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Abstract - Multi-access Edge Computing (MEC) is a modern computing technology. It allows mobile users to offload tasks to 

nearby edge servers. This helps in reducing latency and improving service performance. However, the service needs to migrate 

when users move between different locations. The process of deciding when to migrate services is complex. The main challenge 

is the lack of complete system information at all times. Many existing approaches assume full knowledge of the network state. 

However, gathering such information is slow and resource-intensive. To overcome this limitation, a deep reinforcement learning 

method is proposed. The proposed method models the service migration problem as a Partially Observable Markov Decision 

Process (POMDP). It allows decisions to be made based on limited system knowledge. The method introduces a novel Deep 

Recurrent Actor-Critic Migration (DRACM) algorithm. The algorithm uses an encoder network with Long Short-Term Memory 

(LSTM). This helps extract hidden information from past observations. The off-policy actor-critic learning technique improves 

decision-making and training stability. The DRACM approach provides near-optimal performance in different MEC 

environments. It enables efficient service migration while maintaining a high Quality of Service (QoS) for users. The overall 

system framework integrates online decision-making with offline training. This balances computational efficiency and 

adaptability. The communication delay is close to 90 milliseconds as compared to traditional methods. These results show that 

the deep recurrent actor-critic migration method reduces latency. This research demonstrates that service migration is managed 

effectively using deep reinforcement learning. The approach provides scalable and adaptive solutions for real-world MEC 

applications. The proposed DRACM method achieves significant performance improvements compared to existing solutions. It 

reduces latency, improves service reliability and minimizes unnecessary migrations.  

Keywords - MEC, POMPD, Service migration, DRACM, Offline training. 

 

1. Introduction 
The increasing demand for real-time mobile applications 

led to the emergence of MEC [1]. Traditional cloud computing 

is not always efficient for latency-sensitive applications. The 

delay caused by data transmission between mobile users and 

centralized cloud servers affects QoS [2]. MEC addresses this 

issue by placing computing resources at the network edge. 

This lets mobile devices offload resource-intensive tasks to 

nearby MEC servers [3]. It significantly reduces latency. 

Mobile applications like augmented reality, virtual reality, 

online gaming and smart healthcare rely on real-time data 

processing [4].  

These applications generate high computational loads that 

exceed the capabilities of mobile devices. MEC extends cloud 

functionalities to the edge of the network [5]. It allows 

efficient task execution. When a user moves to a new location, 

service efficiency decreases. The edge server does not perform 

well. Communication delay increases, causing inefficiency 

[6]. In such cases, migrating the service to a more suitable 

edge server is necessary to maintain performance. Service 

migration in MEC is a complex problem. The dynamic nature 

of mobile users and varying network conditions make 

deciding the right time for service migration challenging. It is 

difficult to choose the most suitable target for the migration 

[7]. Migration decisions consider network bandwidth, server 

workloads, user mobility and communication latency. Many 

existing solutions assume complete knowledge of the network 

state [8]. However, collecting complete system-level 

information requires high communication overhead. It makes 

it impractical in real-world scenarios. 

Additionally, centralized decision-making approaches 

suffer from scalability issues as the number of users increases. 

This paper proposes a novel learning-driven approach for 

service migration in MEC. The key idea is to enable users to 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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make migration decisions using partial system information. 

The service migration problem is modelled as a POMDP [9]. 

A DRACM algorithm is introduced to optimize migration 

decisions. This approach uses Deep Reinforcement Learning 

(DRL) to learn effective migration policies over time [10]. A 

major challenge in service migration is the unpredictability of 

user mobility. Traditional methods based on rule-based 

policies fail to adapt to dynamic environmental changes [11]. 

The proposed DRACM method overcomes this challenge by 

using an LSTM-based encoder network.  Another critical 

aspect of service migration is minimizing migration costs [12]. 

Moving a service from one edge server to another introduces 

delays due to data transfer and reconfiguration.  

Frequent migrations lead to increased system overhead 

and degraded user experience [13]. The proposed approach 

balances the trade-off between migration cost and service 

quality by optimizing the decision-making process. The 

tailored off-policy actor-critic algorithm enhances sample 

efficiency and stabilizes training [14]. It confirms robust 

performance in real-world deployments. Extensive 

experiments using real-world mobility traces validate the 

effectiveness of the proposed approach. The results 

demonstrate that the DRACM method outperforms heuristic 

and state-of-the-art learning-based algorithms.  It makes 

migration decisions with incomplete system information [15]. 

This makes it useful for large-scale MEC deployments. The 

key contributions of this paper are as follows: 

 

 To formulate the POMDP-based service migration 

problem, capture the complex system dynamics and user 

mobility patterns. 

