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Abstract - In the contemporary era, cloud computing is helping high-performance computing applications by providing 

scalable and affordable computing resources. However, the latency of cloud resources is relatively less when compared 

with edge computing. In this context, using edge cloud for task scheduling has become indispensable in reaping latency 

performance benefits with edge cloud. However, assigning every task to the edge cloud is impossible, and resource-

intensive tasks should be scheduled to the cloud. An edge-cloud environment becomes very complex, and scheduling is an 

NP-hard problem. Many existing methods based on reinforcement learning are found to have shortcomings in dealing with 

an ample action space in the presence of a state space. This paper proposes an algorithm known as the Deep Deterministic 

Policy Gradient Algorithm for Dynamic Task Scheduling (DDPGA-TS). Our algorithm has a novel pruning strategy that 

continuously monitors the action space and reduces it to improve overall performance in task scheduling. Our method uses 

three scales of environments. Several performance indicators are used to evaluate the proposed algorithm's performance. 

In the experimental findings, the suggested algorithm outperforms existing methods such as DDPG-NN and DDPG-CNN.  

Keywords - Cloud computing, Edge computing, Dynamic task scheduling, Reinforcement learning, Deep Learning.  

 

1. Introduction  
With the emergence of the Internet of Things (IoT) 

workflow applications, edge cloud has become significant 

for latency reasons. With edge cloud and cloud 

infrastructures available, decisions are to be made to 

schedule a task in the edge cloud or the cloud based on 

latency or other Service Level Agreements (SLAs).  

Despite the advances in RL-based schedulers for edge-

cloud systems, DDPG, DQN, A3C, etc., existing 

approaches find it particularly challenging to efficiently 

explore the large action spaces with growing state spaces 

based on dynamically changing quality of service 

requirements and task complexities. This causes slow 

convergence, posting of tasks at sub-optimal places, and 

increased overhead in the operation in heterogeneous 

resource environments. Also, relatively little work exists 

on adaptive action space pruning with the real-time 

scheduling problem. It, however, requires intelligent task 

scheduling that scales in different environments and adapts 

to the dynamics of the system in such a way that policy 

learning is maximized. This paper fills this gap by 

presenting a Deep Deterministic Policy Gradient 

Algorithm with a dedicated pruning technique to enhance 

the scheduling efficiency of edge-cloud systems. 

Towards edge-cloud-based task scheduling, many 

researchers contributed. Almutairi et al. [1] observed that 

rising IoT devices demand efficient Edge-Cloud task 

offloading. Fuzzy logic algorithms improve latency-

sensitive application service time, enhancing resource 

utilization. Xu et al. [7] focused on edge-cloud computing 

that empowers IoV by optimizing offloading using MDP 

and LFGO with deep Q-learning, improving efficiency and 

adaptability.  

 

Tuli et al. [13] stated that fog computing optimizes 

IoT application tasks via A3C and R2N2 models, 

enhancing quality of service and reducing costs 

significantly.  

 

Yahia et al. [22] focused on energy-efficient and low-

latency task scheduling in Fog-IoT networks using Deep 

Reinforcement Learning. With IoT workloads, it was 

observed that the edge-cloud environment is beneficial 

compared to relying on the cloud alone.  

 

The literature observed that many existing methods 

based on reinforcement learning have shortcomings in 

dealing with large action spaces in the presence of state 

spaces.  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The main novelty of the proposed work is that it 

incorporates a pruning-enhanced Deep Deterministic 

Policy Gradient Algorithm (DDPGA-TS) for dynamic task 

scheduling, which dynamically prunes the action space on 

the fly according to the resource utilization and 

characteristics of the job. Unlike typical models such as 

DDPG-NN and DDPG-CNN, which suffer from slow 

convergence rates and scalability limitations, our approach 

presents a resource-aware pruning mechanism to enhance 

convergence efficiency and flexibility in large-scale edge-

cloud networks. A hybrid deep learning approach is 

introduced with Conv1D and GRU layers with attention to 

capturing both spatial and temporal information to improve 

the decision of the actor-network. The proposed method is 

empirically compared across three scales of simulated 

environments. It shows that it outperforms existing DDPG 

variants in terms of operation cost, task rejection rate, and 

Quality of Experience (QoE) by a large margin. 

