
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 6, 315-325, June 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I6P125 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Deep Deterministic Policy Gradient Algorithm for

Dynamic Task Scheduling in Edge-Cloud Environment

Using Reinforcement Learning

D. Mamatha Rani1, Supreethi K P2, Bipin Bihari Jayasingh3

1Department of Computer Science, TSWRDCW, Nizamabad, Telangana, India.
2Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Hyderabad, Telangana,

India.
3Professor and Head of Department, CVR College of Engineering/IT Department, Hyderabad, Telangana, India.

1Corresponding Author : mamatha3004@gmail.com

Received: 13 April 2025 Revised: 15 May 2025 Accepted: 16 June 2025 Published: 27 June 2025

Abstract - In the contemporary era, cloud computing is helping high-performance computing applications by providing

scalable and affordable computing resources. However, the latency of cloud resources is relatively less when compared

with edge computing. In this context, using edge cloud for task scheduling has become indispensable in reaping latency

performance benefits with edge cloud. However, assigning every task to the edge cloud is impossible, and resource-

intensive tasks should be scheduled to the cloud. An edge-cloud environment becomes very complex, and scheduling is an

NP-hard problem. Many existing methods based on reinforcement learning are found to have shortcomings in dealing with

an ample action space in the presence of a state space. This paper proposes an algorithm known as the Deep Deterministic

Policy Gradient Algorithm for Dynamic Task Scheduling (DDPGA-TS). Our algorithm has a novel pruning strategy that

continuously monitors the action space and reduces it to improve overall performance in task scheduling. Our method uses

three scales of environments. Several performance indicators are used to evaluate the proposed algorithm's performance.

In the experimental findings, the suggested algorithm outperforms existing methods such as DDPG-NN and DDPG-CNN.

Keywords - Cloud computing, Edge computing, Dynamic task scheduling, Reinforcement learning, Deep Learning.

1. Introduction
With the emergence of the Internet of Things (IoT)

workflow applications, edge cloud has become significant

for latency reasons. With edge cloud and cloud

infrastructures available, decisions are to be made to

schedule a task in the edge cloud or the cloud based on

latency or other Service Level Agreements (SLAs).

Despite the advances in RL-based schedulers for edge-

cloud systems, DDPG, DQN, A3C, etc., existing

approaches find it particularly challenging to efficiently

explore the large action spaces with growing state spaces

based on dynamically changing quality of service

requirements and task complexities. This causes slow

convergence, posting of tasks at sub-optimal places, and

increased overhead in the operation in heterogeneous

resource environments. Also, relatively little work exists

on adaptive action space pruning with the real-time

scheduling problem. It, however, requires intelligent task

scheduling that scales in different environments and adapts

to the dynamics of the system in such a way that policy

learning is maximized. This paper fills this gap by

presenting a Deep Deterministic Policy Gradient

Algorithm with a dedicated pruning technique to enhance

the scheduling efficiency of edge-cloud systems.

Towards edge-cloud-based task scheduling, many

researchers contributed. Almutairi et al. [1] observed that

rising IoT devices demand efficient Edge-Cloud task

offloading. Fuzzy logic algorithms improve latency-

sensitive application service time, enhancing resource

utilization. Xu et al. [7] focused on edge-cloud computing

that empowers IoV by optimizing offloading using MDP

and LFGO with deep Q-learning, improving efficiency and

adaptability.

Tuli et al. [13] stated that fog computing optimizes

IoT application tasks via A3C and R2N2 models,

enhancing quality of service and reducing costs

significantly.

Yahia et al. [22] focused on energy-efficient and low-

latency task scheduling in Fog-IoT networks using Deep

Reinforcement Learning. With IoT workloads, it was

observed that the edge-cloud environment is beneficial

compared to relying on the cloud alone.

The literature observed that many existing methods

based on reinforcement learning have shortcomings in

dealing with large action spaces in the presence of state

spaces.

http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

316

The main novelty of the proposed work is that it

incorporates a pruning-enhanced Deep Deterministic

Policy Gradient Algorithm (DDPGA-TS) for dynamic task

scheduling, which dynamically prunes the action space on

the fly according to the resource utilization and

characteristics of the job. Unlike typical models such as

DDPG-NN and DDPG-CNN, which suffer from slow

convergence rates and scalability limitations, our approach

presents a resource-aware pruning mechanism to enhance

convergence efficiency and flexibility in large-scale edge-

cloud networks. A hybrid deep learning approach is

introduced with Conv1D and GRU layers with attention to

capturing both spatial and temporal information to improve

the decision of the actor-network. The proposed method is

empirically compared across three scales of simulated

environments. It shows that it outperforms existing DDPG

variants in terms of operation cost, task rejection rate, and

Quality of Experience (QoE) by a large margin.

These are our contributions to this paper. Proposed a

Deep Deterministic Policy Gradient Algorithm for

Dynamic Task Scheduling (DDPGA-TS). Our algorithm

has a novel pruning strategy that continuously monitors the

action space and reduces it to improve overall performance

in task scheduling. Three scales of environments are used

in our experiments. Several performance indicators are

used to evaluate the experimental results, which

outperform existing methods such as DDPG-NN and

DDPG-CNN. This paper is structured. Section 2 reviews

the literature on current methods in task scheduling in

edge-cloud environments. Section 3 presents our

methodology for efficient task scheduling in edge-cloud

environments. Section 4 presents the results of the

experiments. Section 5 discusses the significance of this

work and provides limitations. Section 6 concludes our

work and gives directions for the future scope of the

research.

