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Abstract - Cardiovascular disease causes most deaths worldwide, so health organizations seek to produce dependable 

automated medical diagnosis tools. Our proposed method combines a Support Vector Machine with boosted random subspace 

and stacked generalization to make more accurate CVD diagnosis predictions. The framework begins by normalizing data as 

part of preprocessing to normalize feature scales from clinical data. Several SVM-based learners gain training via the diverse 

feature subsets that the Random Subspace Method (RSM) generates. The learners achieve optimized kernel parameters by 

performing a grid search optimization. The voting scheme in bootstrap aggregation methods improves diversity while 

controlling overfitting to generate predictions. The model generalization requires stacked generalization that integrates base 

learner outputs into a second-level logistic regression prediction system. The assessment method involves checking accuracy 

rates together with precision values and recall rates and includes F1-score and Area Under the Receiver Operating 

Characteristics Curve (AUC) measurements.  Experimental benchmark results validate that the ensemble model reaches an 

accuracy rate of 96.39%, surpassing standard single classifiers together with standard ensemble techniques in predicting 

heart disease, thus proving its clinical value for cardiovascular assistance. The proposed diagnostic framework demonstrates 

strength and expandability for medical diagnosis procedures that require outstanding interpretive capabilities along with 

specific prediction accuracy. 

Keywords - Accuracy, Boosted SVM, Cardio Vascular Disease, F1-score, Precision, Random subspace, Recall. 

1. Introduction 
Cardiovascular Disease (CVD) represents different heart 

and blood vessel disorders that encompass coronary artery 

disease together with heart failure, arrhythmias and stroke as 

major conditions. The development of such diseases results 

from either atherosclerosis-induced fat accumulation in 

arteries or blood clot formation that reduces vital organ blood 

supply [1]. The main dangers for CVD development consist 

of hypertension alongside diabetes mellitus as well as 

tobacco usage together with obesity and insufficient exercise. 

Doctors use clinical evaluation and medical history together 

with physical examinations in addition to tests such as 

electrocardiograms (ECG), echocardiography, cardiac 

biomarkers, stress tests and imaging techniques like CT or 

MRI for diagnosing CVD. The medical staff needs to identify 

CVD early because timely diagnosis enables proper 

treatment approaches and stops health complications from 

developing. 

Cardiovascular disease leads to more human deaths than 

any other health condition worldwide each year through heart 

attacks and strokes combined [2]. Most CVD-related deaths 

take place across low- and middle-income nations, where 

these health problems generate 80% of total fatalities. Stroke 

and ischemic heart disease cause most deaths from 

cardiovascular diseases. Although doctors have made 

medical progress to fight CVD, doctors treat more patients 

who die because of heart disease. According to research, 

more worldwide focus on early cardiovascular risk factor 

control and disease detection is needed to manage heart 

disease challenges globally [3]. Detecting CVDs at their first 

stages helps stop disease progression and improves patient 

outcomes. Clinical data sets have natural barriers including 

their difficulty to analyze and their high level of specificity 

along with measurement errors. Ensemble-based ML tools 

have become popular because they demonstrate clear 

potential to build dependable automated diagnostic methods 

[4, 5]. 

1.1. Research Challenges 

Multiple obstacles exist in Cardiovascular Disease 

(CVD) detection, affecting the speed of diagnosis and 
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appropriate treatment delivery process. Early-stage CVD 

shows minimal symptoms in most cases, which delays early 

diagnosis until serious medical conditions already happen 

[6]. The assessment of patients becomes challenging because 

patient symptoms show diverse patterns that depend on their 

age and sex combined with any coexisting medical 

conditions. Early CVD detection remains challenging 

because low-resource areas struggle to obtain echo and 

cardiac imaging diagnostic instruments. Data interpretation 

from ECGs demands specialist expertise that health facilities 

may lack completely. The combination of multiple clinical 

data types presents technical barriers, particularly during 

computerized detection that utilizes artificial intelligence and 

machine learning programming. Better diagnostic techniques 

are essential to provide both accuracy and accessibility, as 

well as flexibility in various healthcare facilities. 

1.2. Problem Statement 

Cardiovascular diseases, or CVD, continue to be the 

cause of maximum mortality in the world, and this burden is 

very high in those developing parts of the world where the 

accessibility of highly developed medical infrastructure is 

low. The identification of CVD at an early stage is important, 

but it is usually retarded owing to the non-specific or faint 

nature of the symptoms found in its early stages hence the 

late drug intervention. The standard diagnosis tools, which 

include Electrocardiograms (ECG) and cardiac imaging, 

need to be interpreted by specialists and are often unavailable 

and impractical to use in low-resource care environments. 

This increases the loss of opportunities for early intervention 

and deteriorates patient outcomes. 

The increasing inequality in access to diagnosis can be 

evidence of the necessity to develop a cost-effective, 

automated, and scalable diagnostic system capable of 

providing clinicians with the tools and operating efficiently 

in various healthcare settings. The latest technologies, such 

as Artificial Intelligence (AI) and Machine Learning (ML), 

provide effective coping strategies, as they allow for 

automatizing the analysis of clinical data, better diagnosis, 

and reducing human-made mistakes [7]. More specifically, 

Support Vector Machines (SVMs) have exhibited good 

generalization behaviour and robustness in the presence of 

high-dimensional vectors and, therefore, could serve well in 

medical diagnosis. Nevertheless, the SVM models [8] 

themselves tend to reduce their predictive power when 

analysing heterogeneous, imbalanced, or dirty clinical data, 

which are common issues facing real-life clinical use [9]. 