 To design an innovative encoder network that integrates 

LSTM and an embedding matrix to extract hidden 

information from past observations to improve decision 

accuracy. 

 To tailor off-policy actor-critic learning algorithm that 

enhances training efficiency, improves policy stability, 

and accelerates convergence. 

 A scalable framework that supports online decision-

making while maintaining offline training, reducing 

computational overhead and improving adaptability. 

 To evaluate performance using real-world mobility 

traces, demonstrating superior performance in various 

MEC scenarios. 

 

This work provides a significant advancement in the field 

of MEC service migration. Integrating deep reinforcement 

learning with partial observability offers an adaptive and 

efficient solution to a longstanding challenge in edge 

computing. 

2. Related Work 
MEC service migration is widely studied due to the 

growing demand for low-latency mobile applications. Many 

approaches aim to improve service migration strategies. Here,  

focus on optimizing resource allocation and reducing 

migration overhead. Handle partial observability in dynamic 

MEC environments. This section reviews related research in 

centralized and decentralized migration strategies, learning-

based approaches and optimization techniques. Many early 

solutions to service migration rely on centralized decision-

making. These approaches assume a central controller has 

access to complete system information. It includes network 

conditions, resource availability, and user mobility patterns. 

Several works have formulated service migration as an 

optimization problem and applied mathematical models like 

Markov Decision Processes (MDP) and Lyapunov 

optimization [16, 17]. Ouyang et al. [16] proposed an MDP-

based framework that dynamically selects the optimal 

migration target while minimizing service disruption. Wang et 

al. [17] developed a queueing model that considers edge server 

workloads and optimizes migration decisions using Lyapunov 

optimization techniques.  

To address the limitations of centralized solutions, 

researchers explored decentralized methods. In these 

approaches, migration decisions are made by individual users. 

The Multi-Armed Bandit (MAB) framework is a common 

approach for learning-based migration. It enables users to 

select migration targets based on partial observations [18, 19]. 

Ouyang et al. [18] introduced a Thompson Sampling-based 

MAB method that learns to migrate services adaptively. Sun 

et al. [19] proposed a contextual bandit model that accounts 

for varying network conditions and user demands. These 

methods improve decision-making under uncertainty but 

struggle with high-dimensional state spaces. DRL gained 

significant attention for addressing service migration 

problems in dynamic MEC environments. Several studies 

leveraged DRL models, namely Deep Q-Networks (DQN), 

Actor-Critic frameworks and Proximal Policy Optimization 

(PPO) to learn optimal migration policies [20-22] 

Wang et al. [20] applied a DQN-based approach to 

service migration, optimizing microservice coordination in 

MEC. Wu et al.[21] integrated mobility prediction with DRL 

to enhance migration efficiency. Yuan et al. [22] formulated 

joint service migration and mobility optimization using an 

independent Q-learning model. Researchers have investigated 

game-theoretic models, heuristic algorithms and hybrid 

approaches combining rule-based and learning-based methods 

[23]. Zhou et al. [23] proposed an energy-efficient migration 

framework using particle swarm optimization. Previously 

designed a multi-agent reinforcement learning model. In this 

model, each MEC server functions as an independent 

decision-maker. Centralized methods provide globally 

optimal decisions but face scalability challenges. 

Decentralized models enhance adaptability but require 

effective state estimation mechanisms. DRL-based 

approaches offer automation and learning capabilities but 

demand careful training and fine-tuning.  
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3. Problem Formulation of Service Migration 
MEC enables computational tasks to be executed at the 

network edge, reducing latency and improving service quality. 

However, the mobility of users requires continuous 

monitoring of resource availability and optimal placement of 

services. The process of determining when to migrate services 

is a complex task. Choosing the appropriate destination adds 

another layer to the optimization problem. The primary goal 

is to minimize latency, reduce system overhead, and promote 

efficient use of resources. In this section, we formulate the 

problem mathematically, considering system constraints and 

optimization objectives. Here, consider a MEC system with a 

set of mobile users U, indexed by u and a set of MEC servers 

M, indexed by m. The users move dynamically across 

different geographical locations covered by MEC servers. 

Each MEC server is connected to a base station. It enables task 

offloading and service execution. The position of user u at 

time slot t is given by: 

u u up (t) = (x (t), y (t))                      (1) 

Here, u u(x , y )  represents the coordinates of the user in a 

two-dimensional space. Each MEC server m possesses finite 

computational, storage, and bandwidth resources. 

m m m mC = {f ,s ,b }                    (2) 

Here, mf  represents the available computational power 

(GHz). ms  Is the storage capacity (MB), and mb  is the 

available bandwidth (Mbps)? When a mobile user executes an 

application, tasks are offloaded to an assigned MEC server. 