2. Related Work
This section reviews the literature on prior work

related to cloud task scheduling. Almutairi et al. [1]

observed that rising IoT devices demand efficient Edge-

Cloud task offloading. Fuzzy logic algorithms improve

latency-sensitive application service time, enhancing

resource utilization. Ding et al. [2] address the challenge of

dynamically partitioning stateful data stream applications

by proposing a performance-aware partitioning framework

that adapts to workload variations and resource dynamics

in edge-cloud systems. Their work highlights the

importance of minimizing inter-node communication and

balancing computational loads to enhance system

responsiveness and resource utilization. Compared to

earlier static partitioning approaches, their dynamic

strategy provides improved adaptability and scalability in

heterogeneous and changing environments. Bulej et al. [3]

found that CPS demands real-time cloud and edge-cloud

operations. The paper introduces an approach with

minimal developer impact, ensuring performance

guarantees. Zhao et al. [4] stated that edge computing faces

security challenges amid rapid growth. Proposed Q-

learning-based DIDS scheduling balances load and

detection rates efficiently. Luo et al. [5] introduced CPS-

driven smart factories that adopt edge-cloud collaboration,

demanding efficient real-time task scheduling. Proposed

DSOTS and TSGS algorithms reduce latency and costs,

enhancing user satisfaction. Zmij et al. [6] observed that

IoT applications' growing demand for low latency prompts

innovative joint offloading and scheduling with the JTOS

framework.

Xu et al. [7] focused on edge-cloud computing that

empowers IoV by optimizing offloading using MDP and

LFGO with deep Q-learning, improving efficiency and

adaptability. Asghari et al. [8] focus on optimizing task

scheduling, resource provisioning, and load balancing for

scientific workflows in cloud environments. They propose

a hybrid approach integrating parallel SARSA

reinforcement learning agents with a genetic algorithm to

achieve adaptive and efficient workflow execution. Their

method enables dynamic decision-making in complex

environments by learning optimal strategies through

interaction, while the genetic algorithm ensures global

optimization. This work demonstrates improved execution

time and resource utilization compared to traditional

heuristic-based approaches, highlighting the potential of

reinforcement learning in workflow management. Guo et

al. [9] introduced the SMDQN algorithm, which optimizes

service migration in MEC, effectively balancing delay and

migration costs and is adaptable to diverse patterns.

Yahia et al. [10] SDN-based DRL manages IoT traffic

at the edge, ensuring low latency and high efficiency.

Future work focuses on FedML implementation. Wu et al.

[11] proposed a DMRO that optimizes edge offloading

decisions using deep meta-reinforcement learning,

improving adaptability and portability significantly. Hao et

al. [12] found that the Industrial CPS demands edge

services. The proposed DQN-based service placement

effectively minimizes response time. Tuli et al. [13] stated

that fog computing optimizes IoT application tasks via

A3C and R2N2 models, enhancing quality of service and

reducing costs significantly. Gui et al. [14] tackled SMDs'

computation overload via edge and cloud offloading,

presenting algorithms for hybrid edge-cloud networks.

Future work includes optimizing ETRC through multi-

agent reinforcement learning and exploring service caching

and joint resource scheduling.

Liu et al. [15] found that the SFC embedding in

dynamic edge-cloud scenarios is challenging. Two DRL-

based methods efficiently handle SFC-DMP,

outperforming previous methods in delay reduction. Chen

et al. [16] explored the complex network state that

challenges fog resource provisioning. A learning-based

mobile fog scheme utilizing DDPG is proposed, achieving

significant improvements. Mekala et al. [17] proposed a

CCR-RL algorithm that optimally balances resource

utilization, processing speed, and cost, achieving

substantial latency reduction.

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

317

Lin et al. [18] used an SA-DQN-based strategy that

optimizes computation offloading for CAVs in the VEC

environment, effectively reducing energy consumption and

failure rates. Han et al. [19] studied the EdgeSlice system

that utilizes decentralized deep reinforcement learning for

dynamic network slicing in wireless edge computing.

Zhang et al. [20] proposed a resource allocation scheme

using deep reinforcement learning for IoV in MEC

scenarios, ensuring low latency and overhead. Zhou et al.

[21] introduced a DRL-TSS method to optimize resource

utilization for IoE applications. It proposes Johnson's rule-

based presorting and an improved DRL scheme to

minimize the makespan. Experimental results show a 1.1-

approximation to the optimal schedule. Future research

will focus on enhancing the deep learning scheme for

scheduling optimization.

Yahia et al. [22] focused on energy-efficient and low-

latency task scheduling in Fog-IoT networks using Deep

Reinforcement Learning. The proposed algorithm

outperforms others, achieving up to 87% energy savings

and 50% reduction in time delay. Future work aims to

extend the algorithm for Ultra-Dense Edge Computing and

Federated Machine Learning to address data privacy

concerns. Hakiri et al. [23] highlighted blockchain

integration in IoT networks, emphasizing low latency,

improved reliability, and privacy. The study introduces a

Blockchain-based DRL approach for efficient task

scheduling and offloading in SDN-enabled IoT networks,

achieving 50% better energy efficiency. Future work aims

to achieve interoperability, implement federated learning,

and enforce data privacy using homomorphic encryption.

Ye et al. [24] employed deep reinforcement learning

and a Markov decision process to jointly improve

computation offloading and resource allocation in IoV.

The proposed CORA algorithm outperforms non-DRL and

DRL algorithms in processing delay and cost. Future work

involves considering resource competition among vehicles

for edge server computing resources. Zhang et al. [25]

proposed a distributed real-time scheduling framework for

cloud manufacturing using cloud-edge collaboration and

distributed deep reinforcement learning.