 

These are our contributions to this paper. Proposed a 

Deep Deterministic Policy Gradient Algorithm for 

Dynamic Task Scheduling (DDPGA-TS). Our algorithm 

has a novel pruning strategy that continuously monitors the 

action space and reduces it to improve overall performance 

in task scheduling. Three scales of environments are used 

in our experiments. Several performance indicators are 

used to evaluate the experimental results, which 

outperform existing methods such as DDPG-NN and 

DDPG-CNN. This paper is structured. Section 2 reviews 

the literature on current methods in task scheduling in 

edge-cloud environments. Section 3 presents our 

methodology for efficient task scheduling in edge-cloud 

environments. Section 4 presents the results of the 

experiments. Section 5 discusses the significance of this 

work and provides limitations. Section 6 concludes our 

work and gives directions for the future scope of the 

research.  

 

2. Related Work  
This section reviews the literature on prior work 

related to cloud task scheduling. Almutairi et al. [1] 

observed that rising IoT devices demand efficient Edge-

Cloud task offloading. Fuzzy logic algorithms improve 

latency-sensitive application service time, enhancing 

resource utilization. Ding et al. [2] address the challenge of 

dynamically partitioning stateful data stream applications 

by proposing a performance-aware partitioning framework 

that adapts to workload variations and resource dynamics 

in edge-cloud systems. Their work highlights the 

importance of minimizing inter-node communication and 

balancing computational loads to enhance system 

responsiveness and resource utilization. Compared to 

earlier static partitioning approaches, their dynamic 

strategy provides improved adaptability and scalability in 

heterogeneous and changing environments. Bulej et al. [3] 

found that CPS demands real-time cloud and edge-cloud 

operations. The paper introduces an approach with 

minimal developer impact, ensuring performance 

guarantees. Zhao et al. [4] stated that edge computing faces 

security challenges amid rapid growth. Proposed Q-

learning-based DIDS scheduling balances load and 

detection rates efficiently. Luo et al. [5] introduced CPS-

driven smart factories that adopt edge-cloud collaboration, 

demanding efficient real-time task scheduling. Proposed 

DSOTS and TSGS algorithms reduce latency and costs, 

enhancing user satisfaction. Zmij et al. [6] observed that 

IoT applications' growing demand for low latency prompts 

innovative joint offloading and scheduling with the JTOS 

framework.  

 

Xu et al. [7] focused on edge-cloud computing that 

empowers IoV by optimizing offloading using MDP and 

LFGO with deep Q-learning, improving efficiency and 

adaptability. Asghari et al. [8] focus on optimizing task 

scheduling, resource provisioning, and load balancing for 

scientific workflows in cloud environments. They propose 

a hybrid approach integrating parallel SARSA 

reinforcement learning agents with a genetic algorithm to 

achieve adaptive and efficient workflow execution. Their 

method enables dynamic decision-making in complex 

environments by learning optimal strategies through 

interaction, while the genetic algorithm ensures global 

optimization. This work demonstrates improved execution 

time and resource utilization compared to traditional 

heuristic-based approaches, highlighting the potential of 

reinforcement learning in workflow management. Guo et 

al. [9] introduced the SMDQN algorithm, which optimizes 

service migration in MEC, effectively balancing delay and 

migration costs and is adaptable to diverse patterns.  

 

Yahia et al. [10] SDN-based DRL manages IoT traffic 

at the edge, ensuring low latency and high efficiency. 

Future work focuses on FedML implementation. Wu et al. 

[11] proposed a DMRO that optimizes edge offloading 

decisions using deep meta-reinforcement learning, 

improving adaptability and portability significantly. Hao et 

al. [12] found that the Industrial CPS demands edge 

services. The proposed DQN-based service placement 

effectively minimizes response time. Tuli et al. [13] stated 

that fog computing optimizes IoT application tasks via 

A3C and R2N2 models, enhancing quality of service and 

reducing costs significantly. Gui et al. [14] tackled SMDs' 

computation overload via edge and cloud offloading, 

presenting algorithms for hybrid edge-cloud networks. 

Future work includes optimizing ETRC through multi-

agent reinforcement learning and exploring service caching 

and joint resource scheduling.  

