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Abstract - Crop development is affected by several variables, such as climatic conditions, soil quality, and diseases, which 

significantly affect yield and productivity. Arecanut, or betel nut, is a tropical crop susceptible to various diseases affecting 

different parts of the plant, from root to fruit. Accurate and timely disease recognition is essential for maintaining crop health 

and enhancing agricultural productivity. Conventional disease identification techniques depend on manual examination, which 

consumes time and is susceptible to inaccuracies. Existing models often face challenges in extracting long range dependencies 

and global feature interactions, limiting the classification accuracies. This study presented a hybrid deep learning (DL) 

framework combining ResNet-50 and Swin transformer for better disease identification. The ResNet-50 model extracts 

hierarchical spatial features, while the Swin Transformer with shifted window self-attention captures global dependencies, 

enhancing classification by emphasising specific disease patterns. The framework is trained and examined using a dataset of 

Arecanut disease sourced from Kaggle with 11,063 images across nine disease categories. Findings demonstrated that the 

suggested framework attains a classification accuracy of 98.42%, outperforming conventional methods. The study highlights 

the effectiveness of incorporating transformer-based attention mechanisms in agricultural disease detection.  

Keywords - Arecanut disease, Deep learning, Self-attention mechanism, ResNet-50, Swim transformer, Convolutional Neural 

Networks. 

1. Introduction 
Agriculture is India's main occupation, making it the 

second-largest producer of agricultural products worldwide. 

India's economy heavily relies on agriculture, with farmers 

cultivating various crops to sustain livelihoods and meet 

market demands [1]. Among these, areca nuts are a 

commercially significant crop that grows widely in tropical 

regions. It plays an essential role in the livelihoods of 

thousands of farmers, particularly in states such as Kerala, 

Karnataka, Assam, and Maharashtra. The production of 

Arecanut is severely affected by numerous diseases that 

reduce both the yield and quality of the crops [2]. 

Arecanut crops are vulnerable to various diseases caused 

by fungal, bacterial and viral infections. Several biotic and 

abiotic stress factors contribute to disease outbreaks, 

impacting crop production. Some of the most common 

diseases include Mahali Koleroga, caused by Phytophthora 

species, which results in fruit rot and premature nut drop, and 

Stem Bleeding, a severe condition that weakens the tree 

structure and reduces its longevity. Other major diseases 

include Bud Borer, Stem Cracking, and Yellow Leaf Disease, 

each exhibiting unique symptoms that require close 

monitoring for early detection [3].  

Traditional disease detection methods rely heavily on 

expert manual inspection, which is time-consuming, 

subjective, and prone to error—particularly in remote or large-

scale plantations. Farmers and agricultural experts typically 

depend on visual observation to examine the severity of the 

diseases. However, such methods are inconsistent and 

inefficient, particularly for large-scale plantations. 

Advancements in artificial intelligence (AI) and DL led 

to the emergence of automated disease diagnosis through 

computer vision (CV), offering improved precision and 

robustness. Integrating AI models in agriculture has 

significantly transformed crop health monitoring, allowing 

real-time analysis and accurate disease classification.  

DL methodologies mainly convolutional neural networks 

(CNNs), illustrate striking capabilities in plant disease 

identification. While deep learning (DL) techniques have 

recently demonstrated strong performance in plant disease 

classification, most existing models either fail to fully capture 

complex spatial textures or cannot model long-range 

dependencies in visual data. The absence of global feature 

understanding results in misclassification, especially when 

diseases exhibit overlapping visual symptoms. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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To overcome these problems, this study suggests a hybrid 

DL method that integrates ResNet-50 and Swin Transformer 

with an attention mechanism to enhance classification 

accuracy. ResNet-50 serves as the feature extractor, learning 

spatial patterns and disease-specific textures. Swin 

Transformer refines feature representations through shifted 

window self-attention, enabling the model to effectively 

process local and long-range dependencies. This study ensures 

a more robust and scalable approach for automated Arecanut 

disease identification. The important contributions of this 

research are outlined below: 

 To create a hybrid DL framework integrating ResNet-50 

and Swin Transformer to efficiently extract local spatial 

features and global contextual dependencies for Arecanut 

disease prediction. 

 To evaluate the efficiency of the suggested framework in 

Arecanut disease detection by comparing its classification 

efficiency with existing approaches. 