The D3QN algorithm outperforms other methods,

showing potential for efficient decision-making. Their

future work will address uncertainties using digital twins in

cloud manufacturing. Based on the surveyed literature, one

can observe that even if several deep reinforcement

learning models, e.g., A3C [13], DQN [12], distributed

DRL [25], have been used for task offloading and resource

optimization in edge-cloud and IoT systems, they are still

facing the problems of dealing with large-scale dynamic

workloads effectively. In particular, the high dimension of

the action space, static learning architectures, or lack of

adaptive decision-making mechanisms detract from

scalability and reactivity. In addition, most existing

methods are based on the assumption of a perfect network

environment and ignore the action pruning in real-time to

cut down the scheduling latency. These constraints drive

the demand for a more adaptive and scalable task

scheduling scheme based on deep RL and resource-aware

pruning to enhance the system performance for different

deployment scales.

3. Proposed System
In this paper, the rationale behind edge cloud is that it

could render services faster to minimize latency, which is

essential to honour SLAs. At the same time, the cloud also

plays a crucial role, without which most IoT and other use

cases cannot be realized [16]. In such an environment, it is

essential to achieve context-aware resource provisioning.

Some bandwidth-hungry applications need minimal end-

to-end latency, as discussed in [1]. In such applications, the

edge cloud plays a crucial role. Based on the request

received, the proposed system needs to determine whether

to use cloud or edge cloud to run it by considering different

factors like deadline, resource availability, and bandwidth,

to name a few.

3.1. Our Framework

Our system is based on the framework illustrated in

Figure 1. The framework is known as the Edge-Cloud-

based Deep Learning Framework (EC-DLF) for automatic,

efficient task scheduling. The framework is designed to run

in the edge cloud for easy access and learning. It is based

on an actor-critic model that is part of RL. The actor is

synonymous with a policy function that continuously

monitors 𝑠𝑡 (state)of the environment and is involved in

taking appropriate action (𝑎𝑡) based on 𝑠𝑡. The actor

receives 𝑟𝑡 (reward) for every action. Critic makes use of

𝑄(𝑠𝑡 , 𝑎𝑡) (a function with action and state) to change

policy parameters. Each dynamic task scheduling action at

every given time produces an appropriate reward.

However, the framework's goal is to maximize reward

through policy optimization.

The state space associated with the framework is

described here. At any given time, t system state

𝑠𝑡 Reflects the resources, their current utility in the edge

cloud and the cloud, and the current job assigned by user u

is denoted as ju. This job is expected to be scheduled in

either the cloud or the on-premises cloud. The parameters

associated with the state are 𝑗𝑢 (the job of the given user),

𝑈𝑟𝑁 (utility rate of a given node in the cloud), 𝑈𝑟𝑀 (utility

rate of a given node in edge cloud) and 𝑈𝑟𝑊 (total utility

rate of all resources). These parameters help an actor learn

strategies for optimal and dynamic task scheduling.

Concerning action space 𝑎𝑡, based on 𝑠𝑡, the actor

determines the resources required to run the job

successfully and meet the deadline. The parameters of

action space include the bandwidth (chh), CPU cycles (vmk)

and whether the task is assigned to the cloud or the edge

cloud (1 indicates cloud and 0 indicates edge cloud). The

reward is computed as in Eq. 1, which considers the gain

and cost involved in task scheduling.

𝑟𝑡(𝑠𝑡 , 𝑎𝑡) = 𝐼𝑢(𝑠𝑡 , 𝑎𝑡) − 𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) × 𝑟𝑡𝑡(𝑗𝑢) (1)

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

318

Fig. 1 Proposed edge-cloud-based deep learning framework

The net gain of executing 𝑗𝑢 is denoted as 𝐼𝑢(𝑠𝑡 , 𝑎𝑡),

while the total cost of executing 𝑗𝑢 is denoted as

𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) and time taken to process 𝑗𝑢 is denoted as

𝑟𝑡𝑡(𝑗𝑢). Considering computing resources, the completion

time of a given job, and wireless resources, the gain and

cost are redefined as in Equation (2) and Equation (3),

respectively.

𝐼𝑢(𝑠𝑡 , 𝑎𝑡) = {
(𝑑𝑙𝑢 − 𝑟𝑡𝑡𝑒𝑐(𝑗𝑢)). 𝛿, 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 0

(𝑑𝑙𝑢 − 𝑟𝑡𝑡𝑏𝑐(𝑗𝑢)). 𝛿, 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 1
 (2)

Where the service provides gain is denoted as δ for

successful completion of the job with completion time

rtt(ju) in given deadline dlu. If the deadline is not met, the

gain will be in negative value, which also influences the

reward. This condition motivates the proposed framework

to decide whether to satisfy SLA or deadlines.

𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) = {
𝑈𝑟𝑤(𝑡). 𝑐ℎ + 𝑈𝑟𝑀(𝑡). 𝑐𝑘 , 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 0

𝑈𝑟𝑤(𝑡). 𝑐ℎ + 𝑈𝑟𝑁(𝑡). 𝑐𝑘 , 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑡 = 1

(3)

Replay buffer

Mini – batch

Sample

Actor Critic

Train Train

𝑠𝑡 , 𝑎𝑡 , 𝛾𝑡 , 𝑠𝑡+1

Gradient

(𝑠𝑡 , 𝑎𝑡)

Edge-Cloud

Back-end cloud

𝑎𝑡
𝑠𝑡

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

319

On the contrary, to gain, cost includes the resource

and bandwidth of the channel. The bandwidth and VM

(node) cost per unit time are denoted as ch and ck,

respectively. Unlike the work in [18], each job's

computations for cost, gain, and reward are performed. As

each job can have its quality of service needs, this

approach has been proven to be more helpful. It also helps

in optimizing policies associated with job scheduling.

Optimization of resource utilization based on the quality of

service needs of a job is expressed in Equation (4).