 

Liu et al. [15] found that the SFC embedding in 

dynamic edge-cloud scenarios is challenging. Two DRL-

based methods efficiently handle SFC-DMP, 

outperforming previous methods in delay reduction. Chen 

et al. [16] explored the complex network state that 

challenges fog resource provisioning. A learning-based 

mobile fog scheme utilizing DDPG is proposed, achieving 

significant improvements. Mekala et al. [17] proposed a 

CCR-RL algorithm that optimally balances resource 

utilization, processing speed, and cost, achieving 

substantial latency reduction.  
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Lin et al. [18] used an SA-DQN-based strategy that 

optimizes computation offloading for CAVs in the VEC 

environment, effectively reducing energy consumption and 

failure rates. Han et al. [19] studied the EdgeSlice system 

that utilizes decentralized deep reinforcement learning for 

dynamic network slicing in wireless edge computing. 

Zhang et al. [20] proposed a resource allocation scheme 

using deep reinforcement learning for IoV in MEC 

scenarios, ensuring low latency and overhead. Zhou et al. 

[21] introduced a DRL-TSS method to optimize resource 

utilization for IoE applications. It proposes Johnson's rule-

based presorting and an improved DRL scheme to 

minimize the makespan. Experimental results show a 1.1-

approximation to the optimal schedule. Future research 

will focus on enhancing the deep learning scheme for 

scheduling optimization.  

Yahia et al. [22] focused on energy-efficient and low-

latency task scheduling in Fog-IoT networks using Deep 

Reinforcement Learning. The proposed algorithm 

outperforms others, achieving up to 87% energy savings 

and 50% reduction in time delay. Future work aims to 

extend the algorithm for Ultra-Dense Edge Computing and 

Federated Machine Learning to address data privacy 

concerns. Hakiri et al. [23] highlighted blockchain 

integration in IoT networks, emphasizing low latency, 

improved reliability, and privacy. The study introduces a 

Blockchain-based DRL approach for efficient task 

scheduling and offloading in SDN-enabled IoT networks, 

achieving 50% better energy efficiency. Future work aims 

to achieve interoperability, implement federated learning, 

and enforce data privacy using homomorphic encryption.  

Ye et al. [24] employed deep reinforcement learning 

and a Markov decision process to jointly improve 

computation offloading and resource allocation in IoV. 

The proposed CORA algorithm outperforms non-DRL and 

DRL algorithms in processing delay and cost. Future work 

involves considering resource competition among vehicles 

for edge server computing resources. Zhang et al. [25] 

proposed a distributed real-time scheduling framework for 

cloud manufacturing using cloud-edge collaboration and 

distributed deep reinforcement learning.  

 

The D3QN algorithm outperforms other methods, 

showing potential for efficient decision-making. Their 

future work will address uncertainties using digital twins in 

cloud manufacturing. Based on the surveyed literature, one 

can observe that even if several deep reinforcement 

learning models, e.g., A3C [13], DQN [12], distributed 

DRL [25], have been used for task offloading and resource 

optimization in edge-cloud and IoT systems, they are still 

facing the problems of dealing with large-scale dynamic 

workloads effectively. In particular, the high dimension of 

the action space, static learning architectures, or lack of 

adaptive decision-making mechanisms detract from 

scalability and reactivity. In addition, most existing 

methods are based on the assumption of a perfect network 

environment and ignore the action pruning in real-time to 

cut down the scheduling latency. These constraints drive 

the demand for a more adaptive and scalable task 

scheduling scheme based on deep RL and resource-aware 

pruning to enhance the system performance for different 

deployment scales. 

 

3. Proposed System 
In this paper, the rationale behind edge cloud is that it 

could render services faster to minimize latency, which is 

essential to honour SLAs. At the same time, the cloud also 

plays a crucial role, without which most IoT and other use 

cases cannot be realized [16]. In such an environment, it is 

essential to achieve context-aware resource provisioning. 

Some bandwidth-hungry applications need minimal end-

to-end latency, as discussed in [1]. In such applications, the 

edge cloud plays a crucial role. Based on the request 

received, the proposed system needs to determine whether 

to use cloud or edge cloud to run it by considering different 

factors like deadline, resource availability, and bandwidth, 

to name a few.  