The subsequent portions of the study are presented in the 

following manner: A review of related works on Arecanut 

disease detection is outlined in Section 2. The details of the 

hybrid ResNet-50 and Swin Transformer model are explained 

in detail in Section 3. Also, Section 4 discusses the outcomes 

of the study and assesses the efficiency of the framework. The 

research is summarised in Section 5, along with ideas for 

upcoming research. 

2. Related Works 
Ghate et al. (2025) [4] employed the DL model to 

improve the consistency of Arecanut grading. A dataset of 

2000 high-resolution images was collected and augmented 

with 8 CNN architectures evaluated, among which DenseNet 

121 and Inception V3 attained an accuracy of 95.67% and 

96%. Since these models showed efficiency, the dataset 

primarily contained frontal images, limiting the presentation 

of surface texture, color uniformity and hidden defects, which 

impacted the fine-grained classification accuracy. Pavan et al. 

(2025) [5] created an automated disease detection system for 

Arecanut diseases. The study utilised a trained ResNet 50 

model with image preprocessing methods. The study 

demonstrated better accuracy in disease detection, offering 

farmers timely and actionable information for improved crop 

management. The study was limited due to its reliance on the 

quality of the image, where changes in the image's resolution, 

lighting conditions and capture angles affected the proficiency 

of the framework. Kumar et al. (2024) [6] focused on detecting 

and classifying diseases in Arecanut leaves using DL 

frameworks to offer an efficient alternative to traditional 

disease identification methods. A dataset of diseased Arecanut 

leaf images was gathered and split for training, validation and 

testing with ResNet, MobileNet and VGG Net, where VGG 

Net attained 92% accuracy, surpassing other models leading 

to its deployment in an Android application to help farmers in 

early detection and management. However, the model focuses 

only on Mahali (Koleroga), Stem Bleeding, and Yellow Leaf 

Disease, limiting its capability to detect other potential 

Arecanut diseases. 

Naik and Rudra (2024) [7] performed a study on transfer 

learning-based categorisation of Arecanut X-ray images 

utilising both traditional CNN and quantum CNN (QCNN) 

approaches. The study was examined with 12 transfer learning 

(TL) models and found that QCNN surpassed CNN, attaining 

97.72% accuracy. The study noted that the computational cost 

of quantum processing resulted in longer training times 

compared to conventional CNN techniques. Riza (2024) [8] 

developed an Arecanut disease detection application to help 

farmers identify diseases quickly and accurately using a 

machine learning (ML) model integrated into an Android 

system.  

The study employed a CNN algorithm to process image 

data of 10 diseases and 32 symptoms using a teachable 

machine. The system attained an average accuracy, providing 

a user-friendly interface and fast detection process. The study 

lacks a discussion on latency, computational efficiency, and 

battery consumption, which impacts the real-time usability of 

Android devices in remote areas.  

Chikkalingaiah et al. (2024) [9] created a DL-based 

approach to help Arecanut farmers estimate yield by 

segmenting Arecanut bunches from images. The study 

employed a U-Net squared model for segmentation and a 

modified YOLOv3 model for counting the nuts, attaining an 

accuracy of 88% on training and 85% on validation accuracy 

for segmentation, where the YOLO attained 94.7% accuracy 

in yield estimation. Results demonstrated that models perform 

well, allowing an effective solution for Arecanut yield 

estimation.  

However, the U-Net squared model increases memory, 

and computational costs limit real-time deployment. Krishna 

et al. (2023) [10] studied the fruit rot disease (FRD) prediction 

scores in Arecanut, utilising previous meteorological data by 

applying DL frameworks. Meteorological and disease score 

data utilises a rule-based algorithm for training and evaluation. 

The Vanilla GRU framework, optimised and attained a 

minimum MSE of 0.0009 and an R2 score of 0.99, showed 

better performance with a low RMSE of 0.33. However, due 

to the limited dataset, there is a risk of overfitting, which limits 

the framework's capability to adapt to new weather patterns. 