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑟𝑡(𝑠𝑡 , 𝑎𝑡)𝑇
𝑡=1 (4)

This optimization is subject to conditions such as

𝑈𝑟𝑊(𝑡) ≤ 1, 𝑈𝑟𝑀(𝑡) ≤ 1 (utility of bandwidth) and

𝑈𝑟𝑁(𝑡) ≤ 1, ∀𝑡 ∈ 𝑇 (utilization should not exceed

capacity available). Another constraint indicates that the

job should be completed without exceeding the deadline.

Table 1 shows the notations used in this paper.

Inspired by the work in [13], deep learning usage was

optimized in our RL model. It makes use of Conv1D for

local feature extraction. GRU learns temporal

dependencies, and an attention procedure is used to gain

information that impacts the prediction process. GRU uses

minimal parameters and does not need a memory unit,

leading to optimized performance compared to LSTM

[20].

The notion of experience replay for a better training

process is exploited. The system can choose bandwidth

appropriately along with the VM to execute the given job.

To select a node or server that is less busy, a pruning

strategy is incorporated that continuously and actively

monitors and reduces the action space significantly. The

proposed mechanism also takes care of load balancing. The

optimal policy required for scheduling is achieved with the

pruning strategy.

Table 1. Notations used in the proposed system

Notation Meaning

𝑑𝑙𝑢 Denote a deadline given by the user.

𝑑𝑢 Data of the user to be processed

𝑗𝑢 Denotes the user's current job

𝑗𝑢(𝑑𝑙𝑢 , 𝑑𝑢) Denotes tuple associated with user's job

𝜇ℎ
𝑤(𝑡) Number of channels at a given time t

𝑡 Denotes time

𝑎𝑡 Denotes a continuous action

𝑠𝑡 Denotes state

𝑟𝑡 Denotes a reward at a given time

𝑄(𝑠𝑡 , 𝑎𝑡) Denotes action value function

𝑐ℎℎ Denotes bandwidth

𝑣𝑚𝑘 Denotes CPU cycles

𝐼𝑢(𝑠𝑡 , 𝑎𝑡) Gain of job execution

𝑐𝑜𝑠𝑡𝑢(𝑠𝑡 , 𝑎𝑡) Cost of resource

𝑐ℎ Cost of bandwidth of the wireless channel

𝑐𝑘 Allocation of VM per unit of time

Algorithm: Deep Deterministic Policy Gradient Algorithm for Dynamic Task Scheduling (DDPGA-TS)

Input: User jobs with quality of service needs

Output: Optimal task scheduling

1. Begin

2. Initialize replay memory M

3. For each scheduling interval

4. Reset environment

5. For each time instance t in T

6. Observe the state

7. Prune action space

8. Predict an action

9. Receive reward and next state

10. Store transition in M

11. Train the actor and critic

12. Update weight vectors

13. End For

14. Schedule tasks based on weight vectors

15. End For

16. End

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

320

As presented in Algorithm, it inputs user jobs with

quality of service needs and results in optimal task

scheduling. It has an iterative process to prune the action

space for every scheduling interval with the underlying

RL-based approach. The workload in the proposed system

is denoted as J, and all users are denoted as U. Each job is

denoted as a tuple, denoted as ju((dlu ,du)consisting of

deadline and data to be processed. Therefore, the entire

workload of all users is denoted as 𝐽 =
{ 𝑗1(𝑑𝑙1, 𝑑1), 𝑗2(𝑑𝑙2, 𝑑2), … , 𝑗𝑈(𝑑𝑙𝑈 , 𝑑𝑈)}. Every user's job

requires memory and CPU processing. Our approach in

CPU cycle modelling is similar to that of [12]. Our

bandwidth model is described here. In edge computing,

many nodes support wireless access. B denotes the

bandwidth of all nodes. Each node supports many wireless

channels denoted as {𝑐ℎ1
𝑤 , 𝑐ℎ2

𝑤 , 𝑐ℎ3
𝑤 , … , 𝑐ℎ𝐻

𝑤}. Our

computation model includes a number of nodes, denoted as

M, in edge computing. Each node can have a set of VMs

denoted as 𝐾 = {𝑣𝑚1
𝑚 , 𝑣𝑚2

𝑚 , 𝑣𝑚3
𝑚, … , 𝑣𝑚𝐾

𝑚}. The

computation model also has a cloud with a number of

servers consisting of VMs in each server. A set of VMs is

denoted as 𝐾 = {𝑣𝑚1
𝑚 , 𝑣𝑚2

𝑚 , 𝑣𝑚3
𝑚, … , 𝑣𝑚𝐾

𝑚}. Our delay

model is based on the definition of Round-Trip Time

(RTT), which includes end-to-end time right from sending

the job to completing the job and sending the results back.

This delay model is somewhat similar to that of [10]. The

propagation time of a given job is considered 5ms for the

edge cloud and 50ms for the cloud. The transmission time

for a given job concerning the edge cloud is computed as

in Equation (5).

 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑒𝑐) =
𝑑𝑢

𝑐ℎℎ
𝑤 +

𝑅𝑢

𝑐ℎℎ
𝑤 (5)

The transmission time for a given job concerning the

cloud is computed as in Equation (6).

 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑏𝑐) = 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑒𝑐) +
𝑑𝑢

𝑏
+

𝑅𝑢

𝑏
 (6)

The processing time required by the edge cloud and

the cloud is computed as in Equation (7) and (8),

respectively.

𝑡𝑢(𝑝𝑟𝑜𝑐𝑒𝑐) =
𝐿𝑢

𝑣𝑚𝑘
𝑚 (7)

𝑡𝑢(𝑝𝑟𝑜𝑐𝑏𝑐) =
𝐿𝑢

𝑣𝑚𝑘
𝑛 (8)

Based on this, the RTT can be computed as in

Equation (9) and (10) for edge cloud and cloud,

respectively.