3.1. Our Framework 

Our system is based on the framework illustrated in 

Figure 1. The framework is known as the Edge-Cloud-

based Deep Learning Framework (EC-DLF) for automatic, 

efficient task scheduling. The framework is designed to run 

in the edge cloud for easy access and learning. It is based 

on an actor-critic model that is part of RL. The actor is 

synonymous with a policy function that continuously 

monitors 𝑠𝑡 (state)of the environment and is involved in 

taking appropriate action (𝑎𝑡) based on 𝑠𝑡. The actor 

receives 𝑟𝑡 (reward) for every action. Critic makes use of 

𝑄(𝑠𝑡  , 𝑎𝑡  ) (a function with action and state) to change 

policy parameters. Each dynamic task scheduling action at 

every given time produces an appropriate reward. 

However, the framework's goal is to maximize reward 

through policy optimization.  

 

The state space associated with the framework is 

described here. At any given time, t system state 

𝑠𝑡  Reflects the resources, their current utility in the edge 

cloud and the cloud, and the current job assigned by user u 

is denoted as ju. This job is expected to be scheduled in 

either the cloud or the on-premises cloud. The parameters 

associated with the state are 𝑗𝑢 (the job of the given user), 

𝑈𝑟𝑁 (utility rate of a given node in the cloud), 𝑈𝑟𝑀 (utility 

rate of a given node in edge cloud) and 𝑈𝑟𝑊 (total utility 

rate of all resources). These parameters help an actor learn 

strategies for optimal and dynamic task scheduling. 

Concerning action space 𝑎𝑡, based on 𝑠𝑡, the actor 

determines the resources required to run the job 

successfully and meet the deadline. The parameters of 

action space include the bandwidth (chh), CPU cycles (vmk)  

and whether the task is assigned to the cloud or the edge 

cloud (1 indicates cloud and 0 indicates edge cloud). The 

reward is computed as in Eq. 1, which considers the gain 

and cost involved in task scheduling. 

𝑟𝑡(𝑠𝑡 , 𝑎𝑡) = 𝐼𝑢(𝑠𝑡 , 𝑎𝑡) − 𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) × 𝑟𝑡𝑡(𝑗𝑢)    (1) 
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Fig. 1 Proposed edge-cloud-based deep learning framework 

The net gain of executing 𝑗𝑢 is denoted as 𝐼𝑢(𝑠𝑡 , 𝑎𝑡), 

while the total cost of executing 𝑗𝑢 is denoted as 

𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) and time taken to process 𝑗𝑢 is denoted as 

𝑟𝑡𝑡(𝑗𝑢). Considering computing resources, the completion 

time of a given job, and wireless resources, the gain and 

cost are redefined as in Equation (2) and Equation (3), 

respectively.  

𝐼𝑢(𝑠𝑡 , 𝑎𝑡) = {
(𝑑𝑙𝑢 − 𝑟𝑡𝑡𝑒𝑐(𝑗𝑢)). 𝛿, 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 0

(𝑑𝑙𝑢 − 𝑟𝑡𝑡𝑏𝑐(𝑗𝑢)). 𝛿, 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 1
          (2) 

Where the service provides gain is denoted as δ for 

successful completion of the job with completion time 

rtt(ju) in given deadline dlu. If the deadline is not met, the 

gain will be in negative value, which also influences the 

reward. This condition motivates the proposed framework 

to decide whether to satisfy SLA or deadlines.  

𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) = {
𝑈𝑟𝑤(𝑡). 𝑐ℎ + 𝑈𝑟𝑀(𝑡). 𝑐𝑘 , 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 0

𝑈𝑟𝑤(𝑡). 𝑐ℎ + 𝑈𝑟𝑁(𝑡). 𝑐𝑘 , 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 1
                

(3) 

Replay buffer 

Mini – batch  

Sample 

Actor Critic 

Train Train 

𝑠𝑡 , 𝑎𝑡 , 𝛾𝑡 , 𝑠𝑡+1 

Gradient 

(𝑠𝑡 , 𝑎𝑡) 

Edge-Cloud 

Back-end cloud  

𝑎𝑡 
𝑠𝑡 



A. Kokila et al. / IJECE, 12(6), 315-325, 2025 
 

319 

On the contrary, to gain, cost includes the resource 

and bandwidth of the channel. The bandwidth and VM 

(node) cost per unit time are denoted as ch and ck, 

respectively. Unlike the work in [18], each job's 

computations for cost, gain, and reward are performed. As 

each job can have its quality of service needs, this 

approach has been proven to be more helpful. It also helps 

in optimizing policies associated with job scheduling. 