Patil et al.  (2023) [11] aimed to classify the dehusked 

Arecanut into 5 categories employing a customised CNN and 

evaluated its performance with the standard AlexNet 

architecture. A dataset of 300 Arecanut was generated with a 

specialised instrumentation setup. The images were 

preprocessed before being given to the models for feature 

extraction. The customised CNN surpassed AlexNet, attaining 
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97.33% average accuracy and 97.48% F1 scores. AlexNet 

requires more memory, computation power, and storage, 

rendering it less appropriate for practical implementations. 

Hedge et al. (2023) [12] created a CNN-based system to detect 

and categorise diseases affecting Arecanuts, trunks and leaves. 

The framework was trained to employ a dataset of 1,100 

images, which was split into 80:20 for training and validation. 

The suggested method effectively classified diseases and 

attained an accuracy of 93.05%, providing better and more 

accurate diagnoses for farmers. However, the study uses a 

limited dataset, which impacts the ability of the framework to 

generalise effectively. 

Naik and Rudra (2023) [13] created an automated 

classification system for Arecanut quality assessment using X-

ray imaging and DL. To enhance the efficiency of the 

framework, an adaptive genetic algorithm was employed to 

optimise the YOLOv5 architecture, utilising a custom-created 

dataset consisting of Arecanut X-ray images. The research 

attained a mAP of 97.84%, surpassing the other YONO 

models. However, the study faces a high computational 

demand for genetic algorithm optimisation. Mahaveen et al. 

(2023) [14] created a CNN-driven framework aimed at the late 

diagnosis of infections in the leaves of Arecanut, fruit and 

trunk to assist farmers in maintaining crop health. The study 

utilised datasets containing healthy images and diseased 

images of Arecanut samples. The framework attained 88% 

accuracy in determining diseases like Stem bleeding, Mahali 

and yellow leaf while providing preventive measures and 

corrective actions. However, its performance depends on the 

disease stage and image quality. Jenitta and Swetha (2023) 

[15] created a CNN-based system for detecting Arecanut 

diseases affecting leaves and trunk. The study utilised a 

dataset of 200 images, split into a 70:30 ratio for training and 

testing. The framework trained over 50 epochs attained 

81.35% accuracy in identifying diseases like stem bleeding, 

mahali and yellow leaf spot. However, the model was trained 

on a limited dataset, which is insufficient across different 

environmental conditions. 
 

Patil et al. (2023) [16] introduced a CNN-driven method 

for intelligent Arecanut assessment to reduce manual labor 

and improve efficiency in the segregation process. Utilising a 

dataset of Areca nuts cultivated in the Western Ghats region, 

the study performed a 10-fold cross-validation method with 

contrast enhancement and no data augmentation.  

 

The custom CNN model attained the results with a 

standard deviation of 4.1% for cropped images with contrast 

enhancement, illustrating the feasibility of automated 

Arecanut segregation. In order to create a high-precision 

monitoring method for Areca yellow leaf disease (YLD), Xu 

et al. (2023) [17] used thermal infrared and multispectral data 

collected from an Areca orchard by an unmanned aerial 

vehicle (UAV). Ten vegetation indices and the Relief feature 

selection method were used in the study to generate 6 ML 

models. The random forest (RF) model attained 95.5% 

accuracy and an RMSE value of 0.049. Also, the study noted 

that the results were affected by the lighting conditions during 

imaging, which led to errors in multispectral data analysis. 

Balanagouda et al. (2023) [18] studied the efficiency of 

oomycete-specific fungicides in managing the FRD of 

Arecanut under different application timings and fruit 

development stages. The study employed generalised linear 

mixed models (GLMMs) to analyse FRD severity, occurrence, 

and cumulative fallen nut rate across two experimental 

approaches based on monsoon periods. The results showed 

that the application of fungicide reduced FRD by over 65%. 

Existing studies on Arecanut disease detection primarily 

employ DL and ML models, but they lack advanced feature 

extraction for handling complex disease patterns [5, 8, 12]. 

Many approaches suffer from dataset limitations, leading to 

challenges in generalising models across diverse 

environmental conditions [6]. Most datasets focus on specific 

diseases, missing other emerging diseases that could be 

critical for farmers [6]. Additionally, image quality variations 

contribute to inconsistencies in detection performance [5]. 