The processing is performed at the selected edge server, and 

the result is returned to the user. However, the current MEC 

server is no longer optimal due to user mobility. The service 

migrated to another MEC server to maintain optimal 

performance. The migration decision variable is defined as: 

ta = 1,if  migration occurs at time t,

0, otherwise. 
                  (3) 

When migration occurs, the service is transferred from 

server m to a new server m'. The migration delay consists of: 

mig trans comp configD (t) = D (t) + D (t) + D (t)                  (4) 

Latency in service migration consists of three 

components. Communication Delay represents the time taken 

for a mobile user to transmit data to the MEC server: 

u
comm

u

D (t)
D (t) =

r (t)
                    (5) 

Here uD (t)  is the task data size and ur (t)  the wireless 

transmission rate. Computation Delay is the time required for 

a task to be processed at the MEC server: 

 

u
comp

m

C (t)
D (t) =

f (t)
                           (6) 

 

Here, uC (t)  it represents the computational complexity 

of the task, measured in CPU cycles. Migration Delay is when 

service migration occurs. The delay due to data transfer and 

reconfiguration is: 

service
mig config

m,m

S
D (t) = + T

b 

                            (7) 

Here, the size of the service state that needs to be 

transferred is represented. Service migration aims to minimize 

the delay and provide a seamless user experience. The total 

delay is expressed as: 

 

total comm comp t migD (t) = D (t) + D (t) +a D (t)                         (8) 

The optimal migration policy 
*  minimizes the expected 

total latency: 

T
*

total

t=0

argmin E D (t)
 

  
  
                          (9) 

Server Resource Constraint is the total computational 

demand should not exceed the available capacity of the MEC 

server: 

u m

u U

C (t) f (t), m M



                         (10) 

Bandwidth Constraints allocated for service migration 

should not exceed the available bandwidth: 

m,m m

u U

b b , m M



                      (11) 

In User Connectivity Constraint, each mobile user has 

always be connected to at least one MEC server: 

t

m M

a 1, u U



                         (12) 

The formulated problem is a sequential decision-making 

task solvable using reinforcement learning. The system is 

modelled as a POMDP. A deep learning-based approach 

makes migration decisions based on real-time network 

observations. To address this, a DRACM algorithm.  
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Fig. 1 The framework of DRACM empowered MEC system 

 

4. Online Service Migration with Incomplete 

Information 
MEC enables real-time task execution by bringing 

computational resources closer to mobile users. However, user 

mobility requires continuous service migration to maintain 

QoS. In practical MEC environments, complete system 

information is often unavailable. It makes migration decisions 

complex. This section discusses a framework for online 

service migration under incomplete information, emphasising 

learning-based decision-making techniques. The MEC system 

includes mobile users represented by U. It consists of MEC 

servers denoted by M. A wireless network connects users to 

MEC servers. This enables efficient task offloading. A 

backhaul network links the MEC servers. It supports data 

transfer between them. This improves system performance and 

connectivity. Each MEC server has limited computation 

storage bandwidth resources. The location of a user u at time t 

is given in (1). The available resources at MEC server m are 

given in (2). 

 

Figure 1 represents a hierarchical structure for service 

migration in a MEC environment. It is divided into three 

levels: user, edge, and remote. The user level consists of 

mobile users who move between locations while running 

applications on MEC servers. The experienced collector 

gathers real-time user data and forwards it to the migration 

decision-maker. This decision-maker analyzes network 

conditions and determines whether a service migration is 

needed. The edge level contains MEC servers that maintain 

service lists and facilitate the migration of services between 

different servers.  

 

The migrating services mechanism updates the service list 

dynamically based on user movement. At the remote level, an 

off-policy training loop improves migration policies over time. 

The experience pool stores past migration data for training a 

target policy trainer. This loop helps in optimizing service 

migration decisions. The arrows in the diagram show data flow 

between different components. The numbers indicate the 

sequence of actions in the migration process. The overall 

system is designed to minimize disruption to user applications. 

This allows for smooth transitions as users move between 

different network regions. Reinforcement learning techniques 

are applied to enhance migration efficiency. It improves 

performance in dynamic MEC environments. In real MEC 

deployments, collecting full system information is difficult. 

Mobile devices have limited measurement capability. This 

restricts data accuracy and availability. Updating server 

workload conditions takes time. Network states change 

frequently due to user mobility. These factors make real-time 

system monitoring and decision-making challenging. Here, 

define the true system state at time t as: 

Experience Pool Target Policy Trainer 

Experience Collector Migration Decision Maker 

Service List Service List 5 

MEC Environment 

Remote Level 

Edge Level 

User Level Moving  

Off-Policy Training Loop 

Migrating 

Services 
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t u m mS = {p (t),C ,L (t)}                      (13) 

 

Here mL (t)  is the real-time workload at MEC server m. 