To address these shortfalls, ensemble learning methods 

have been suggested as the new alternative to combine 

several base classifiers to achieve higher levels of accuracy 

in classification variations and serve to meet greater 

confidence in the predictions. As such, it is evident that a 

research gap exists to generate and test smarter, ensemble-

oriented models of risk because of the profound impact better 

CVD diagnostics integrated with SVM and other methods 

can have in making accurate and meaningful diagnosis 

possible that can be reached sooner and more conveniently 

than currently is possible, at least in resource-poor 

environments. The solution to this issue can lead to a 

considerable decrease in CVD-related deaths and 

enhancement of the health outcomes of the world population 

[10].  

This work proposes an optimal Ensemble Learning 

framework that combines the random subspace feature set 

selection and Stacking approaches to use Boosted Random 

Subspace SVMs for the diagnosis of cardiovascular diseases. 

The framework exists in three layers. 

1. Multiple diverse SVM classifiers are generated by 

training each one on a randomly sampled subset of 

features using the random subspace method.  

2. It uses boosting to iteratively reweight samples by 

directing later classifiers to the misclassified instances in 

order to minimize bias and variance.  

3. Stacking is employed in which a meta-learner is trained 

to best combine the outputs of the ensemble members, 

which incorporate higher-order dependencies among 

base learners. 

 

Additionally, Bayesian Optimization automatically 

picks hyperparameters at the base learner and meta learner 

levels to avoid tedious, laborious manual tuning and perform 

best every time. The primary contributions of this study are 

summarized as follows. 

1. This research develops an ensemble system that 

combines Random Subspace SVMs, boosting, and 

stacking methods to handle difficult distributions of 

CVD dataset clinical information. 

2. The model uses Bayesian Optimization to find perfect 

settings and strengthens the performance of the entire 

ensemble system. 

3. The framework proves better at medical diagnosis by 

showing enhanced results across all evaluation metrics 

on cardiovascular datasets through statistical tests. 

 

The next parts of this study follow this structure. Section 

2 examines existing research about using ensemble 

techniques for CVD diagnosis. Section 3 explains our new 

system design and explains how to optimize the model using 

mathematical methods. Section 4 presents information about 

data sources, model results, and expert evaluations. Section 

5, the end of this research work, presents the conclusion and 

directions for upcoming scientific studies. 

2. Related Work  
The research into cardiovascular disease diagnosis 

benefits greatly from a literature review because it creates an 

understanding of existing conditions and unveils medical and 

technical limitations. The review establishes knowledge 

about risk factors, diagnostic tools, and treatment procedures 
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yet points out shortcomings with present methods because of 

limited sensitivity and restricted use cases. The previously 

conducted research helps determine appropriate datasets and 

features and machine learning methods for methodological 

validity. Knowledge gained from the literature review 

enables researchers to develop research hypotheses that rely 

on established evidence and enable meaningful model 

benchmarking. The combination of exhaustive background 

research strengthens both the quality and academic integrity 

of research, making it stronger for publication. 

Jayaraman M and Pichai S [11] research combines 

several learning methods to increase accuracy in predicting 

cardiovascular disease onset. Using 70,000 records, the 

authors first filtered out damaged data records via a box plot 

algorithm for outlier detection.  The dataset needed 

processing, so we split it into training and testing data sets. 

The authors tested a group of basic recognition tools such as 

Support Vector Machines (SVM), Decision Trees (DT), and 

Random Forests (RF). The combined model showed 

outstanding results at 88.39% by correctly recognizing 

cardiac heart events while avoiding incorrect assessments for 

both types of data. This study proves that combining different 

training methods can precisely forecast when patients will 

develop cardiovascular diseases in medical settings. The 

successful combination of effective dataset preparation and 

multiple learning methods improves our ability to make 

accurate diagnoses at the beginning of treatment planning. 

Ganie and colleagues [12] developed an ensemble 

learning approach to boost diagnosis accuracy of heart 

diseases. The study team applied Gradient Boosting 

XGBoost and AdaBoost boosting methods to analyze heart 

disease features from the UCI Machine Learning repository. 

The core actions of my process are to format the data and 

train the model to check results. The dataset underwent 

exploratory analysis to discover and deal with missing data 

by imputation, and then the interquartile range was employed 

to detect and replace outliers.  

The filtered data is divided into 70 percent training and 

30 percent testing data. We evaluated all boosting models by 

splitting samples into 10 sections for testing and training 

while repeating the process 10 times. The Gradient Boosting 

method delivered 92.20% success, which exceeded the 

results of XGBoost and AdaBoost. The Gradient Boosting 

model outperformed other methods in recognizing heart 

disease cases accurately, while its detection measures 

performed well for positive and negative disease samples. 

The authors believe this hybrid system can recognize various 

illnesses effectively and suggest future work on transferred 

learning technologies. 

Tiwari A., together with Chugh and colleagues [13], 

present a reliable method for improving our ability to predict 

cardiovascular diseases. The authors used all available 

datasets from IEEE Data Port that combined data from 

Hungary, Cleveland, Long Beach, VA, Switzerland, and 

Statlog. The research team used four separate feature 

selection methods, LASSO and Relief, in particular, to find 

the best disease predictors. Afterwards, we determined the 

most helpful elements using Chi-Square statistical values and 

p-values.  

The model designer combined ExtraTrees Classifier, 

Random Forest, and XGBoost in a stacked ensemble 

classifier. This approach combines various models with their 

strengths to get better forecasting results as a whole. The 

proposed model's performance results reveal its accuracy, 

precision, recall, F1-score, specificity, sensitivity, MCC, and 

AUC-ROC scores. The combined system delivered an 

excellent prediction result of 92.34% while demonstrating 

better performance than any previous studies. 