Optimization of resource utilization based on the quality of 

service needs of a job is expressed in Equation (4).  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑟𝑡(𝑠𝑡 , 𝑎𝑡)𝑇
𝑡=1                    (4) 

This optimization is subject to conditions such as 

𝑈𝑟𝑊(𝑡)  ≤  1, 𝑈𝑟𝑀(𝑡)  ≤  1 (utility of bandwidth) and 

𝑈𝑟𝑁(𝑡)  ≤  1, ∀𝑡 ∈  𝑇 (utilization should not exceed 

capacity available). Another constraint indicates that the 

job should be completed without exceeding the deadline. 

Table 1 shows the notations used in this paper.  

Inspired by the work in [13], deep learning usage was 

optimized in our RL model. It makes use of Conv1D for 

local feature extraction. GRU learns temporal 

dependencies, and an attention procedure is used to gain 

information that impacts the prediction process. GRU uses 

minimal parameters and does not need a memory unit, 

leading to optimized performance compared to LSTM 

[20].   

 

The notion of experience replay for a better training 

process is exploited. The system can choose bandwidth 

appropriately along with the VM to execute the given job. 

To select a node or server that is less busy, a pruning 

strategy is incorporated that continuously and actively 

monitors and reduces the action space significantly. The 

proposed mechanism also takes care of load balancing. The 

optimal policy required for scheduling is achieved with the 

pruning strategy.  
 

Table 1. Notations used in the proposed system 

Notation Meaning 

𝑑𝑙𝑢 Denote a deadline given by the user. 

𝑑𝑢 Data of the user to be processed 

𝑗𝑢 Denotes the user's current job 

𝑗𝑢(𝑑𝑙𝑢 , 𝑑𝑢) Denotes tuple associated with user's job 

𝜇ℎ
𝑤(𝑡) Number of channels at a given time t 

𝑡 Denotes time 

𝑎𝑡 Denotes a continuous action  

𝑠𝑡 Denotes state 

𝑟𝑡 Denotes a reward at a given time 

𝑄(𝑠𝑡  , 𝑎𝑡  ) Denotes action value function 

𝑐ℎℎ Denotes bandwidth 

𝑣𝑚𝑘 Denotes CPU cycles 

𝐼𝑢(𝑠𝑡 , 𝑎𝑡) Gain of job execution  

𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) Cost of resource  

𝑐ℎ Cost of bandwidth of the wireless channel 

𝑐𝑘 Allocation of VM per unit of time 

 

Algorithm: Deep Deterministic Policy Gradient Algorithm for Dynamic Task Scheduling (DDPGA-TS) 

Input: User jobs with quality of service needs 

Output: Optimal task scheduling  

1. Begin 

2. Initialize replay memory M 

3. For each scheduling interval  

4.    Reset environment  

5.    For each time instance t in T 

6.       Observe the state 

7.       Prune action space 

8.       Predict an action  

9.       Receive reward and next state 

10.       Store transition in M 

11.       Train the actor and critic  

12.       Update weight vectors 

13.    End For 

14.    Schedule tasks based on weight vectors 

15. End For 

16. End  
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As presented in Algorithm, it inputs user jobs with 

quality of service needs and results in optimal task 

scheduling. It has an iterative process to prune the action 

space for every scheduling interval with the underlying 

RL-based approach. The workload in the proposed system 

is denoted as J, and all users are denoted as U. Each job is 

denoted as a tuple, denoted as ju((dlu ,du )consisting of 

deadline and data to be processed. Therefore, the entire 

workload of all users is denoted as 𝐽 =
{ 𝑗1(𝑑𝑙1, 𝑑1), 𝑗2(𝑑𝑙2, 𝑑2), … , 𝑗𝑈(𝑑𝑙𝑈 , 𝑑𝑈)}. Every user's job 