CNN-based models suffer from limited spatial dependencies 

and struggle with complex texture and fine-grained disease 

classification [4, 11]. High computational demand limits the 

feasibility of real-time disease detection on low-power 

agricultural devices [13]. The UAV-based multispectral 

analysis is sufficient, but it is affected by the environmental 

conditions [17]. To overcome these limitations, this study 

integrates ResNet 50 for feature extraction and Swin 

transformer for classification, ensuring higher precision in 

real-world applications. 
 

3. Materials and Methods  
Arecanut disease detection employs DL methods to 

examine and classify images of Arecanut plants, helping in 

early diagnosis and improved agricultural management. The 

images collected from the dataset undergo data preprocessing 

and augmentation, which involves resizing, normalisation and 

enhancement techniques to improve the efficiency of the 

framework. The preprocessed dataset is divided into separate 

subsets for model training and testing.  

The hybrid categorisation framework consists of two 

main components: ResNet-50 captures the hierarchical spatial 

characteristics from the input images, and the Swin 

transformer refines these extracted features by employing self-

attention mechanisms. A Fully Connected (FC) layer was 

utilised to process the features extracted, and classification 

was performed using a softmax function. Finally, the trained 

framework accurately classifies the input image into its 

respective disease category, ensuring precise disease 

identification and effective model validation. Figure 1 

presents the systematic workflow of the suggested hybrid 

approach for Arecanut disease identification. 
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Fig. 1 Block diagram of the suggested hybrid framework 

3.1. Dataset Description 

The dataset was sourced from the Kaggle repository and 

provides a useful standard for identifying and categorising 

arecanut diseases [19]. The dataset consists of 11,063 images 

structured into two directories: training and testing. The 

training set includes 8,847 samples, and the testing set consists 

of 2,216 samples. Each directory consists of 9 different classes 

covering both healthy and diseased plant parts, whereas it 

includes Healthy_Leaf, Healthy_Nut, Healthy_Trunk, 

Healthy_Foot, Mahali_Koleroga, Stem_bleeding, bud_borer, 

stem cracking, and yellow leaf disease. Figure 2 (a) to (i) 

illustrates the sample images from each class. 

 

 
(a) Healthy_Leaf images 

 
(b) Healthy_nut images 

 
(c) Healthy_trunk images 

 
(d) Healthy_foot images 
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(e) Mahali_koleroga images  

 
(f) Stem_bleeding images 

 
(g) Bud_borer images 

 
(h) Stem cracking images 

 
(i) yellow leaf disease images 

Fig. 2 Sample images in the disease dataset 

3.2. Data Preprocessing and Augmentation 

Data preprocessing prepares raw images for training by 

standardising their format and improving their quality by 

applying image resizing, normalisation and class balancing. 

The dataset was standardised to maintain uniformity in feature 

representation by transforming its attributes to obtain a mean 

of 0 and a Standard Deviation (SD) of 1. The dataset was 

subsequently split into 80:20 ratios for training and testing. To 

improve the framework's generalisation capability and reduce 

overfitting, data augmentation methods like rotation, flipping, 

brightness modification, zooming, and noise addition were 

utilised. 

 

3.3. Model Development 

3.3.1. ResNet-50 

ResNet-50 is a deep CNN formulated to solve vanishing 

gradients in deep networks. It is attained through residual 

learning, where the skip connections allow the gradients to 

flow directly through the network. Figure 3 presents the model 

architecture of ResNet-50, which comprises 50 layers, 

incorporating a convolutional layer, Batch Normalisation 

(BN), activation functions and Fully Connected layers (FC) 

[20]. It follows a structured design of one initial convolutional 

layer followed by four stages of residual blocks and a final 

classification layer. 

Each residual block in ResNet 50 is based on the 

bottleneck design, where the three convolutional layers are 

used instead of two. The 1 x 1 convolutions reduce the 

dimensionality, while the 3 x 3 convolution captures the 

spatial information. The skip connection, illustrated in Figure 

4, enables identity mapping for each block, which allows the 

network to focus on learning residual features.  
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Fig. 3 ResNet 50 model architecture

 

 

 

 

 

Fig. 4 Skip connection 

The residual function is mathematically formulated, as 

shown in Equation (1). 