𝑟𝑡𝑡𝑒𝑐(𝑗𝑢) = 𝑡𝑢(𝑝𝑟𝑜𝑝𝑒𝑐) + 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑒𝑐) +
𝑡𝑢(𝑝𝑟𝑜𝑐𝑒𝑐) (9)

𝑟𝑡𝑡𝑏𝑐(𝑗𝑢) = 𝑡𝑢(𝑝𝑟𝑜𝑝𝑏𝑐) + 𝑡𝑢(𝑡𝑟𝑎𝑛𝑠𝑏𝑐) +
𝑡𝑢(𝑝𝑟𝑜𝑐𝑏𝑐) (10)

A proposed utility model indicates resource utilization

at a given time t. The utility rate of all nodes used in the

computation is computed as in Equation (11).

𝑈𝑟𝑤(𝑡) =
∑ (∑ 𝑐ℎℎ

𝑤.𝜇ℎ
𝑤(𝑡)𝐻

ℎ=1)𝑊
𝑤=1

𝐵
 (11)

Similarly, the utility rate is computed for each node in

the edge cloud and the cloud according to Equation (12)

and (13), respectively.

𝑈𝑟𝑀(𝑡) =
∑ (∑ 𝑣𝑚𝑘

𝑚.𝜇𝑘
𝑚(𝑡)𝐾

𝑘=1)𝑀
𝑛=1

𝐶𝑒𝑐
 (12)

𝑈𝑟𝑁(𝑡) =
∑ (∑ 𝑣𝑚𝑘

𝑚.𝜇𝑘
𝑛(𝑡)𝐾

𝑘=1)𝑁
𝑛=1

𝐶𝑏𝑐
 (13)

These computations play an essential role in the

proposed RL-based system, which enables efficient

scheduling of dynamic workloads in an edge-cloud

environment.

4. Results and Discussion
A prototype application is built to simulate the

proposed framework and the underlying algorithm. All

experiments use a Dell PC with a 2.9 GHz i7 processor,

128GB RAM, and a 64-bit Windows 11 OS. The results of

our experiments are compared with two existing methods,

DDPG-NN and DDPG-CNN, taken from [19]. Three

different environments are used for experiments, as shown

in Table 2. The bandwidth availability between the edge

cloud and the cloud is 1 Gbps. The learning rate set for the

actor and critic is 0.0001 and 0.001, respectively. The γ

value is set to 0.99, while the number of iterations for each

episode is 1000.

Table 2. Environments used for experiments

Table 3. Comparison of convergence in terms of normalized reward

Scale of Environment #Edge Computing Nodes #Cloud Nodes #Jobs

Small 10 10 10000

Medium 30 30 100000

Large 50 50 1000000

Episodes
Normalized Reward

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN

0 0.0 0.0 0.0

200 0.9 0.8 0.7

400 0.9 0.8 0.7

600 0.9 0.8 0.7

800 0.9 0.8 0.7

1000 0.9 0.8 0.7

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

321

4.1. Convergence Comparison

The convergence of different models is discussed here

in terms of normalized reward and normalized training

loss. The convergence experiments are made in a small-

scale environment, as in Table 2. Table 3 shows that

normalized reward is provided against the number of

episodes in task scheduling in an edge-cloud environment.

Table 4 shows that the normalized training loss is provided

against the number of episodes in the task scheduling

process in an edge-cloud environment.

Table 4. Comparison of convergence in terms of normalized training loss

Episodes
Normalized Training Loss

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN

0 0.3 0.7 0.9

200 0.1 0.2 1.0

400 0.1 0.2 0.3

600 0.1 0.2 0.3

800 0.1 0.2 0.3

1000 0.1 0.2 0.3

Fig. 2 Normalized reward against episodes

Fig. 3 Normalized training loss against episodes

As presented in Figure 2, the convergence rate in

terms of normalized reward is observed against the number

of episodes. The normalization process is carried out with

a simple min-min approach. The proposed model performs

better as it can learn local and long-term features.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

N
o

rm
a

li
ze

d
 R

ew
a

rd

Episodes

Normalized Reward

Proposed (DDPGA-TS)

DDPG-NN

DDPG-CNN

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

N
o

rm
a

li
ze

d
 t

ra
in

in
g

 l
o

ss

Episodes

Normalized Training Loss

Proposed (DDPGA-TS)

DDPG-NN

DDPG-CNN

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

322

As presented in Figure 3, the convergence rate in

terms of normalized training is observed against the

number of episodes. The normalization process is carried

out with a simple min-min approach. The proposed model

performs better as it can learn local and long-term features.

The training loss reflects superior convergence with the

proposed model.

4.2. Performance Evaluation

The performance of the proposed model and two

existing models is evaluated using three metrics in three

environments.

Table 5 presents the operational costs of the three

models. Lower average operational costs indicate better

performance.

Table 6 presents the rejection rate of the three models.

A lower average rejection rate indicates better

performance.

Table 7 provides the three models of QoE. A High

QoE indicates better performance.