requires memory and CPU processing. Our approach in 

CPU cycle modelling is similar to that of [12]. Our 

bandwidth model is described here. In edge computing, 

many nodes support wireless access. B denotes the 

bandwidth of all nodes. Each node supports many wireless 

channels denoted as {𝑐ℎ1
𝑤 , 𝑐ℎ2

𝑤 , 𝑐ℎ3
𝑤 , … , 𝑐ℎ𝐻

𝑤}. Our 

computation model includes a number of nodes, denoted as 

M, in edge computing. Each node can have a set of VMs 

denoted as 𝐾 = {𝑣𝑚1
𝑚 , 𝑣𝑚2

𝑚 , 𝑣𝑚3
𝑚, … , 𝑣𝑚𝐾

𝑚}. The 

computation model also has a cloud with a number of 

servers consisting of VMs in each server. A set of VMs is 

denoted as 𝐾 = {𝑣𝑚1
𝑚 , 𝑣𝑚2

𝑚 , 𝑣𝑚3
𝑚, … , 𝑣𝑚𝐾

𝑚}. Our delay 

model is based on the definition of Round-Trip Time 

(RTT), which includes end-to-end time right from sending 

the job to completing the job and sending the results back. 

This delay model is somewhat similar to that of [10]. The 

propagation time of a given job is considered 5ms for the 

edge cloud and 50ms for the cloud. The transmission time 

for a given job concerning the edge cloud is computed as 

in Equation (5). 

                               𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑒𝑐) =
𝑑𝑢

𝑐ℎℎ
𝑤 +  

𝑅𝑢

𝑐ℎℎ
𝑤                   (5)                                                                   

The transmission time for a given job concerning the 

cloud is computed as in Equation (6). 

      𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑏𝑐) = 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑒𝑐) +
𝑑𝑢

𝑏
+ 

𝑅𝑢

𝑏
                   (6)                              

The processing time required by the edge cloud and 

the cloud is computed as in Equation (7) and (8), 

respectively.  

𝑡𝑢(𝑝𝑟𝑜𝑐𝑒𝑐)  =
𝐿𝑢

𝑣𝑚𝑘
𝑚                   (7) 

𝑡𝑢(𝑝𝑟𝑜𝑐𝑏𝑐)  =
𝐿𝑢

𝑣𝑚𝑘
𝑛                    (8) 

Based on this, the RTT can be computed as in 

Equation (9) and (10) for edge cloud and cloud, 

respectively.  

𝑟𝑡𝑡𝑒𝑐(𝑗𝑢) = 𝑡𝑢(𝑝𝑟𝑜𝑝𝑒𝑐)  + 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑒𝑐) +
𝑡𝑢(𝑝𝑟𝑜𝑐𝑒𝑐)                             (9) 

 

𝑟𝑡𝑡𝑏𝑐(𝑗𝑢) = 𝑡𝑢(𝑝𝑟𝑜𝑝𝑏𝑐)  + 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑏𝑐) +
𝑡𝑢(𝑝𝑟𝑜𝑐𝑏𝑐)             (10) 

A proposed utility model indicates resource utilization 

at a given time t. The utility rate of all nodes used in the 

computation is computed as in Equation (11). 

𝑈𝑟𝑤(𝑡) =
∑ (∑ 𝑐ℎℎ

𝑤.𝜇ℎ
𝑤(𝑡)𝐻

ℎ=1 )𝑊
𝑤=1

𝐵
               (11) 

Similarly, the utility rate is computed for each node in 

the edge cloud and the cloud according to Equation (12) 

and (13), respectively.  

𝑈𝑟𝑀(𝑡) =
∑ (∑ 𝑣𝑚𝑘

𝑚.𝜇𝑘
𝑚(𝑡)𝐾

𝑘=1 )𝑀
𝑛=1

𝐶𝑒𝑐
                (12) 

𝑈𝑟𝑁(𝑡) =
∑ (∑ 𝑣𝑚𝑘

𝑚.𝜇𝑘
𝑛(𝑡)𝐾

𝑘=1 )𝑁
𝑛=1

𝐶𝑏𝑐
                (13) 

These computations play an essential role in the 

proposed RL-based system, which enables efficient 

scheduling of dynamic workloads in an edge-cloud 

environment.  

