests that deep reinforcement learning techniques

optimize system performance.

6. Conclusion
This paper presented a novel approach for online service

migration in MEC environments with incomplete system

information. A reinforcement learning-based approach was

employed to learn optimal migration policies without

requiring complete knowledge of the system state. Extensive

experiments were conducted to evaluate the performance of

DRACM compared to traditional migration strategies. The

results demonstrated that DRACM significantly reduced

communication and computation delays while maintaining

minimal migration overhead. The work analysed the

scalability of DRACM under varying user densities. The

findings indicated that DRACM maintains stable performance

even as the number of users increases, unlike traditional

approaches that suffer from high migration overhead and

degraded system performance under heavy network loads.

DRACM dynamically adjusts migration decisions to adapt to

changing conditions. This flexibility makes it a promising

solution for large-scale MEC deployments. It is useful in

scenarios with unpredictable user mobility. The proposed

approach provides a scalable and decentralized framework

that allows mobile users to make autonomous migration

decisions based on partial observations. By integrating LSTM

networks, DRACM effectively captures temporal

dependencies and improves policy stability.

Acknowledgments
The authors would like to express their sincere gratitude

to all those who contributed to the success of this research

work.

References
[1] Yuyi Mao et al, “A Survey on Mobile Edge Computing: The Communication Perspective,” Arxiv, pp. 1-37, 2017. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Tianchu Zhao et al., “A Cooperative Scheduling Scheme of Local Cloud and Internet Cloud for Delay-Aware Mobile Cloud Computing,”

2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, pp. 1-6, 2015. [CrossRef] [Google Scholar] [Publisher Link]

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 R

es
o

u
rc

e
U

ti
li

za
ti

o
n
 (

%
)

Number of Users

NM GM MAB DQL DRACM

https://doi.org/10.48550/arXiv.1701.01090
https://scholar.google.com/scholar?q=Mobile+edge+computing:+Survey+and+research+outlook&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Mobile+edge+computing:+Survey+and+research+outlook&hl=en&as_sdt=0,5
https://arxiv.org/abs/1701.01090
https://doi.org/10.1109/GLOCOMW.2015.7414063
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+cooperative+scheduling+scheme+of+local+cloud+and+internet+cloud+for+delay-aware+mobile+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/7414063

Kurra Venkateswara Rao et al. / IJECE, 12(6), 279-292, 2025

292

[3] Hongbo Jiang et al., “Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing,” IEEE

Transactions on Mobile Computing, vol. 22, no. 7, pp. 4000-4015, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[4] Adberezak Touzene et al., Immersive Virtual and Augmented Reality in Healthcare: An IoT and Blockchain Perspective, CRC Press, pp.

1-244, 2023. [Google Scholar] [Publisher Link]

[5] Qiang Duan, Shangguang Wang, and Nirwan Ansari, “Convergence of Networking and Cloud/Edge Computing: Status, Challenges, and

Opportunities,” IEEE Network, vol. 34, no. 6, pp. 148-155, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Leonard Kleinrock, Communication Nets: Stochastic Message Flow and Delay, Dover Publications, pp. 1-209, 2007. [Google Scholar]

[Publisher Link]

[7] Shangguang Wang et al., “A Survey on Service Migration in Mobile Edge Computing,” IEEE Access, vol. 6, pp. 23511-23528, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Qing Zhao et al., “Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework,” IEEE

Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 589-600, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[9] Xiaoqian Li et al., “Intelligent Service Migration Based on Hidden State Inference for Mobile Edge Computing,” IEEE Transactions on

Cognitive Communications and Networking, vol. 8, no. 1, pp. 380-393, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Yulu Gong et al., “Dynamic Resource Allocation for Virtual Machine Migration Optimization Using Machine Learning,” arXiv, pp. 1-9,

2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Robert Müller, Ulrike Greiner, and Erhard Rahm, “AgentWork: A Workflow System Supporting Rule-Based Workflow Adaptation,”

Data & Knowledge Engineering, vol. 51, no. 2, pp. 223-256, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[12] Awder Ahmed, Sadoon Azizi, and Subhi R.M. Zeebaree, “ECQ: An Energy-Efficient, Cost-Effective and Qos-Aware Method for

Dynamic Service Migration in Mobile Edge Computing Systems,” Wireless Personal Communications, vol. 133, pp. 2467-2501, 2023.

[CrossRef] [Google Scholar] [Publisher Link].

[13] Anita Choudhary et al, “A Critical Survey of Live Virtual Machine Migration Techniques,” Journal of Cloud Computing, vol. 6, pp. 1-

41, 2017. [CrossRef] [Google Scholar] [Publisher Link].