             𝑦 = 𝐹(𝑥, 𝑊𝑖) + 𝑥                                          (1) 

Where the input is represented by 𝑥 , 𝐹(𝑥, 𝑊𝑖) It is the 

learned transformation function, and the sum 𝑦 is the final 

output. This allows the model to learn complex hierarchical 

representations while maintaining gradient stability. ResNet -

50 ensures the edges, textures, color variations and disease 

symptoms are effectively captured from the input images. By 

utilising its residual connections, the model ensures stable 

learning even with the large dataset used in this study. 

3.3.2. Swin Transformer 

The Swin transformer is an advanced DL architecture 

designed for visual recognition tasks. It is an extension of the 

standard vision transformer that introduces hierarchical 

feature learning and local attention mechanisms. Similar to 

CNN, the Swin transformer processes images using patches 

by maintaining spatial relationships [21]. Figure 5 shows the 

basic architecture of the Swin transformer, and Figure 6 shows 

its computation process. 

 
Fig. 5 Basic architecture of Swin transformer 

 
Fig. 6 Computation process of Swin transformer 

 

The input feature map of size 𝐻 ×  𝑊 ×  𝐶 is reshaped 

into smaller overlapping windows. Each window holds 𝑀 ×
 𝑀 patches. This partitioning allows the Swin transformer to 

apply local self-attention inside each window separately rather 

than globally over the entire image. As shown in Equations 

(2), (3) and (4), the input feature map within each and every 

window is transformed to matrices query (𝑄), key (𝐾), and 

value (𝑉) using three projection matrices. 𝑃𝑄 , 𝑃𝐾 ,  and 𝑃𝑣. 

                          𝑄 = 𝑋𝑃𝑄                                            (2) 

                           𝐾 = 𝑋𝑃𝐾                                           (3)
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 𝑉 = 𝑋𝑃𝑉                                           (4) 

These projections are important for computing self-

attention scores across different feature dimensions. Self-

attention is calculated within each window using the scaled 

dot product attention formula presented in Equation (5). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉          (5) 

To reduce the impact of variance in the dot product, a 

scaling factor of √𝑑 Is applied. Additionally, a relative 

positional bias, indicated by 𝐵 is introduced before the 

softmax operation. By restricting attention to localised 

windows, the computational complexity associated with 

global attention is significantly reduced. Following the 

attention mechanism, the Multi-Layer Perceptron (MLP) 

layers improve the feature representations through FC 

transformations and nonlinear activation functions. 

Additionally, layer normalisation standardises the inputs at 

each layer, promoting stable training and ensuring a consistent 

gradient flow. This entire process is mathematically 

represented in Equation (6) and (7). 

𝑋𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑋′
𝑙)) + 𝑋′𝑙  𝑤ℎ𝑒𝑟𝑒 𝑙 = 1,2, … … … . . 𝐿    (6) 

𝑋′𝑙 = 𝑆𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑋𝑙−1)) + 𝑋𝑙−1 𝑤ℎ𝑒𝑟𝑒 𝑙 =

1,2, … … … 𝐿                                                                    (7) 

Where 𝑋𝑙−1 serves as the input to the attention mechanism 

and 𝐿𝑁(𝑋𝑙−1) Stabilises the input. The Shifted Window 

Multi-Head Self-Attention (𝑆𝑊 − 𝑀𝑆𝐴) processes the 

features within the local windowed regions to improve 

efficiency, while the residual connections ensure smooth 

information flow. The resulting feature representation 𝑋′𝑙 

undergoes further refinement, where layer normalisation 

𝐿𝑁(𝑋′
𝑙) Improves training stability, the MLP applies fully 

connected transformation with nonlinear activations to refine 

features, and the residual connection maintains gradient flow, 

ultimately producing the refined output. 𝑋𝑙. Plant disease 

detection requires fine texture variations and subtle color 

differences, the ability of the Swin transformer to model local 

dependencies while preserving global context significantly 

improves classification performance. The model learns low-

level patterns in the early stages and high-level patterns in 

deeper layers, making it efficient for detecting diseases. 