Sharma et al. [14] developed a study using classification 

and ensemble methods for heart disease diagnosis while 

improving medical choice-making at the health centre. The 

model used several basic machine learning algorithms for 

weak learners to build a dependable predictive system. The 

process groups different basic low-performing classifiers to 

build an accurate and precise enhanced model. The model 

uses initial medical signs to detect heart disease at the 

beginning before problems become severe. Grouping several 

forecasting models together increased heart disease diagnosis 

accuracy better than single-classification models. Using 

several classification methods strengthened our predictive 

scheme. 

In a research project, Wenhao Chi and colleagues [15] 

examined how MTBO speeds up hyperparameter selection in 

SVM classifiers when detecting pulmonary nodules. The 

author used MTBO to make hyperparameter tuning in SVM 

more efficient to speed up pulmonary nodule screenings. This 

research project followed a specific set of steps to accomplish 

its tasks. CT scans of lungs required preprocessing to detect 

their nodules before applying nine different image 

classification methods across different numbers of bins and 

quantization values. Radiomic features of nodule image data 

were generated using different shape measurements plus 

statistical values and texture patterns. The team developed an 

SVM classifier with an RBF kernel for each resolution work 

strategy. The MTBO method optimized the hyperparameters 

C and γ for every SVM classifier by sharing information from 

all tasks using a combined version of the Gaussian process. 

MTBO sped up the hyperparameter tuning process for all 

classifiers more than traditional STBO methods. MTBO 

reduced classification loss and RMSE scores for all tasks 

when optimizing various linked models simultaneously. This 

research uses MTBO technology to boost medical diagnosis 

work by decreasing processing time and advancing image-

scanning accuracy. 
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Francesco Girlanda, Olga Demler [16] and their team 

present innovative techniques to better estimate 

cardiovascular disease using self-supervised learning to 

merge MRI, ECG and clinical readout information. The 

framework uses multiple steps in self-supervised learning to 

develop its performance. The Masked Autoencoder 

technique lets us train the ECG encoder, which extracts 

useful patterns from ECG measurements. The system uses an 

Image Encoder to recognize important information within 

cardiac MRI inputs. The connection between MRI data and 

simpler resources such as ECG and clinical records directs 

the system to recognize patterns better. The network receives 

special training to determine if a patient has experienced a 

heart attack. Using multiple types of self-supervision 

achieved 7.6% better performance than standard training 

methods in accuracy results. The model recognizes both heart 

disease cases and non-disease cases more effectively in this 

situation. The research uses self-supervised learning 

techniques to analyze multiple data types and produces 

efficient and reliable CVD warnings despite small labeled 

dataset availability. 

Mohapatra et al. [17] brought forward an automatic 

system that helps doctors find heart problems faster by 

looking at medical records on patients' Electronic Health 

(EHRs). Our system creates automatic heart irregularity and 

disease detection tools to help medical staff identify heart 

problems faster and more precisely. The research sets up a 

two-stage ensemble approach made up of separate ML 

predictors to analyze various patterns in the dataset. The final 

prediction system uses base-level outputs to elevate the 

model's total effectiveness.  Our model shows performance 

numbers of 92% accuracy along with 92.6% precision, 

sensitivity and specificity of 92.6% and 91%, respectively. 

The numbers prove the model can reliably detect when 

patients have or do not have heart problems. The stacking 

model showed better accuracy than single traditional ML 

methods when it comes to medical diagnosis. This research 

shows that stacking ensembles with advanced ML methods 

helps doctors make better heart disease decisions and handle 

patient cases faster. 

The researchers Qusay Shihab Hamad, Hussein Samma, 

and Shahrel Azmin Suandi [18] provide a complete review of 

updated work that uses metaheuristic algorithms to improve 

CNN hyperparameters for medical imaging tasks. The author 

wants to simplify CNN hyperparameter tuning for experts 

and minimize tuning time by looking at metaheuristic 

optimization methods. This review studies medical image 

diagnosis research from 2019 to 2022, which optimizes CNN 

hyperparameters using Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), Harris Hawks Optimization 

(HHO), and Arithmetic Optimization Algorithm (AOA). 

These optimization algorithms help doctors make better 

clinical decisions between various medical settings, 

especially when diagnosing brain growths, coronavirus 

infections, and breast cancer. The study obtained 98.8% 

effective results in detecting COVID-19 through optimising 

CNN networks. Our research documents the most adjusted 

hyperparameters: learning rate, batch size, number of CNN 

layers, filters, dropout ratio, and fully connected layer design. 

Metaheuristic search methods help find appropriate model 

settings without extensive manual trial and error to boost 

model performance at a faster development speed. Medical 

image research becomes more effective with these algorithms 

that improve tool performance and speed up diagnostic model 

creation. 

Mert Özcan and Serhat Peker [19] studied how to predict 

heart disease and understand the variable connections using 

the CART algorithm. The research uses CART as a 

supervised learning technique for heart disease prediction 

and determines how input variables connect to this condition. 

Scientists worked with one dataset from five sources that 

included 1,190 results with eleven total data points. Our 

preprocessing methods helped improve how well the model 

distinguishes accurate results. The CART system trains and 

forecasts heart disease events. The CART model showed 

87% prediction accuracy, which proves it can effectively 

detect heart diseases. Healthcare providers find it easy to 

work with the model because its extracted decision rules do 

not need advanced knowledge inputs to use the tool. Research 

demonstrates that CART medical models work well because 

they show important insights and are easy to use. The model's 

useful decision guidelines help medical staff and patients 

with time or budget limitations. This investigation boosts 

understanding of medical machine learning by showing that 

CART models aid doctors with heart disease evaluation and 

care setup. 