Table 5. Average operational cost of different models

Models
Average Operational Cost

Small Medium Large

Proposed (DDPGA-TS) 1.4 1.3 1.1

DDPG-NN 1.9 2.1 2.3

DDPG-CNN 2.1 2.3 2.4

Table 6. Average rejection rate of different models

Models
Average Rejection Rate

Small Medium Large

Proposed (DDPGA-TS) 4 3 2

DDPG-NN 15 17 23

DDPG-CNN 16 20 24

Table 7. Quality of experience of different models

Models
Quality of Experience

Small Medium Large

Proposed (DDPGA-TS) 0.62 0.69 0.7

DDPG-NN 0.54 0.48 0.4

DDPG-CNN 0.48 0.4 0.28

Fig. 4 Average operational cost among the models

As presented in Figure 4, the average operational cost

is provided against the three environments. When the small

environment is used for experiments, DDPG-CNN costs

2.1, DDPG-NN is 1.9, and the proposed DDPGA-TS is

1.4. When the medium environment is used for

experiments, DDPG-CNN costs 2.3, DDPG-NN is 2.1,

while the proposed DDPGA-TS is 1.3. When the large

environment is used for experiments, DDPG-CNN costs

2.4, DDPG-NN is 2.3, and the proposed DDPGA-TS is

1.1. From the results, it is observed that the proposed

model exhibits better performance than the existing

models.

1.4 1.3
1.1

1.9
2.1

2.3
2.1

2.3 2.4

0

0.5

1

1.5

2

2.5

3

Small Medium Large

A
v

er
a

g
e

O
p

er
a

ti
o

n
a

l
C

o
st

Environments

Average Operational Cost

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

323

Fig. 5 Average rejection rate among the models

As presented in Figure 5, the average rejection rate is

provided against the three environments. When the small

environment is used for experiments, the rejection rate of

DDPG-CNN is 16, DDPG-NN is 15, and the proposed

DDPGA-TS is 4. When the medium environment is used

for experiments, the rejection rate of DDPG-CNN is 20,

DDPG-NN is 17, and the proposed DDPGA-TS is 3. When

the large environment is used for experiments, the rejection

rate of DDPG-CNN is 24, DDPG-NN is 23, and the

proposed DDPGA-TS is 2. The results show that they are

better than existing models in terms of rejection rate.

Fig. 6 QoE among the models

As presented in Figure 6, the QoE is provided against

the three environments. When the small environment is

used for experiments, the QoE of DDPG-CNN is 0.48,

DDPG-NN is 0.54, and the proposed DDPGA-TS is 0.62.

When the medium environment is used for experiments,

the QoE of DDPG-CNN is 0.4, DDPG-NN is 0.48, and the

proposed DDPGA-TS is 0.69. When the large environment

is used for experiments, the QoE of DDPG-CNN is 0.28,

DDPG-NN is 0.4, and the proposed DDPGA-TS is 0.7.

The results regarding QoE are better than those of the

existing models. In summary, the proposed DDPGA-TS

model is an adaptive approach to choosing suitable VMs

and wireless channels and optimizing the scheduling of

tasks in the edge-cloud environment. The pruning strategy

involved in the proposed methodology helps reduce the

rejection rate. In all the environments, the proposed model

could outperform all existing methods.

The remarkable effectiveness of the proposed

DDPGA-TS algorithm is mainly attributed to two specific

improvements: leveraging a dynamic pruning strategy and

a hybrid neural structure. The pruning policy greatly

simplifies the action space by pruning away the

unfavourable or loaded nodes in real time, making the

model pay more attention to the scheduling decisions that

have the potential for better performance. This results in

faster convergence, as verified by the lower normalized

training loss and higher normalized reward during the

training period than DDPG-NN and DDPG-CNN.

Furthermore, the combination of Conv1D and GRU layers

makes it possible to extract both local and temporal

features effectively, enhancing the model for predicting

suitable task placements in a time-varying environment.

Consequently, the DDPGA-TS model maintains lower

average operation costs, lower task rejection ratio, and

4 3 2

15
17

23

16

20

24

0

5

10

15

20

25

30

Small Meduim Large

A
v

er
a

g
e

R
ej

ec
ti

o
n

 R
a

te
 (

%
)

Workload

Average Rejection Rate

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN

0.62
0.69 0.7

0.54
0.48

0.4
0.48

0.4

0.28

0

0.2

0.4

0.6

0.8

Small Meduim Large

Q
o

E

Workload

Quality of Experience

Proposed (DDPGA-TS) DDPG-NN DDPG-CNN

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

324

better Quality of Experience (QoE) in different-size

scenarios. Our results confirm this and provide practical

evidence of the benefit of our adaptive method over

nonadaptive DDPG variants.

5. Conclusion and Future Work
An Edge-Cloud-Based Deep Learning Framework

(EC-DLF) is proposed for automatic, efficient task

scheduling. The framework is designed to run in the edge

cloud for easy access and learning. It is based on an actor-

critic model that is part of RL. The actor is synonymous

with a policy function that continuously monitors a sub t

(state) of the environment and involves making appropriate

action (a. sub t) based on a sub t. An algorithm known as

the Deep Deterministic Policy Gradient Algorithm for

Dynamic Task Scheduling (DDPGA-TS). Our algorithm

has a novel pruning strategy that continuously monitors the

action space and reduces it to improve overall performance

in task scheduling. Our system model includes edge cloud

and cloud to optimize performance for task scheduling.

The rationale for edge cloud is that it could render services

faster to minimize latency, which is essential to honour

SLAs. Three scales of environments are used in our

experiments. Several performance indicators are used to

evaluate the proposed algorithm's performance. The

experimental findings showed that the suggested algorithm

outperformed existing methods such as DDPG-NN and

DDPG-CNN. In the future, our framework is intended to

improve with parallelized techniques to leverage the

training and learning process.

Conflicts of Interest
Deep Deterministic Policy Gradient Algorithm

Dynamic Task Scheduling in Edge-Cloud Environment

Using Reinforcement Learning. The authors whose names

are listed immediately below certify that they have NO

affiliations with or involvement in any organization or

entity with any financial interest (such as honoraria,

educational grants, participation in speakers' bureaus,

membership, employment, consultancies, stock ownership,

or other equity interest; and expert testimony or patent-

licensing arrangements), or non-financial interest (such as

personal or professional relationships, affiliations,

knowledge or beliefs) in the subject matter or materials

discussed in this manuscript.