3.3.3. Proposed Hybrid Model 

The suggested hybrid framework for Arecanut disease 

recognition combines the capabilities of the ResNet-50-Swin 

transformer with an attention mechanism to improve 

classification accuracy. The framework processes input 

images of size 224 x 224 x 3 through ResNet-50, where the 

initial convolutional layers extract low-level spatial features 

while deeper layers capture complex textual patterns in 

diseased regions. A Global average pooling (GAP) is applied 

to decrease feature dimensionality, ensuring computational 

efficiency and preventing overfitting. After feature extraction, 

the Swin transformer encoder utilising 𝑆𝑊 − 𝑀𝑆𝐴 is 

employed to capture global dependencies and spatial 

correlations among various disease categories. The self-

attention mechanism enables the framework to concentrate on 

the most significant areas of the image, improving disease 

localisation. The features that are extracted are refined by an 

FC layer with 128 units and a ReLU activation function. The 

disease is then predicted from the ten categories using the 

softmax classifier. The algorithm for the suggested hybrid 

framework is presented below. 

 

Algorithm: Arecanut Disease Classification using Hybrid ResNet-50-Swin Transformer  

Input: Arecanut disease images  

Output: Arecanut disease classification model 

Begin: 

Load and preprocess data: 

1. Collect the dataset D = {(Pi, Mi)}i=0
N−1, where Pi Is the Arecanut disease image and Mi ϵ {0, 1, 2, …….,9} (disease 

categories) 

2. Preprocess: 

 Resize: Pi→Pi
′∈R150×150 

 Normalise: Pi
′ →

Pi
′−μ

σ
 

 Data Augmentation: Pi
′ → {Pi

′′} (random rotation, flipping, brightness adjustment, zooming, noise addition) 

3. Define ResNet-50 feature extractor: 

Input: 224 × 224 × 3 

Block 1: Conv2D (64, (7,7), activation=’relu') 

 MaxPooling2D (pool size= (3,3) 

Block 2: Residual Block (3× Bottleneck layers, 64) 

Block 3: Residual Block (4× Bottleneck layers, 128) 

Block 4: Residual Block (6× Bottleneck layers, 256) 
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Block 5: Residual Block (3× Bottleneck layers, 512) 

Flatten () 

Dense (512, activation=’relu') 

Dropout (0.5) 

4. Define Swin Transformer Model: 

Input: Features from ResNet-50 

Patch Partitioning  

Transform patches into feature vectors 

Swin Transformer Blocks: 

Self-Attention () 

Shifted window mechanism 

Layer Normalisation 

MLP 

Flatten () 

Dense (512, activation=’relu') 

Dropout (0.5) 

5. Concatenate (ResNet-50, Swin Transformer) 

Dense (512, activation=’relu') 

Dropout (0.5) 

Dense (10, activation= 'softmax') 

6. Model Compilation and Training: 

a. Compile each model P: 

optimizer=Adam () 

learning rate= 0.001 

loss=sparse_ categorical _crossentropy 

metrics=[accuracy] 

b. Train: P.fit (Ptrain , Mtrain ,validation_data= (Pval, Mval), batch size= (64), epochs= (20) 

7. Model Evaluation: 

a. Evaluate:  

           metrics=P.evaluate(Ptest , Mtest), where metrics contain accuracy recall precision.  

Save the Model:  

End 

 
Table. 1. Hyperparameters for the proposed hybrid model  

Hyperparameters Values 

Learning rate 0.001 

Activation Function ReLU, Softmax 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Number of Epochs 20 

Batch Size 64 

 

3.4. Software and Hardware Setup  

The proposed system was tested and trained on Google 

Colaboratory, utilising Python along with the Keras library, 

leveraging the platform's GPU acceleration, 12.75 GB of 

RAM and 68.50 GB of available storage. TensorFlow support 

within the Colab environment facilitates efficient DL 

computations in the system. The system configuration 

comprised a 64-bit Windows 10 operating system, an Intel 

Core i7-6850K processor running at 3.60GHz with 12 cores 

and an NVIDIA GeForce GTX 1080 Ti GPU equipped with 

2760 MB memory, ensuring excellent computing 

performance. The framework's performance was assessed 

using predictions derived from the test dataset. 

Hyperparameters are predefined variables set before the 

learning process begins, controlling and optimising the 

model's training behavior to improve performance. Table 1 

outlines the Hyperparameters of the proposed hybrid 

framework. 