A user observes a subset of this information, denoted as: 

 

t u u m
ˆO = {p (t),R (t),L (t)}                   (14) 

 

Here is the estimated wireless transmission rate and an 

estimated workload measure. Each user offloads 

computational tasks to an MEC server. Due to mobility, 

migration is necessary to maintain low latency and efficient 

resource utilization. The migration decision variable is given 

in (3). The total delay in service execution is given in (8). The 

goal is to minimize the expected total delay over a finite time 

horizon. T is given in (9). The total computational demand at 

an MEC server should not exceed its capacity: 

 

u m

u U

C (t) f , m M



                        (15) 

The allocated bandwidth should not exceed the available 

capacity (11). Each user will always be assigned to an MEC 

server, as given in (12). Since full system information is 

unavailable, reinforcement learning (RL) optimises migration 

policies. The problem is formulated as a POMDP, defined as: 

 

= {S,A,P,R,O, }M                      (16) 

 

Here S  is the state space, A  which is the action space. 

P  The transition probability R  is the reward function. O  Is 

the observation space the discount factor? The reward function 

is defined as: 

 

t comm comp t migR = -(D (t) + D (t) +a D (t))                     (17) 

 

A DRACM algorithm is used. The actor updates policy 

parameters via: 

 

t t tJ( ) = E log (a | O )A                            (18) 

 

Here tA  is the advantage function. The critic estimates 

the state value function: 

 

t t t+1V (O ) = E R + V (O )  
                (19) 

 

The training process involves experience replay and 

stochastic gradient descent. Online service migration under 

incomplete information is a complex problem. Using 

reinforcement learning-based approaches like DRACM allows 

adaptive decision-making in uncertain environments. The 

proposed framework enables seamless service continuity, 

reduces latency, and optimizes network resource utilization. 

 

Algorithm 1: Deep Recurrent Actor-Critic Based Service 

Migration (DRACM) 

1. Initialize policy network   and value network V  

with random weights 

2. Initialize replay buffer D to store experience tuples. 

3. For each episode e in the training phase, do 

4.     Initialize the hidden state 0h  of LSTM. 

5.     Observe the initial state 0s  and compute the initial 

action. 0a  

6.     For each time step t, do 

7.           Execute action ta  and observe reward tr  and new 

state. t+1s  

8.               Store t t t t+1 t(s ,a , r ,s ,h )  in replay buffer D 

9.               If buffer D is full, then 

10.                    Sample a mini-batch from D. 

11. Compute advantage estimate              

t t t+1 tA = r + V (s ) -V (s )   

12.                Update policy   using policy gradient. 

J( )   

13.                Update value function V  using loss function 

L( )  

14.               end if 

15.     end for 

16. end for 

 

5. Simulation Analysis 
Experiments were conducted to evaluate the online 

service migration approach. Real-world mobility traces and 

network conditions were used. The main goal was to assess 

migration policy effectiveness. The focus was on latency, 

computation efficiency and adaptability. The tests measured 

performance in dynamic environments. The users generated 

computational tasks following a Poisson distribution with an 

average arrival rate of five per minute. The experiments 

measured key performance metrics, including communication 

delay, computation delay, migration delay and the total system 

cost. Communication delay was defined as the time required 

for data transmission between mobile users and MEC 

servers—computation delay referred to the time taken for task 

execution at the MEC server. Migration delay accounted for 

the overhead caused by service migration between MEC 

servers. The total system cost was the sum of all latencies, 

including migration costs. 

 

The performance of the proposed DRACM method was 

compared against several existing approaches. The first 

traditional method, No Migration (NM), maintained services 

on the initially assigned MEC server without migration. The 

second traditional Greedy Migration (GM) triggered migration 

whenever a lower-latency MEC server was detected. The third 

traditional method, MAB, used a contextual bandit model to 
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select migration targets. The final existing scheme, Deep Q-

Learning (DQL), applied reinforcement learning with deep Q-

networks for migration decision-making. The experimental 

results demonstrated that DRACM achieved significant 

improvements in system performance compared to the 

traditional approaches.  

 

Table 1 presents a comparison of average latency across 

methods. The results show that DRACM reduced 

communication and computation delays. It achieves a total 

latency of 270 ms compared to 400 ms in NM, 340 ms in GM, 

320 ms in MAB and 300 ms in DQL. 
 