V. K. Sudha and D. Kumar [20] designed an advanced 

heart disease prediction system using CNN and LSTM 

networks. Our project creates a deep learning system that 

enhances heart disease predictions through a combination of 

CNN and LSTM architecture benefits. The proposed method 

uses CNN to find medical data patterns while LSTM tracks 

relevant time-related information. The system-validated 

results rely on k-fold cross-validation and perform better than 

SVM, Naïve Bayes, and Decision Trees as traditional 

algorithms. The amalgamated CNN-LSTM system achieves 

89% accuracy through machine learning, outperforming all 

typical models. This research shows how joining CNN and 

LSTM networks increases heart disease detection accuracy, 

which leads to better early diagnosis results. 

Ezekiel Adebayo Ogundepo and Waheed Babatunde 

Yahya [21] study which supervised machine learning 

classifiers works best for heart disease prediction. Our project 

examines how ten basic classification algorithms identify 

heart disease in Cleveland data and show their output on the 

Statlog dataset. We initially analysed the Cleveland dataset 

through the Chi-square test to find which bio-clinical factors 
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were statistically connected to heart disease. We split the 

Cleveland data into 70% training and 30% testing parts 

before conducting 200 independent partitions.  

The Statlog dataset confirmed our findings from ten 

separate training and testing experiments on the data. Several 

specific bio-clinical factors strongly relate to heart disease 

status according to our analysis (statistical significance < 

0.001). The Support Vector Machine (SVM) model delivered 

outstanding results with 85% accuracy and scores of 82% 

sensitivity, 88% specificity, 87% precision, an area under the 

ROC curve of 91%, and a Log Loss of 38%. According to 

this study, model selection plays a vital role in medical 

diagnosis, and SVM demonstrates great potential as a heart 

disease forecasting method. 

The research from Manikandan et al. [22] examines how 

joining the Boruta feature selection model with multiple 

machine learning tools helps find heart disease better. Our 

goal is to test if Boruta feature selection leads to better 

performance when machine learning classifiers predict heart 

disease. Boruta feature selection helped us test its impact on 

the Heart Disease Dataset at Cleveland Clinic on LR DT 

SVM RF and XGBoost.  

Boruta found the most useful attributes of the data before 

training occurred. The utilization of Boruta produced a 

selection set of six features from thirteen. Boruta feature 

selection helped Logistic Regression reach 88.52% accuracy, 

outperforming other tested classifiers. Boruta feature 

selection demonstrates in research that it boosts machine 

learning classifiers for heart disease prediction by selecting 

the best features. 

This experiment merges CNN and LSTM deep networks 

to create a better system for CVD prediction, as explained by 

Hossain et al. [23]. Their study seeks to make a CVD 

prediction model by mixing CNN and LSTM neural networks 

with explainable AI methods to enhance detection outcomes. 

The system combines CNN layers to read medical 

information patterns, while LSTM layers detect trends in 

time-based data. Our team used feature engineering 

procedures to boost the model's output results.  

The model results required SHAP values to show which 

medical indicators affected CVD risk most. The hybrid CNN-

LSTM system reached 74.15% accuracy in not using feature 

engineering, then 73.52% with feature engineering, which 

outperformed the existing best results.  

Our model gained better interpretability because SHAP 

values showed us exactly which input factors drive its 

prediction results. This research proves how linking deep 

learning systems with AI techniques provides a better way to 

find CVD early in patients. From the above investigation, it 

is identified that several important limitations exist that 

decrease its effectiveness across different models. The 

models needed to enhance their approach since they did not 

use advanced methods to select features and extract deep 

features.  

Unbalanced medical data was improperly handled in the 

developed models, especially when working with rare 

cardiovascular disease researchers. This research mostly used 

Cleveland and Statlog datasets that can only represent brief 

population details from specific areas.  

The presented models proved harder to run because their 

ensemble structure used boosting mechanisms with meta-

learning that raised scalability problems on big or complex 

datasets. Hyperparameter tuning is needed to improve the 

model's performance. The research evaluated basic machine 

learning methods yet excluded deep learning options, which 

provide better results but create high interpretation 

difficulties.  

Only basic model explainability was included, and some 

dark box systems like SVMs made transparency harder to see 

in the study, with no evaluation methods used throughout the 

experiment. There is a need to test many deep learning 

systems with different datasets to show how well deep 

learning works in medical diagnosis.  

3. Methodology 
The methodology develops an ensemble framework 

based on Boosted Random Subspace [24] Support Vector 

Machines (SVMs) and stacked generalization 

implementation for optimum CVD diagnosis results [25]. A 

normalization phase, along with imputation methods, is used 

to process the dataset before analysis to overcome missing 

data problems and unify the format.  
 

Feature selection helps simplify dimensions while 

maintaining only significant features. After pre-processing 

the dataset, the Random Subspace method creates diverse 

feature subsets that multiple SVM classifiers use for training.  

 

A boosting algorithm tackles SVM systems by multiple 

iterations that specifically address wrongly classified data 

points for performance optimization.  

 

A stacked generalization layer uses outputs from the 

boosted SVMs to learn effective prediction combinations. 

The Bayesian optimization method allows the researchers to 

modify base and meta-level model hyperparameters to 

achieve maximum diagnostic accuracy [25].  