4. Results and Discussion  
A prototype application is built to simulate the 

proposed framework and the underlying algorithm. All 

experiments use a Dell PC with a 2.9 GHz i7 processor, 

128GB RAM, and a 64-bit Windows 11 OS. The results of 

our experiments are compared with two existing methods, 

DDPG-NN and DDPG-CNN, taken from [19]. Three 

different environments are used for experiments, as shown 

in Table 2. The bandwidth availability between the edge 

cloud and the cloud is 1 Gbps. The learning rate set for the 

actor and critic is 0.0001 and 0.001, respectively. The γ 

value is set to 0.99, while the number of iterations for each 

episode is 1000.  

Table 2. Environments used for experiments

 

Table 3. Comparison of convergence in terms of normalized reward 

 

 

 

 

 

 

Scale of Environment #Edge Computing Nodes #Cloud Nodes #Jobs 

Small 10 10 10000 

Medium 30 30 100000 

Large 50 50 1000000 

Episodes 
Normalized Reward 

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN 

0 0.0 0.0 0.0 

200 0.9 0.8 0.7 

400 0.9 0.8 0.7 

600 0.9 0.8 0.7 

800 0.9 0.8 0.7 

1000 0.9 0.8 0.7 
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4.1. Convergence Comparison  

The convergence of different models is discussed here 

in terms of normalized reward and normalized training 

loss. The convergence experiments are made in a small-

scale environment, as in Table 2. Table 3 shows that 

normalized reward is provided against the number of 

episodes in task scheduling in an edge-cloud environment. 

Table 4 shows that the normalized training loss is provided 

against the number of episodes in the task scheduling 

process in an edge-cloud environment.  

 

Table 4. Comparison of convergence in terms of normalized training loss 

Episodes 
Normalized Training Loss 

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN 

0 0.3 0.7 0.9 

200 0.1 0.2 1.0 

400 0.1 0.2 0.3 

600 0.1 0.2 0.3 

800 0.1 0.2 0.3 

1000 0.1 0.2 0.3 

 

 
Fig. 2 Normalized reward against episodes 

Fig. 3 Normalized training loss against episodes 

 

As presented in Figure 2, the convergence rate in 

terms of normalized reward is observed against the number 

of episodes. The normalization process is carried out with 

a simple min-min approach. The proposed model performs 

better as it can learn local and long-term features.  
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As presented in Figure 3, the convergence rate in 

terms of normalized training is observed against the 

number of episodes. The normalization process is carried 

out with a simple min-min approach. The proposed model 

performs better as it can learn local and long-term features. 

The training loss reflects superior convergence with the 

proposed model.  

4.2. Performance Evaluation  

The performance of the proposed model and two 

existing models is evaluated using three metrics in three 

environments.  

Table 5 presents the operational costs of the three 

models. Lower average operational costs indicate better 

performance.  

 
Table 6 presents the rejection rate of the three models. 

A lower average rejection rate indicates better 

performance.  

 
Table 7 provides the three models of QoE. A High 

QoE indicates better performance. 

Table 5. Average operational cost of different models 

Models 
Average Operational Cost 

Small Medium Large 

Proposed (DDPGA-TS) 1.4 1.3 1.1 

DDPG-NN 1.9 2.1 2.3 

DDPG-CNN 2.1 2.3 2.4 

Table 6. Average rejection rate of different models 

Models 
Average Rejection Rate 

Small Medium Large 

Proposed (DDPGA-TS) 4 3 2 

DDPG-NN 15 17 23 

DDPG-CNN 16 20 24 

Table 7. Quality of experience of different models 

Models 
Quality of Experience 

Small Medium Large 

Proposed (DDPGA-TS) 0.62 0.69 0.7 

DDPG-NN 0.54 0.48 0.4 

DDPG-CNN 0.48 0.4 0.28 

 