Table 1. Average latency (ms) comparison across methods 

Method 
Communication 

Delay 

Computation 

Delay 

Total 

Latency 

NM 150 250 400 

GM 120 220 340 

MAB 110 210 320 

DQL 100 200 300 

DRACM 90 180 270 
 

Another key finding of the experiments was that DRACM 

minimized migration overhead. Table 2 presents the migration 

overhead regarding data transfer and migration time. The 

results indicate that DRACM required the least data transfer 

(18 MB). It had the shortest migration time (1.3 seconds) 

compared to the other methods. The NM method had no 

migration overhead as expected, while GM, MAB and DQL 

incurred higher migration costs. 
 

Table 2. Migration overhead (MB) Across methods 

Method Data Transferred 
Migration Time 

(s) 

NM 10 1.1 

GM 30 2.1 

MAB 25 1.8 

DQL 22 1.6 

DRACM 18 1.3 

Regarding system efficiency, DRACM showed the 

highest overall improvement compared to NM. Table 3 shows 

the latency reduction percentage and improvement in 

computation efficiency across different methods. The 

DRACM approach achieved a 32% latency reduction and a 

25% improvement in computation efficiency. It was 

significantly higher than the gains observed in GM, MAB and 

DQL. 
 

Table 3. System efficiency improvement (%) over NM 

Method Latency 

Reduction 

Computation 

Efficiency 

GM 15% 10% 

MAB 20% 15% 

DQL 25% 20% 

DRACM 32% 25% 

 

The scalability of DRACM was evaluated by increasing 

the number of users in the system. The results demonstrated 

that DRACM effectively adapted to higher user densities 

while maintaining stable performance. When the number of 

users increased from 50 to 200, DRACM sustained an average 

latency of 320 ms. GM and MAB exhibited significant 

performance degradation due to increased migration overhead. 

DRACM demonstrated superior adaptability to dynamic MEC 

environments compared to traditional migration strategies.  

 

Figure 2 represents the latency comparison among 

different migration strategies. In the case of no-migration, the 

total latency is more than 400 milliseconds. The computation 

delay is about 250 milliseconds. The communication delay is 

around 150 milliseconds. As migration strategies improve, the 

total latency reduces. The greedy migration strategy has a total 

latency of about 350 milliseconds. The computation delay is 

around 225 milliseconds. The communication delay is nearly 

125 milliseconds. The multi-armed bandit method performs 

better. The total latency is about 320 milliseconds. The 

computation delay is 210 milliseconds.  

 
 

 
Fig. 2 Latency versus Migration Strategies 
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The communication delay is around 110 milliseconds. 

The deep q-learning method performs better than the multi-

armed bandit method. The total latency is around 300 

milliseconds. The computation delay is 200 milliseconds. The 

communication delay is 100 milliseconds. The deep recurrent 

actor-critic migration strategy has the lowest latency. The total 

latency is about 270 milliseconds. The computation delay is 

around 180 milliseconds. The communication delay is close to 

90 milliseconds. These results show that the deep recurrent 

actor-critic migration method reduces latency.  

 

Figure 3 represents the total latency as a function of the 

number of users for different migration strategies. The no-

migration strategy has the highest latency. It starts at 400 

milliseconds for 50 users. It increases beyond 550 

milliseconds for 200 users. The greedy migration strategy has 

lower latency than no migration. It starts at about 350 

milliseconds. It rises to nearly 500 milliseconds. The multi-

armed bandit method performs slightly better. Its latency 

values range between 320 milliseconds and 470 milliseconds. 

The deep q-learning strategy reduces latency. It begins at 

around 300 milliseconds and reaches close to 440 

milliseconds. The deep recurrent actor-critic migration 

strategy has the lowest latency. It starts at about 280 

milliseconds. It increases to around 370 milliseconds. The 

greedy migration and multi-armed bandit methods perform 

better. This still faces significant latency increases as the 

number of users grows. The deep q-learning strategy reduces 

latency more effectively, demonstrating better scalability. The 

deep recurrent actor-critic migration method achieves the best 

results, maintaining the lowest latency even as the number of 

users increases.  

 

 
Fig. 3 Total latency versus Number of users 

 

 
Fig. 4 System efficiency improvements and migration strategies 
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Fig. 5 Total latency versus Increasing user density 

 

Figure 4 illustrates the impact of different migration 

strategies on latency reduction and computation efficiency. 

Two distinct elements are displayed: latency reduction and 

computation efficiency. As migration strategies improve, 

performance metrics get better. The no-migration strategy 

shows no improvement. The greedy migration strategy 

achieves about 15 percent latency reduction. It improves 

computation efficiency by 10 percent. The multi-armed bandit 

approach performs better. It reaches around 20 percent latency 

reduction and 15 percent computation efficiency. Progressing 

further, deep q-learning improves performance. It achieves 

nearly 25 percent latency reduction and 20 percent 

computation efficiency. The deep recurrent actor-critic 

migration method shows the best improvements. It reduces 

latency by nearly 32 percent. It increases computation 

efficiency by 25 percent. The graph shows that reinforcement 

learning-based strategies improve service migration. The deep 

recurrent actor-critic migration method performs the best. It 

reduces latency more effectively than other strategies. It 

improves computational resource utilization in a dynamic 

mobile edge computing system. 