 

The Ensemble undergoes quality checks through cross-

validation and performance measurements, including 

accuracy, sensitivity, specificity and AUC-ROC to confirm 

clinical validity. The sequence of operations is illustrated in 

Figure 1. 
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Fig. 1 An optimized framework of Random subspace, boosted SVM 

and stacked generalization with Bayesian Optimization 

3.1. Bayesian Optimization 

Bayesian Optimization [26] is a model-based 

probabilistic technique for identifying optimal function 

minima or maxima within cost-intensive evaluation non-

analytic functions or noisy data scenarios. The technique 

finds its prime application during hyperparameter model 

tuning for machine learning systems because every 

evaluation cycle demands expensive computational 

resources. 

The basic idea of Bayesian Optimization is: 

1. The objective function receives a surrogate 

representation by applying a Gaussian Process function. 

2. Choose the next point for evaluation using an acquisition 

function that estimates uncertainty and improves 

predicted values. 

3. The surrogate model gets updated through previous 

observations to approach the global optimum quickly. 

 

3.1.1. Bayesian Optimization to Find the Best SVM 

Parameters 

The Bayesian optimization system finds the best 

Support Vector Machine (SVM) hyperparameters by testing 

various values of C, kernel selection, and specific gamma in 

the Radial Basis Function (RBF) kernel [27]. The method 

differs from grid or random search by using probabilistic 

learning to pick the best next hyperparameters based on what 

it has discovered so far.  
 

This repeated method uses exploration and exploitation 

practices to inspect the function model, which typically 

measures classification results. Bayesian Optimization 

decreases testing time by selecting the best hyperparameter 

sets and helps improve the accuracy of the cardiovascular 

disease diagnosis model. 

Bayesian Optimization to minimize the value of f(x) by 

adjusting the vector of hyperparameters x: 

𝑋∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥∈𝑋

𝑓(𝑋)   (1) 

 

In the case of SVM, the X could be any of the following. 

 C: regularization parameter 

 𝛾: kernel coefficient for ‘rbf’ 

 Type of kernel (ex: -linear’,’rbf’, ’polynomial’, etc.) 

 

Bayesian Optimization builds an objective function 

model using a substitute model typically based on Gaussian 

Processes (GP): 

 

𝑓(𝑋) ∼ 𝐺𝑃(𝑚(𝑋), 𝑘(𝑋, 𝑋 ′))  (2) 

 

It uses an acquisition function (e.g., Expected 

Improvement, Upper Confidence Bound) to guide the search: 

 

Adopting an acquisition method (such as Expected 

Improvement or Upper Confidence Bound) efficiently 

performs the search space. 

 

𝑋𝑛𝑒𝑥𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑋

𝛼(𝑋|𝑓̑)  (3) 

Table 1. Advantages of bayesian optimization over other methods 

Method Limitation 
Bayesian Optimization 

Advantage 

Grid 

Search 

Exhaustive and 

inefficient in high 

dimensions 

Requires fewer 

evaluations by being 

sample-efficient 

Random 

Search 

Ignores past 

information when 

selecting next points 

Uses prior evaluations to 

guide search 

(probabilistic learning) 

Gradient-

Based 

Needs differentiable 

functions 

Works on black-box, 

non-differentiable, noisy 

functions 

Manual 

Tuning 

Time-consuming and 

subjective 

Automated, principled 

optimization process 

 

3.1.2. Key Advantages of Bayesian Optimization 

Bayesian Optimization is simple and efficient in finding 

optimal parameters with fewer function evaluations. The 

algorithm works best with complex models because it 

requires less training time. Because of its random search 

technique, the method helps escape local minimum traps. The 

technique can optimize problems without needing 

information about gradients or function structure. The 

algorithm promotes exploration and exploitation 

automatically by using expected improvement or upper 

confidence bound methods. Table 1 shows the advantages of 

Bayesian Optimization over other methods. 

Preprocessing 

Feature Selection 

 

Boosted SVMS 

Stacked Generalization 

Bayesian Optimization 

Random Subspace 

Evaluation 
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3.2. Training a Boosted Ensemble SVM with Random 

Subspace 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Pipe-line diagram of Boosted Random Subspace SVM with 

stacking 

 

To improve diagnostic accuracy and generalization of 

the model, a boosted ensemble learning strategy is used with 

the Random Subspace method [28], which is shown in Figure 

2. First, it generates multiple training subsets by randomly 

picking features from the original dataset. A series of base 

classifiers – SVMs in this case – are trained over these feature 

subsets, ensuring diversity in the learners.  

 

SVMs are applied with boosting, where the SVM 

classifiers are trained sequentially and focus more on 

instances that were misclassified by the previous one so that 

the bias is reduced, and there is an improvement in the overall 

performance. To form a strong ensemble model, the weighted 

scheme is applied to the predictions from all boosted SVMs 

trained on different subspaces. The basis for this hybrid 

method was merged from the capabilities of feature diversity 

(from Random Subspace) and iterative error correction (from 

boosting), which results in a robust and accurate framework 

for making cardiovascular disease diagnosis. 

 

A Mathematical formulation for training a Boosted 

Ensemble using Random Subspace, which includes both 

techniques into a formal process: 

 

Let the training dataset be: 

D={(𝑥𝑖 ,y𝑖)}i=1
𝑁 ,  x𝑖 ∈ 𝑅𝑑 , y𝑖 ∈ {+1,-1} (4) 

Step 1: Random Subspace Sampling. 

For each base learner 𝑡 = 1,2, … , 𝑇: 

 Randomly select a subset of features 𝐹𝑡 ⊂
{1,2, … , 𝑑} 

 Construct a training set using only the features in 

𝐹𝑡: 

𝐷𝑡 = {(𝑥𝑖
(𝐹𝑡)

, 𝑦𝑖)}𝑖=1
𝑁    

 

Where 𝑥𝑖
(𝐹𝑡)

is the projection 𝑥𝑖onto the feature subspace 

𝐹𝑡 . 
 