References
[1] Jaber Almutairi, and Mohammad Aldossar, “A Novel Approach for IoT Tasks Offloading in Edge-Cloud Environments,” Journal

of Cloud Computing, vol. 10, pp. 1-19, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Shaoshuai Ding et al., “Partitioning Stateful Data Stream Applications in Dynamic Edge Cloud Environments,” IEEE Transactions

on Services Computing, vol. 15, no. 4, pp. 2368-2381, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Lubomír Bulej et al., “Managing Latency in Edge–Cloud Environment,” Journal of Systems and Software, vol. 172, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

[4] Xu Zhao et al., “Low Load DIDS Task Scheduling Based on Q-Learning in Edge Computing Environment,” Journal of Network

and Computer Applications, vol. 188, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Yu Zhang et al., “Deadline-Aware Dynamic Task Scheduling in Edge-Cloud Collaborative Computing,” Electronics, vol. 11, no.

15, pp. 1-24, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[6] Abdullah Lakhan et al., “Delay Optimal Schemes for Internet of Things Applications in Heterogeneous Edge Cloud Computing

Networks,” Sensors, vol. 22, no. 16, pp. 1-30, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Qihe Huang, Xiaolong Xu, and Jinhui Chen, “Learning-Aided Fine Grained Offloading for Real-Time Applications in Edge-Cloud

Computing,” Wireless Networks, vol. 30, pp. 3805-3820, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Ali Asghari, Mohammad Karim Sohrabi, and Farzin Yaghmaee, “Task Scheduling, Resource Provisioning, and Load Balancing on

Scientific Workflows Using Parallel SARSA Reinforcement Learning Agents and Genetic Algorithm,” The Journal of

Supercomputing, vol. 77, pp. 2800-2828, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] Hongman Wang et al., “Service Migration in Mobile Edge Computing: A Deep Reinforcement Learning Approach,” International

Journal of Communication Systems, vol. 36, no. 1, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Bassem Sellami et al., “Deep Reinforcement Learning for Energy-Efficient Task Scheduling in SDN-Based IoT Network,” 2020

IEEE 19th International Symposium on Network Computing and Applications, Cambridge, MA, USA, pp. 1-4, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[11] Guanjin Qu et al., “DMRO: A Deep Meta Reinforcement Learning-Based Task Offloading Framework for Edge-Cloud

Computing,” IEEE Transactions on Network and Service Management, vol. 18, no. 3, pp. 3448-3459, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[12] Yixue Hao et al., “Deep Reinforcement Learning for Edge Service Placement in Softwarized Industrial Cyber-Physical System,”

IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5552-5561, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[13] Shreshth Tuli et al., “Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments Using A3C Learning and Residual

Recurrent Neural Networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 3, pp. 940-954, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[14] Qi Zhang et al., “Task Offloading and Resource Scheduling in Hybrid Edge-Cloud Networks,” IEEE Access, vol. 9, pp. 85350-

85366, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1186/s13677-021-00243-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+approach+for+IoT+tasks+offloading+in+edge-cloud+environments&btnG=
https://link.springer.com/article/10.1186/s13677-021-00243-9
https://doi.org/10.1109/TSC.2021.3051046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Partitioning+Stateful+Data+Stream+Applications+in+Dynamic+Edge+Cloud+Environments&btnG=
https://ieeexplore.ieee.org/abstract/document/9320527
https://doi.org/10.1016/j.jss.2020.110872
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Managing+latency+in+edge+%E2%80%9Ccloud+environment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121220302624
https://doi.org/10.1016/j.jnca.2021.103095
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low+load+DIDS+task+scheduling+based+on+Q-learning+in+edge+computing+environment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S108480452100117X
https://doi.org/10.3390/electronics11152464
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deadline-Aware+Dynamic+Task+Scheduling+in+Edge%E2%80%93Cloud+Collaborative+Computing&btnG=
https://www.mdpi.com/2079-9292/11/15/2464
https://doi.org/10.3390/s22165937
https://scholar.google.com/scholar?q=Delay+Optimal+Schemes+for+Internet+of+Things+Applications+in+Heterogeneous+Edge+Cloud+Computing+Networks&hl=en&as_sdt=0,5
https://www.mdpi.com/1424-8220/22/16/5937
https://doi.org/10.1007/s11276-021-02750-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning-aided+fine-grained+offloading+for+real-time+applications+in+edge-cloud+computing&btnG=
https://link.springer.com/article/10.1007/s11276-021-02750-8
https://doi.org/10.1007/s11227-020-03364-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling%2C+resource+provisioning%2C+and+load+balancing+on+scientific+workflows+using+parallel+SARSA+reinforcement+learning+agents+and+genetic+algorithm&btnG=
https://link.springer.com/article/10.1007/s11227-020-03364-1
https://doi.org/10.1002/dac.4413
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Service+migration+in+mobile+edge+computing%3A+A+deep+reinforcement+learning+approach&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4413
https://doi.org/10.1109/NCA51143.2020.9306739
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+for+Energy-Efficient+Task+Scheduling+in+SDN-based+IoT+Network&btnG=
https://ieeexplore.ieee.org/abstract/document/9306739
https://doi.org/10.1109/TNSM.2021.3087258
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DMRO%3A+A+Deep+Meta+Reinforcement+Learning-Based+Task+Offloading+Framework+for+Edge-Cloud+Computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DMRO%3A+A+Deep+Meta+Reinforcement+Learning-Based+Task+Offloading+Framework+for+Edge-Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9448034
https://doi.org/10.1109/TII.2020.3041713
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+for+Edge+Service+Placement+in+Softwarized+Industrial+Cyber-Physical+System&btnG=
https://ieeexplore.ieee.org/abstract/document/9277590
https://doi.org/10.1109/TMC.2020.3017079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+Scheduling+for+Stochastic+Edge-Cloud+Computing+Environments+using+A3C+learning+and+Residual+Recurrent+Neural+Networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+Scheduling+for+Stochastic+Edge-Cloud+Computing+Environments+using+A3C+learning+and+Residual+Recurrent+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9169832
https://doi.org/10.1109/ACCESS.2021.3088124
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+Offloading+and+Resource+Scheduling+in+Hybrid+Edge-Cloud+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9452102