 

Figure 5 illustrates the total latency as a function of the 

number of users for different migration strategies. The graph 

includes five migration strategies: no migration, greedy 

migration, multi-armed bandit, deep q-learning and deep 

recurrent actor-critic migration. The results show that the total 

latency increases across all strategies as the number of users 

increases. The no-migration strategy has the highest latency. 

It starts at 400 milliseconds for 50 users. It increases to over 

540 milliseconds for 200 users. The greedy migration strategy 

performs slightly better. It starts at about 350 milliseconds. It 

rises to around 480 milliseconds. The multi-armed bandit 

method reduces latency, with values between 320 milliseconds 

and 450 milliseconds. It starts with a latency of 300 

milliseconds. It increases to nearly 420 milliseconds for 200 

users.  

 

The deep recurrent actor-critic migration method has the 

lowest latency. It begins at about 280 milliseconds. It rises to 

around 370 milliseconds. The graph highlights that 

reinforcement learning-based migration strategies result in 

significantly lower latency than traditional methods. The deep 

q-learning strategy provides better scalability. It reduces 

latency effectively as the number of users grows. The deep 

recurrent actor-critic migration method performs better than 

all other approaches. It maintains the lowest latency even with 

more users.  

 

Figure 6 presents the variation in computation delay as the 

number of users increases for different migration strategies. 

The graph compares five migration strategies: no migration, 

greedy migration, multi-armed bandit, deep q-learning and 

deep recurrent actor-critic migration. As the number of users 

rises, the computation delay increases for all strategies. The 

no-migration method exhibits the highest computation delay. 

It starts at around 260 milliseconds for 50 users and reaches 

approximately 350 milliseconds for 200. The greedy migration 

strategy slightly improves performance. It initially reduces the 

delay to about 220 milliseconds and nearly 320 milliseconds 

at 200 users. The multi-armed bandit approach reduces 

computation delay. It keeps values between 210 milliseconds 

and 300 milliseconds. The deep q-learning method reduces 

computation delay effectively. It starts at 200 milliseconds. It 

increases to around 290 milliseconds. The deep recurrent 

actor-critic migration strategy has the lowest computation 

delay. It ranges from 180 to 270 milliseconds as the number of 

users increases.  
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Fig. 6 Computational delay versus Number of users 

 
Fig. 7 Training reward versus Episodes 

 

Figure 7 represents the training reward progression of the 

deep recurrent actor-critic migration model over multiple 

training episodes. The curve shows a decrease. As training 

progresses, the model improves its decisions. It gradually 

converges to a more stable policy. Initially, at episode zero, 

the reward value is close to 500. As training continues, the 

reward decreases rapidly in the early episodes and gradually 

stabilizes. By the time it reaches 100 episodes, the reward 

value is around 270. It indicates that the model has improved 

its performance through reinforcement learning. The figure 

highlights how reinforcement learning improves decision-

making in service migration over time. The steep drop in the 

reward value in the initial phase suggests rapid learning. The 

model adjusts its policy significantly. As the episodes 

progress, the changes become smaller. It reflects convergence 

towards an optimal policy. This pattern confirms that the deep 

recurrent actor-critic migration model adapts well to training 

and handles service migration tasks more efficiently. The 

reward decreases over time as the model reduces unnecessary 

migrations. It optimizes latency. This improves performance 

in mobile edge computing environments. 
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Fig. 8 Migration time versus migration strategies 

 

 
Fig. 9 Average total latency of service migration over time 

 

Figure 8 displays the migration time for various migration 

strategies. The graph bars indicate the time each method takes 

to complete a migration. The no migration strategy shows the 

lowest migration time of around 1.2 seconds since no 

migration occurs. The greedy migration approach records the 

highest migration time at approximately 2.2 seconds. 

 

It suggests that frequent migrations lead to increased 

overhead. The multi-armed bandit strategy has a high 

migration time of nearly 2 seconds. It reflects its reliance on 

adaptive decision-making. It occasionally results in 

unnecessary migrations. Deep q-learning improves efficiency. 

It reduces migration time to about 1.7 seconds. This makes it 

a more optimized option. The deep recurrent actor-critic 

migration method has the lowest migration time among 

learning-based approaches. It reduces the duration to around 

1.4 seconds. 