Step 2: Boosting (AdaBoost-style) 

Initialize weights for each sample:    

𝑤𝑖
(1)

=
1

𝑁
, i=1, … ,N 

For each iteration 𝑡 = 1,2, … , 𝑇: 
1. Train a base classifier ℎ𝑡 (e.g., SVM) on 𝐷𝑡wit 

sample weights 𝑤𝑖
(𝑡)

 

2. Compute weighted classification error:  

𝜀𝑡 = ∑ 𝑤𝑖
(𝑡)

⋅ ∏(ℎ𝑡(𝑥𝑖
(𝐹𝑡)

𝑁

𝑖=1

) ≠ 𝑦𝑖) 

3. Compute classifier weight: 𝛼𝑡 =
1

2
𝑙𝑛 (

1−𝜀𝑡

𝜀𝑡
) 

4. Update sample weights:  

𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

⋅ 𝑒𝑥𝑝(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖
(𝐹𝑡)

)) 

Normalize 𝑤𝑖
(𝑡+1)

so that ∑ 𝑤𝑖
(𝑡+1)

𝑖 = 1 

Final Prediction:  

The ensemble classifier 𝐻(𝑥) aggregates the predictions 

of base learners:  

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡 ⋅ ℎ𝑡(𝑥(𝐹𝑡))𝑇
𝑡=1 ) (5) 

This formulation helps understand how Random 

Subspace makes features diverse while Boosting decreases 

the error and increases the robustness. 

 

3.3. Stacked Generalization with Logistic Regression 
Several base classifiers work together using Stacked 

Generalization to produce better results than the separate 

models would achieve alone. Various boosted SVMs trained 

from random subspaces are taught individual approaches 

before using them in Stacked Generalization [29]. After 

producing outcome predictions on a validation set, the 

models feed their results into a meta-classifier for training 

that learns which combination of outputs creates the best 

predictions.   

 

Generally, Logistic Regression is used as a meta-

classifier because it offers easy interpretation and successful 

results. This method uses weighted addition to produce the 

final prediction by analyzing how base learners generate 

results and the resulting class membership likelihood. 

Multiple individual models improve accuracy when they 

work together in stacking and can handle diagnostic tasks 

better than any one model by itself. 

 

Random 

Subspace 

SVM 

SVM 

SVM 

Stacking 

Stacking 

Boosting 
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3.4. Mathematical Formulation to implement Stacked 

Generalization with Logistic Regression as the Meta-

Classifier 
Let:  

 ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥): outputs of T base classifiers (e.g., 

boosted SVMs) 

 𝑧𝑖 = [ℎ1(𝑥𝑖), ℎ2(𝑥𝑖), … , ℎ𝑇(𝑥𝑖)]: the feature vector for the 

sample 𝑥𝑖used by the meta-classifier 

 

Meta-level logistic regression model: 

Train logistic regression 𝑧𝑖to predict 𝑦𝑖: 

 

𝑃(𝑦 = 1|𝑧) =
1

1+𝑒𝑥𝑝(−(𝑤𝑇𝑧+𝑏))
 (6) 

 

Here, w denotes the weight vector for the base classifier 

outputs, and b denotes the bias term. 

 

The parameters w b are learned by minimizing the log-

loss function over the validation data: 

 

𝐿 = − ∑ [𝑦𝑖 𝑙𝑜𝑔( 𝑃(𝑦𝑖)) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝑃(𝑦𝑖))]𝑁
𝑖=1

     (7) 

 

In short, this process effectively learns how to weight the 

base classifiers' predictions using logistic regression in a way 

that the result of the final prediction is more accurate and 

robust. 

 

3.5. Cross-Validation of the Final Ensemble Model 

Cross-validation [30] enables strict testing to show 

whether the combined model of boosted SVM voting 

classifiers and stacked generalization delivers good 

predictions. Here, the dataset is split up into several folds (k-

fold cross-validation is often used), and the model is trained 

on k−1 folds and tested on the remaining one. This is repeated 

k times, where each of the k folds will be taken as a test set 

once. Within each fold, base learners are trained within the 

ensemble learning framework and boosting on their 

respective random subspace features and the meta classifier 

(e.g., logistic regression) is trained on out-of-fold predictions. 

In order to guarantee that results are not biased and are 

representative of the model’s actual predictive strength, the 

final performance metrics, i.e., accuracy, sensitivity, 

specificity, and AUC, are averaged across all folds. This 

approach to validation enables the detection of overfitting 

while ensuring the robustness of the Ensemble used for 

diagnosing cardiovascular disease. 

 

4. Results and Analysis 
4.1. Dataset Description 

This study uses the Heart Disease Dataset 

(Comprehensive) that Manu Siddhartha created at Liverpool 

John Moores University and made available on IEEE 

DataPort [31]. The dataset includes five prominent heart 

disease records from Cleveland, Hungarian, Switzerland, 

Long Beach, VA, and Statlog (Heart), which were combined 

to create a single set containing 1,190 examples with 11 core 

variables. It has become the largest free database to research 

coronary artery disease. 

 

This database exists to build heart disease detection 

systems by helping machine learning methods predict 

diseases at their early stages. The data contains important 

clinical measurements: age, gender, chest pain type, blood 

pressure, cholesterol levels, blood sugar readings, initial ECG 

results, maximum heart rate, exercise-related chest pain, ST 

segment depression during exercise compared to rest, and ST 

segment response. The dataset, however, is a rich resource 

for CAD-related machine learning and data mining 

algorithms though, but it is worth noting limitations in the 

dataset. In particular, there are 272 duplicates, and some 

imputed missing values with zeros, which can influence the 

performance and accuracy of predictive models. This 

indicates that the data analysis researchers should apply 

suitable preprocessing on the data before proceeding. 