Fig. 4 Average operational cost among the models 

As presented in Figure 4, the average operational cost 

is provided against the three environments. When the small 

environment is used for experiments, DDPG-CNN costs 

2.1, DDPG-NN is 1.9, and the proposed DDPGA-TS is 

1.4. When the medium environment is used for 

experiments, DDPG-CNN costs 2.3, DDPG-NN is 2.1, 

while the proposed DDPGA-TS is 1.3. When the large 

environment is used for experiments, DDPG-CNN costs 

2.4, DDPG-NN is 2.3, and the proposed DDPGA-TS is 

1.1. From the results, it is observed that the proposed 

model exhibits better performance than the existing 

models.
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Fig. 5 Average rejection rate among the models 

As presented in Figure 5, the average rejection rate is 

provided against the three environments. When the small 

environment is used for experiments, the rejection rate of 

DDPG-CNN is 16, DDPG-NN is 15, and the proposed 

DDPGA-TS is 4. When the medium environment is used 

for experiments, the rejection rate of DDPG-CNN is 20, 

DDPG-NN is 17, and the proposed DDPGA-TS is 3. When 

the large environment is used for experiments, the rejection 

rate of DDPG-CNN is 24, DDPG-NN is 23, and the 

proposed DDPGA-TS is 2. The results show that they are 

better than existing models in terms of rejection rate. 

Fig. 6 QoE among the models 

As presented in Figure 6, the QoE is provided against 

the three environments. When the small environment is 

used for experiments, the QoE of DDPG-CNN is 0.48, 

DDPG-NN is 0.54, and the proposed DDPGA-TS is 0.62. 

When the medium environment is used for experiments, 

the QoE of DDPG-CNN is 0.4, DDPG-NN is 0.48, and the 

proposed DDPGA-TS is 0.69. When the large environment 

is used for experiments, the QoE of DDPG-CNN is 0.28, 

DDPG-NN is 0.4, and the proposed DDPGA-TS is 0.7. 

The results regarding QoE are better than those of the 

existing models. In summary, the proposed DDPGA-TS 

model is an adaptive approach to choosing suitable VMs 

and wireless channels and optimizing the scheduling of 

tasks in the edge-cloud environment. The pruning strategy 

involved in the proposed methodology helps reduce the 

rejection rate. In all the environments, the proposed model 

could outperform all existing methods.  

The remarkable effectiveness of the proposed 

DDPGA-TS algorithm is mainly attributed to two specific 

improvements: leveraging a dynamic pruning strategy and 

a hybrid neural structure. The pruning policy greatly 

simplifies the action space by pruning away the 

unfavourable or loaded nodes in real time, making the 

model pay more attention to the scheduling decisions that 

have the potential for better performance. This results in 

faster convergence, as verified by the lower normalized 

training loss and higher normalized reward during the 

training period than DDPG-NN and DDPG-CNN. 

Furthermore, the combination of Conv1D and GRU layers 

makes it possible to extract both local and temporal 

features effectively, enhancing the model for predicting 

suitable task placements in a time-varying environment. 

Consequently, the DDPGA-TS model maintains lower 

average operation costs,  lower task rejection ratio, and 
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better Quality of Experience (QoE) in different-size 

scenarios. Our results confirm this and provide practical 

evidence of the benefit of our adaptive method over 

nonadaptive DDPG variants. 

5. Conclusion and Future Work 
An Edge-Cloud-Based Deep Learning Framework 

(EC-DLF) is proposed for automatic, efficient task 

scheduling. The framework is designed to run in the edge 

cloud for easy access and learning. It is based on an actor-

critic model that is part of RL. The actor is synonymous 

with a policy function that continuously monitors a sub t 

(state) of the environment and involves making appropriate 

action (a. sub t) based on a sub t. An algorithm known as 

the Deep Deterministic Policy Gradient Algorithm for 

Dynamic Task Scheduling (DDPGA-TS). Our algorithm 

has a novel pruning strategy that continuously monitors the 

action space and reduces it to improve overall performance 

in task scheduling. Our system model includes edge cloud 

and cloud to optimize performance for task scheduling. 

The rationale for edge cloud is that it could render services 

faster to minimize latency, which is essential to honour 

SLAs. Three scales of environments are used in our 

experiments. Several performance indicators are used to 

evaluate the proposed algorithm's performance. The 

experimental findings showed that the suggested algorithm 

outperformed existing methods such as DDPG-NN and 

DDPG-CNN. In the future, our framework is intended to 

improve with parallelized techniques to leverage the 

training and learning process. 
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