A. Kokila et al. / IJECE, 12(6), 315-325, 2025

325

[15] Yicen Liu et al., “SFC Embedding Meets Machine Learning: Deep Reinforcement Learning Approaches,” IEEE Communications

Letters, vol. 25, no. 6, pp. 1926-1930, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Miaojiang Chen et al., “Deep Reinforcement Learning for Computation Offloading in Mobile Edge Computing Environment,”

Computer Communications, vol. 175, pp. 1-12, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] M.S. Mekala et al., “Resource Offload Consolidation Based on Deep-Reinforcement Learning Approach in Cyber-Physical

Systems,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 2, pp. 245-254, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[18] Bing Lin et al., “Computation Offloading Strategy Based on Deep Reinforcement Learning for Connected and Autonomous Vehicle

in Vehicular Edge Computing,” Journal of Cloud Computing, vol. 10, pp. 1-17, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[19] Qiang Liu, Tao Han, and Ephraim Moges, “EdgeSlice: Slicing Wireless Edge Computing Network with Decentralized Deep

Reinforcement Learning,” 2020 IEEE 40th International Conference on Distributed Computing Systems, Singapore, pp. 234-244,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[20] Yiwei Zhang et al., “Computing Resource Allocation Scheme of IOV Using Deep Reinforcement Learning in Edge Computing

Environment,” EURASIP Journal on Advances in Signal Processing, vol. 2021, pp. 1-19, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Xiaokang Zhou et al., “Edge-Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of

Everything,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3295-3304, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[22] Bassem Sellami et al., “Energy-Aware Task Scheduling and Offloading Using Deep Reinforcement Learning in SDN-Enabled IoT

Network,” Computer Networks, vol. 210, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Bassem Sellami, Akram Hakiri, and Sadok Ben Yahia, “Deep Reinforcement Learning for Energy-Aware Task Offloading in Join

SDN-Blockchain 5G Massive IoT Edge Network,” Future Generation Computer Systems, vol. 137, pp. 363-379, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[24] Jiwei Huang et al., “Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in Internet of Vehicles

via Deep Reinforcement Learning,” IEEE Systems Journal, vol. 17, no. 2, pp. 2500-2511, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[25] Lixiang Zhang et al., “Distributed Real-Time Scheduling in Cloud Manufacturing by Deep Reinforcement Learning,” IEEE

Transactions on Industrial Informatics, vol. 18, no. 12, pp. 8999-9007, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/LCOMM.2021.3061991
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SFC+Embedding+Meets+Machine+Learning%3A+Deep+Reinforcement+Learning+Approaches&btnG=
https://ieeexplore.ieee.org/abstract/document/9363175
https://doi.org/10.1016/j.comcom.2021.04.028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+reinforcement+learning+for+computation+offloading+in+mobile+edge+computing+environment&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366421001729
https://doi.org/10.1109/TETCI.2020.3044082
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource+Offload+Consolidation+Based+on+Deep-Reinforcement+Learning+Approach+in+Cyber-Physical+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/9309331
https://doi.org/10.1186/s13677-021-00246-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computation+offloading+strategy+based+on+deep+reinforcement+learning+for+connected+and+autonomous+vehicle+in+vehicular+edge+computing&btnG=
https://link.springer.com/article/10.1186/s13677-021-00246-6
https://link.springer.com/article/10.1186/s13677-021-00246-6
https://doi.org/10.1109/ICDCS47774.2020.00028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EdgeSlice%3A+Slicing+Wireless+Edge+Computing+Network+with+Decentralized+Deep+Reinforcement+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9355609
https://doi.org/10.1186/s13634-021-00750-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computing+resource+allocation+scheme+of+IOV+using+deep+reinforcement+learning+in+edge+computing+environment&btnG=
https://link.springer.com/article/10.1186/s13634-021-00750-6
https://doi.org/10.1109/JIOT.2022.3179231
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge-Enabled+Two-Stage+Scheduling+Based+on+Deep+Reinforcement+Learning+for+Internet+of+Everything&btnG=
https://ieeexplore.ieee.org/abstract/document/9785600
https://doi.org/10.1016/j.comnet.2022.108957
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-Aware+Task+Scheduling+and+Offloading+using+Deep+Reinforcement+Learning+in+SDN-enabled+IoT+Network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128622001359
https://doi.org/10.1016/j.future.2022.07.024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Reinforcement+Learning+for+Energy-Aware+Task+Offloading+in+Join+SDN-Blockchain+5G+massive+IoT+Edge+Network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X22002588
https://doi.org/10.1109/JSYST.2023.3249217
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Joint+Computation+Offloading+and+Resource+Allocation+for+Edge-Cloud+Collaboration+in+Internet+of+Vehicles+via+Deep+Reinforcement+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/10067234
https://doi.org/10.1109/TII.2022.3178410
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+Real-Time+Scheduling+in+Cloud+Manufacturing+by+Deep+Reinforcement+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9783015