 

4.2. Experimental Setup 

In Windows 10 Professional (64-bit) operating system, 

the proposed cardiovascular disease (CVD) detection model 

was performed based on MATLAB 2021b software. It was 

implemented on a laptop brand, Lenovo, at the ThinkPad 

T480 with an Intel Core i5 8th Generation processor, having 

4 cores and 8 threads with a base clock speed of 1.6 GHz and 

a maximum turbo clock speed of 3.4 GHz. Such system 

architecture offered enough computing power in data 

preprocessing, training, and evaluation. MATLAB 

environment installed some of the most important toolboxes, 

like the Statistics and Machine Learning Toolbox, with the 

aim of implementing the classifiers like the logistic 

regression and support vector machines (SVM), the Image 

Processing Toolbox that will process the clinical data (in case 

it was required), and the Deep Learning Toolbox introducing 

components on the basis of neural networks or the 

Optimization Toolbox that will tune hyperparameters and 

improve performance. All of these toolboxes helped to work 

out the framework of hybrid classification, including 

sigmoid-hyperbolic activation function and logistic 

regression-based analysis, refining them. All in all, the 

chosen system and the software environment were effective 

and viable to implement the suggested methodology. 

 

4.3. Performance Metrics 

To measure how well the stacked ensemble model 

accurately diagnoses, the accuracy, precision, sensitivity, F1-

score and AUC scores are computed [32, 33]. These 

measurement tools help us completely test the classifier's 

results, especially in healthcare, since wrong diagnoses can 

lead to serious effects. 
 

1. Accuracy 

Accuracy=
TP+TN

TP+TN+FP+FN
  (8) 
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2. Precision 

Precision=
TP

TP+FP
   (9)

  

3. Recall 

Recall=
TP

TP+FN
   (10) 

4. F1 Score  

F1Score=2 ×
Precision×Recall

Precision+Recall
  (11) 

 

5. Area Under the Curve (AUC): It evaluates the model's 

capability to differentiate between classes for various 

threshold settings. The greater AUC suggests better 

separability. 

The Table 2 Showing the evaluation of performance 

metrics between the different models. Figure 3 shows the 

graphical analysis between the proposed method and other 

models.   Accuracy measures the overall correctness of the 

model. The proposed method achieves the highest accuracy 

at 96.39%, significantly outperforming all others.  

 

SVM comes second at 88.24%, indicating solid 

performance but still about 8.15% lower than the proposed 

method. The proposed method likely benefits from more 

sophisticated learning or ensemble mechanisms, resulting in 

fewer classification errors. 

 

Precision shows how well a model identifies actual 

positive results. The proposed method demonstrates 96.51% 

precision with only a small number of predictions that 

actually proved wrong, while Decision Tree claimed 88.11% 

and Naïve Bayes achieved 85.18%. The Proposed Method 

provides dependable results because it generates few 

incorrect positive predictions, especially when these mistakes 

lead to substantial costs. 

 

The recall shows how often the model finds real positive 

results. The SVM model reaches 97.14% positive case 

detection, which is just 0.5% better than what the Proposed 

Method delivers. The K-NN algorithm achieves 87.12% 

accuracy, while Random Forest follows with 86.65%. 

Despite finding more positive cases than other models, the 

Support Vector Machine shows a decrease in accuracy. The 

proposed method reaches close to the best results in both 

accuracy and performance. 

 

F1-Score represents the average performance between 

precision and recall since it uses their harmonic mean. The 

proposed method leads the pack at 96.58% because it exhibits 

reliable performance throughout all trials. SVM provides 

results that are 7% lower than the proposed method. The 

proposed method shows excellent results both in identifying 

actual positives (recall) and reducing false detections 

(precision) based on its F1-Score measurement. 

 

Table 2. Performance metrics analysis between proposed model vs State of the art models 

Model Accuracy Precision Recall F1-Score AUC 

SVM 0.8824 0.8336 0.9714 0.8972 0.9483 

Logistic Regression 0.8269 0.8331 0.8410 0.8370 0.9007 

Decision Tree 0.8647 0.8811 0.8601 0.8705 0.8975 

K-NN 0.8563 0.8589 0.8712 0.8650 0.9129 

Naïve Bayes 0.8345 0.8518 0.8315 0.8415 0.9021 

Random Forest 0.8445 0.8437 0.8665 0.8549 0.9195 

Proposed Method 0.9639 0.9651 0.9666 0.9658 0.9637 

 
Fig. 3 Evaluation of performance metrics between different models  
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Fig. 4 Confusion matrices 

 

 
Fig. 5 Analysis of ROC curve and AUC scores 
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Table 3. Summary of comparative performance 

Reference 

No. 
Year Methodology 

Best 

Accuracy 

[19] 2022 Basic CART model 87.00% 

[35] 2021 Individual models: RF, LR, SVM with 10-fold CV 92.00% 

[36] 2022 
Ensemble with AdaBoost combining SVM, LR, RF, 

ANN, MLPNN 
93.39% 

[37] 2022 Stacked Ensemble using LR, RF, SGD, GDC, ADA 91.84% 

[38] 2023 
Soft Voting Ensemble of RF, LR, SVE, KNN, NB, with 

GB and AB 
95.00% 

[39] 2024 Two-stage stacking using RF, DT, XGB 96.00% 

Proposed — 
Optimized Ensemble of Boosted Random Subspace 

with stacked SVMs (Bayesian-tuned) 
96.39% 

 
AUC shows how well a model recognizes differences 

between different types of items. The proposed method 

showed excellent classification skills, achieving a 96.37% 

result. Random Forest achieved a strong performance of 

91.95%, while SVM surpassed it at 94.83%. According to 

AUC results, the proposed method demonstrates its ability to 

place positive instances at the top of its rankings accurately 

based on imbalanced data. 