[14] Shenzhi Wang et al., “Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning,” 37th Conference

on Advances in Neural Information Processing Systems, pp. 1-24, 2023. [Google Scholar] [Publisher Link]

[15] Sonja Haug, “Migration Networks and Migration Decision-Making,” Journal of Ethnic and Migration Studies, vol. 34, no. 4, pp. 585-

605, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[16] Tao Ouyang, Zhi Zhou, and Xu Chen, “Follow Me at the Edge: Mobility-Aware Dynamic Service Placement for Mobile Edge

Computing,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333-2345, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Shiqiang Wang et al., “Dynamic Service Migration in Mobile Edge Computing Based on Markov Decision Process,” IEEE/ACM

Transactions on Networking, vol. 27, no. 3, pp. 1272-1288, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[18] Tao Ouyang et al., “Adaptive User-Managed Service Placement for Mobile Edge Computing: An Online Learning Approach,” IEEE

INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, pp. 1468-1476, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[19] Yuxuan Sun et al., “Learning-Based Task Offloading for Vehicular Cloud Computing Systems,” 2018 IEEE International Conference on

Communications (ICC), Kansas City, MO, USA, pp. 1-7, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[20] Shangguang Wang et al., “Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach,”

IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 939-951, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Chao-Lun Wu et al., “Mobility-Aware Deep Reinforcement Learning with Glimpse Mobility Prediction in Edge Computing,” ICC 2020

- 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[22] Quan Yuan et al., “A Joint Service Migration and Mobility Optimization Approach for Vehicular Edge Computing,” IEEE Transactions

on Vehicular Technology, vol. 69, no. 8, pp. 9041-9052, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[23] Xiaobo Zhou et al., “Energy-Efficient Service Migration for Multi-User Heterogeneous Dense Cellular Networks,” IEEE Transactions on

Mobile Computing, vol. 22, no. 2, pp. 890-905, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TMC.2022.3150432
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Joint+task+offloading+and+resource+allocation+for+energy-constrained+mobile+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9712216
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immersive+virtual+and+augmented+reality+in+healthcare%3A+an+IoT+and+blockchain+perspective&btnG=
https://www.google.co.in/books/edition/Immersive_Virtual_and_Augmented_Reality/jqMIEQAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1109/MNET.011.2000089
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Convergence+of+networking+and+cloud%2Fedge+computing%3A+Status%2C+challenges+opportunities&btnG=
https://ieeexplore.ieee.org/abstract/document/9108989
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Communication+nets%3A+Stochastic+message+flow+and+delay&btnG=
https://www.google.co.in/books/edition/_/KmuTAwAAQBAJ?hl=en&sa=X&ved=2ahUKEwiW8OHwgYCOAxV-XmwGHTUwNlcQ7_IDegQIEhAC
https://doi.org/10.1109/ACCESS.2018.2828102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+service+migration+in+mobile+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8340768
https://doi.org/10.1109/JSAC.2007.070409
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decentralized+cognitive+mac+for+opportunistic+spectrum+access+in+ad+hoc+networks%3A+A+pomdp+framework&btnG=
https://ieeexplore.ieee.org/abstract/document/4155374
https://doi.org/10.1109/TCCN.2021.3103511
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+service+migration+based+on+hidden+state+inference+for+mobile+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9509399
https://doi.org/10.48550/arXiv.2403.13619
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+resource+allocation+for+virtual+machine+migration+optimization+using+machine+learning&btnG=%5d
https://arxiv.org/abs/2403.13619
https://doi.org/10.1016/j.datak.2004.03.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agentwork%3A+a+workflow+system+supporting+rule-based+workflow+adaptation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169023X0400076X
https://doi.org/10.1007/s11277-024-10883-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ecq%3A+an+energy-efficient%2C+cost-effective+and+qos-aware+method+for+dynamic+service+migration+in+mobile+edge+computing+systems&btnG=
https://link.springer.com/article/10.1007/s11277-024-10883-0
https://doi.org/10.1186/s13677-017-0092-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+critical+survey+of+live+virtual+machine+migration+techniques%2C%E2%80%9D+Journal+of+Cloud+Computing&btnG=
https://link.springer.com/article/10.1186/s13677-017-0092-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Train+once%2C+get+a+family%3A+State-adaptive+balances+for+offline-to-online+reinforcement+learning&btnG=
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9318763d049edf9a1f2779b2a59911d3-Abstract-Conference.html
https://doi.org/10.1080/13691830801961605
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Migration+networks+and+migration+decision-making&btnG=
https://www.tandfonline.com/doi/abs/10.1080/13691830801961605
https://doi.org/10.1109/JSAC.2018.2869954
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FollowMe+at+the+Edge%3A+Mobility-aware+Dynamic+Service+Placement+for+Mobile+Edge+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8463562
https://doi.org/10.1109/TNET.2019.2916577
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+Service+Migration+in+Mobile+Edge+Computing+Based+on+Markov+Decision+Process&btnG=
https://ieeexplore.ieee.org/abstract/document/8727722
https://doi.org/10.1109/INFOCOM.2019.8737560
https://scholar.google.com/scholar?q=Adaptive+User-Managed+Service+Placement+for+Mobile+Edge+Computing:+An+Online+Learning+Approach&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/8737560
https://doi.org/10.1109/ICC.2018.8422661
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning-Based+Task+Offloading+for+Vehicular+Cloud+Computing+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8422661
https://doi.org/10.1109/TMC.2019.2957804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Delay-Aware+Microservice+Coordination+in+Mobile+Edge+Computing%3A+A+Reinforcement+Learning+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/8924682
https://doi.org/10.1109/ICC40277.2020.9149185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobility-Aware+Deep+Reinforcement+Learning+with+Glimpse+Mobility+Prediction+in+Edge+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9149185
https://ieeexplore.ieee.org/abstract/document/9149185
https://doi.org/10.1109/TVT.2020.2999617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Joint+Service+Migration+and+Mobility+Optimization+Approach+for+Vehicular+Edge+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9107503
https://doi.org/10.1109/TMC.2021.3087198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-Efficient+Service+Migration+for+Multi-User+Heterogeneous+Dense+Cellular+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9448508