 

Figure 9 presents the variation of average total latency 

over time for different migration strategies. The graph 

compares five migration strategies: no migration, greedy 

migration, multi-armed bandit, deep q-learning and deep 

recurrent actor-critic migration. The graph shows a decrease 

in latency across all strategies as time progresses. The no-

migration strategy has the highest total latency. It starts at 

around 400 seconds. It gradually decreases to about 360 
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seconds at 250 minutes. The greedy migration strategy follows 

a similar pattern. It starts at nearly 380 seconds. It reduces to 

approximately 340 seconds. The multi-armed bandit method 

shows a decrease. It starts at around 360 seconds. It drops to 

nearly 320 seconds by the end of the time horizon. The deep 

Q-learning strategy performs better. It starts with a latency of 

nearly 340 seconds. It decreases to around 290 seconds over 

time. The deep recurrent actor-critic migration strategy shows 

the most improvement. It starts at about 320 seconds. It 

steadily decreases to around 250 seconds at 250 minutes. The 

results show that reinforcement learning-based strategies 

reduce latency more efficiently. 

 

Figure 10 shows the change in average total reward over 

training episodes for different versions of the deep recurrent 

actor-critic migration model. Three model variations are 

compared: the standard deep recurrent actor-critic migration 

model, the version without an encoder and the version without 

a surrogate network. In the initial episodes, all three models 

start with negative rewards. As training progresses, the 

rewards increase steadily. The standard deep recurrent actor-

critic migration model gets the highest reward. It reaches 

around 1900 by episode 100. The version without an encoder 

follows. It attains approximately 1700. The model without a 

surrogate network has the lowest reward. It stabilizes at about 

1400.  

 

The figure highlights the impact of different components 

on training efficiency and overall model performance. The 

standard model gets the highest reward. This shows that the 

encoder and surrogate network improve learning and decision-

making. Without an encoder, the model struggles to capture 

temporal dependencies. This leads to lower rewards. 

Similarly, removing the surrogate network results in slower 

training and a lower final reward value. The overall results 

show that the encoder and surrogate network enhance 

performance. It helps the deep recurrent actor-critic migration 

model work better. It allows the model to optimize migration 

decisions more efficiently. 

 
Fig. 10 Average total reward of DRACM with mobility traces 

 
Fig. 11 Loss function versus Training episodes 

 

Figure 11 represents the change in the loss function value 

over training episodes for various migration strategies. Five 

migration strategies are compared: no migration, greedy 

migration, multi-armed bandit, deep q-learning and deep 

recurrent actor-critic migration. The overall results show a 

steady reduction in loss across all strategies as training 

progresses. Initially, the loss function value is around 1.1 for 

all strategies. During the initial training phase, the loss 

decreases sharply and stabilizes gradually. In episode 100, the 

deep recurrent actor-critic migration method had the lowest 

loss. It reaches approximately 0.15. The deep q-learning 

strategy converges to around 0.2. The multi-armed bandit 

strategy ends with a loss of about 0.25. The greedy migration 

strategy has a final loss of around 0.3. The no-migration 

strategy maintains the highest final loss value, remaining 

above 0.4. The graph demonstrates the impact of 

reinforcement learning-based techniques in minimizing the 

loss of function value over time. The deep recurrent actor-

critic migration strategy shows the most efficient learning 

curve with lower loss throughout training. The deep Q-

learning approach performs well but settles at a slightly higher 

loss level. The multi-armed bandit and greedy migration 

strategies improve moderately but do not reach the 

optimization level of reinforcement learning models. The no-

migration strategy shows the slowest decline in loss. This 

reflects its inefficiency in adapting to changes. The results 

confirm that reinforcement learning-based migration 

strategies improve system efficiency.  

 

Figure 12 represents the change in average total reward 

over training episodes for different learning rates. Three 

different learning rates are compared: 0.001, 0.005 and 0.01. 

The higher learning rates lead to faster convergence and higher 

final reward values. Initially, at episode zero, all models start 

with a negative reward close to -500. As training progresses, 

the reward values increase steadily. The learning rate of 0.01 

achieves the highest reward. It reaches nearly 2800 by episode 

100. The learning rate of 0.005 performs well. It stabilizes at 
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around 2200. The lowest learning rate of 0.001 has a final 

reward of about 1700. The figure highlights the effect of 

different learning rates on training efficiency. A higher 

learning rate allows faster improvements in total reward risk 

instability if set too high. The learning rate of 0.01 shows the 

fastest increase. This suggests rapid learning.  

 

 
Fig. 12 Reward comparison of different learning rates 

The learning rate of 0.005    performs well. It has a slightly 

slower convergence rate. The lowest learning rate of 0.001 

results in the slowest learning process, with a more gradual 

increase in reward. The results confirm that selecting an 

optimal learning rate is crucial in reinforcement learning as it 

balances learning speed and stability. It enhances decision-

making efficiency. This is important for reinforcement 

learning-based migration strategies. 