 

Based on the results from this analysis, our method shows 

clear improvement in every measurement.   SVM maintains 

its position as a reliable standard model that performs well in 

recall and AUC. The proposed method performs better across 

multiple metrics as other baseline models demonstrate lower-

than-average results. Figure 3. Showing the graphical analysis 

of performance metrics between proposed and other models. 

 

4.4. Confusion Matrix Analysis 

A confusion matrix is a table that the analyst uses to 

determine how well the classification algorithm is performing 

[34]. This gives the overall bar chart, which shows how many 

predictions were correct and incorrect, and splits it up for each 

class. Visualizing a model’s accuracy using the matrix, most 

common in multiclass or imbalanced datasets, is helpful. 

 

The true positive rate (correct identification of patients 

with heart disease) and true negative rate (correct 

identification of healthy individuals) were high, and a 

diagonal largely dominated the confusion matrix. This implies 

that the Ensemble was able to learn discriminative patterns 

well from the normalized feature space. Figure 4 shows the 

confusion matrices generated from the proposed method and 

other models. 

 

4.5. Comparison of ROC Curves and AUC Scores 

A Receiver Operating Characteristic diagram shows how 

well a model detects problems during the evaluation process 

[33]. It shows how the True Positive Rate relates to the False 

Positive Rate when adjusting detection thresholds. AUC 

analyzes model performance, while class separation improves 

when AUC values rise. The analysis of AUC scores and ROC 

curves between proposed and state-of-the-art models is shown 

in Figure 5. 
 

𝐴𝑈𝐶(𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒) =
1

2
× (1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅)      (12) 

 

 The Proposed Method delivers superior performance by 

achieving an AUC of 0.9641, touching the best result of 

all classification models thus demonstrating outstanding 

classification capabilities. 

 SVM provide effective results through an AUC of 0.90, 

although they display high sensitivity and show some 

tendency toward false positives. 

 Random Forest and k-NN achieve comparable results to 

each other as they produce evaluation scores of 0.85 to 

0.86 based on AUC. 

 The AUC measurements demonstrate that Logistic 

Regression and Naïve Bayes provide fewer accurate 

predictions in this application.  

 The Proposed Method stands as the leading model in both 

sensitivity and specificity tests because its AUC exceeds 

0.5 in all predictions. 

 

4.6. Baseline Model Comparison 

Many researchers use machine learning approaches to 

predict heart disease on the IEEE Dataport dataset through 

their research. Research into heart disease prediction uses 

different approaches that include model-building methods and 

optimization procedures. Table 3 shows how this research 

developed and performed in relation to others. 
 

The proposed method presents a performance that 

outperforms the state-of-the-art, and this is evidence of 

stacked ensemble Learning, boosting methods, and automated 

hyperparameter optimization's efficacy. Thus, it is considered 

the state of art approach for heart disease prediction on this 

dataset.
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4.7. Practical Implications 

The suggested ensemble learning system brings real 

benefits to CVD diagnosis in medical practice. The model 

helps medical teams perform better decisions at the right time 

with higher test precision because it gives more precise results 

for patient care. Its ability to work with medical structures 

makes it ready for use in Clinical Decision Support Systems 

(CDSS). This model system lets machine learning perform 

automatic tuning work that hospitals and diagnostic centres 

can easily use. The framework needs more testing and system 

integration into electronic record systems to help healthcare 

organizations identify heart disease risks sooner and create 

individual care plans. 

 

5. Conclusion 
An optimized framework of ensemble learning was 

proposed in this study to improve the diagnosis of 

cardiovascular disease based on boosted random subspace 

SVMs and stacked generalization for the promotion of 

diagnostic performance. Random subspace selection was 

integrated to increase the model diversity, and boosting and 

stacking were used to capture some of the complex patterns in 

the data, improving classification accuracy and robustness. 

Finally, Bayesian Optimization was used to fine-tune 

hyperparameters efficiently and improve model performance. 

The research evaluates the proposed method through standard 

test collections and shows it delivers superior results than 

existing approaches in disease identification tasks. The 

proposed ensemble model proves useful in heart disease 

detection because it shows 96.39% accuracy, surpassing other 

single classifiers and basic ensemble methods in clinical heart 

disease testing. Moreover, the framework is designed for the 

necessary structural flexibility and predictive strength to be a 

promising tool for computer-aided diagnosis. However, the 

study is limited in that model interpretability, computational 

cost, and clinical validation are critically lacking. However, 

the proposed method clearly represents a huge progress in 

exploiting advanced ensemble learning in cardiovascular risk 

estimation. Moreover, future extensions will aim at explaining 

more, simplifying models and validating the approach in 

clinical real-world settings to support reliable and transparent 

decision making. 

The next studies will test this model on big medical 

datasets from various practices to make sure the results apply 

in different settings. To enable interpretability to clinical 

users, we will prioritize the incorporation of explainable AI 

techniques. The complexity and resource requirements will be 

decreased by exploring efficient feature selection methods and 

lightweight model variants. Class imbalance and overfitting 

will be considered, and strategies to handle them, including 

synthetic sampling and advanced regularization. Lastly, 

introduction into EHR systems and prospective clinical trials 

will be pursued to evaluate effectiveness in the real world. 
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