Figure 13 illustrates the improvement in latency over time 

for different migration strategies. Five migration strategies are 

analyzed: no migration, greedy migration, multi-armed bandit, 

deep q-learning and deep recurrent actor-critic migration. The 

no migration strategy stays at 0 percent improvement. It shows 

no optimization. The greedy migration strategy improves 

slowly. It starts at about 5 percent. It reaches around 8 percent 

by the end.  

The multi-armed bandit strategy performs better. It begins 

at 10 percent. It increases to about 14 percent. The deep q-

learning method outperforms the previous strategies, showing 

an initial improvement of 15 percent and rising to nearly 20 

percent over time.  

The deep recurrent actor-critic migration method 

performs the best. It starts at 20 percent. It steadily increases 

to about 30 percent. The  reinforcement learning-based 

strategies reduce latency better than conventional methods. 

The steady improvement over time suggests continuous 

adaptation. These models refine decision-making processes.  

 
Fig. 13 Latency improvements versus Time 

 

Figure 14 represents the variation of policy entropy over 

training episodes for different migration strategies. The graph 

compares five migration strategies: no migration, greedy 

migration, multi-armed bandit, deep q-learning and deep 

recurrent actor-critic migration. The result shows a consistent 

decline in policy entropy across all strategies as training 

progresses. At episode zero, the no migration strategy has the 

highest policy entropy. It starts at about 0.85. The greedy 

migration strategy follows. It begins at around 0.75. The multi-

armed bandit and deep q-learning strategies begin at 

approximately 0.6 and 0.5, respectively. The deep recurrent 

actor-critic migration strategy starts with the lowest entropy at 

about 0.4. As training progresses, policy entropy decreases for 

all strategies. This shows that models become more confident 

in decision-making. By episode 100, the deep recurrent actor-

critic migration strategy has the lowest policy entropy. It 

stabilizes at around 0.05. Deep Q-learning and multi-armed 

bandit strategies follow. The final entropy values are close to 

0.12 and 0.15, respectively. The greedy migration strategy 

stabilizes at about 0.2. The no migration strategy has the 

highest entropy, staying above 0.3. The figure shows that 

reinforcement learning-based approaches improve policy 

stability.  

 
Fig. 14 Policy convergence versus Training episodes 
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Fig. 15 Computational resource utilization versus Number of users 

 

Figure 15 illustrates how computation resource utilization 

changes with the increasing number of users for different 

migration strategies. The graph compares five migration 

strategies: no migration, greedy migration, multi-armed 

bandit, deep q-learning and deep recurrent actor-critic 

migration. The results show that computation resource 

utilization increases across all strategies as the number of users 

grows. The no-migration strategy has the lowest utilization. It 

starts at about 40 percent for 50 users. It increases to around 

80 percent at 250 users. The greedy migration strategy 

performs slightly better. Its utilization rises from about 45 

percent. It reaches nearly 85 percent. The multi-armed bandit 

approach improves efficiency. It starts at 50 percent. It 

increases to around 88 percent. The deep q-learning strategy 

enhances resource utilization. It begins at 55 percent. It 

reaches about 90 percent. The deep recurrent actor-critic 

migration method has the highest efficiency. Utilization rises 

from 60 percent. It reaches nearly 95 percent as the number of 

users increases. These results show that reinforcement 

learning-based migration strategies improve resource 

allocation. This performs better than traditional methods. The 

overall suggests that deep reinforcement learning techniques 

optimize system performance. 

 

6. Conclusion 
This paper presented a novel approach for online service 

migration in MEC environments with incomplete system 

information. A reinforcement learning-based approach was 

employed to learn optimal migration policies without 

requiring complete knowledge of the system state. Extensive 

experiments were conducted to evaluate the performance of 

DRACM compared to traditional migration strategies. The 

results demonstrated that DRACM significantly reduced 

communication and computation delays while maintaining 

minimal migration overhead. The work analysed the 

scalability of DRACM under varying user densities. The 

findings indicated that DRACM maintains stable performance 

even as the number of users increases, unlike traditional 

approaches that suffer from high migration overhead and 

degraded system performance under heavy network loads. 

DRACM dynamically adjusts migration decisions to adapt to 

changing conditions. This flexibility makes it a promising 

solution for large-scale MEC deployments. It is useful in 

scenarios with unpredictable user mobility. The proposed 

approach provides a scalable and decentralized framework 

that allows mobile users to make autonomous migration 

decisions based on partial observations. By integrating LSTM 

networks, DRACM effectively captures temporal 

dependencies and improves policy stability.  
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