4. Results and Discussion 
An accuracy plot is a visual representation that depicts the 

changes in training and validation accuracy over successive 

epochs, providing information about the model's learning 

progression. A loss plot visually depicts the variation in 

training and validation loss throughout each epoch, offering 

information into the model's convergence behavior, and the 

presence of overfitting. The efficiency of the suggested 

framework, based on accuracy and loss over 20 epochs, are 

presented in Figures 7 and 8. The training accuracy at the 

initial epoch starts approximately at 0.84, whereas the 

validation accuracy is about 0.85, indicating that the 

framework starts with low classification performance. As the 

training progresses, both the training and validation accuracy 

improve learning. By the final epoch, the training reaches 

around 0.96, and validation reaches around 0.98, 

demonstrating that the framework generalises effectively to 

unknown data with minimal overfitting. 
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Fig. 7 Accuracy plot of the proposed model 

 
Fig. 8 Loss plot of the proposed model  

Regarding the loss of the framework, at the initial epoch, 

the value of training loss is almost 1.0 and validation loss is 

also around 1.0, indicating a high error rate. As the epoch 

increases, the losses steadily decline, indicating effective 

optimisation. By the final epoch, the training loss is reduced 

to about 0.1, and the validation loss is at about 0.15, 

demonstrating that the model has effectively reduced the 

errors while maintaining a good generalisation capability. 

Evaluation metrics examine the effectiveness of the 

proposed DL model by offering information about its 

predictive accuracy and classification performance. Metrics 

offer thorough information on the strength of the model and 

potential areas for improvement. These measures are valuable 

in overcoming problems such as overfitting, class imbalance 

and underfitting, hence maintaining the framework's resilience 

and reliability. The mathematical formulations for these 

metrics are presented in Equation (8) to (11). 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                      (8) 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                  (9) 

   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                       (10) 

   𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (11) 

Where 𝑇𝑃 = True Positive, 𝑇𝑁 = True Negative, 𝐹𝑃 = 

False Positive, 𝐹𝑁 = False Negative. 

The overall performance of the proposed hybrid 

framework across multiple evaluation metrics is demonstrated 

in Figure 9. The framework attains 98.42% accuracy, 

reflecting its efficacy in making accurate predictions. A 

precision of 98.45% indicates its ability to accurately classify 

positive instances. The recall measured at 98.38% indicates 

the capability of the framework to extract actual positive 

cases, reducing the probability of missing instances. The F1 

score of 98.40% balances the precision and recall, ensuring a 

stable and well-rounded classification performance. These 

metrics signify consistency and reliability across various 

evaluation criteria, making it highly effective for the given 

classification task.

 
Fig. 9 Performance evaluation of the proposed hybrid model with an attention mechanism 
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The confusion matrix enables a complete assessment of 

the framework's categorisation by illustrating the relationship 

between actual and predicted labels. Figure 10 presents a 

detailed examination of the proposed hybrid framework across 

different categories of Arecanut disease conditions. The 

diagonal elements represent correctly classified instances, 

indicating strong classification accuracy for all categories. 

The model exhibits high accuracy in identifying Mahali 

Koleroga (627), Healthy Nut (465) and Yellow Leaf Disease 

(368) by the high values along the diagonal. Minimal 

misclassifications are observed in off-diagonal elements, 

signifying that the model effectively differentiates between 

healthy and diseased samples with minimal FP and FN. 

 

 
Fig. 10 Confusion matrix of the proposed hybrid model  

An image selected at random from the Arecanut disease 

dataset is categorised by the proposed hybrid model, correctly 

identifying it as either a healthy or diseased category. This 

accurate classification, as illustrated in the corresponding 

Figure 11, highlights the reliability and effectiveness of the 

model in differentiating between different Arecanut disease 

conditions within the dataset. 

 

 
Fig. 11 Predicted output 
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Table 2 provides a comparative overview of various 

models used for Arecanut disease classification, which 

indicates that the proposed hybrid model with attention 

mechanism attained an accuracy of 98.42%, outperforming all 

the other methods. The traditional CNN model shows 81.35% 

accuracy, which struggles with feature extraction limitations. 

At the same time, VGGNet (92%) and Inception V3 (96%) 

lacked the advanced attention mechanism. Although the RF 

(95.5%) and QCNN (97.72%) models perform well, their high 

computation cost makes them less practical. The proposed 

hybrid model excels in feature extraction and utilising 

transformer-based global attention, allowing precise 

classification across disease patterns with minimal 

misclassifications and making it the most effective solution. 

Figure 12 illustrates the accuracy of comparing the suggested 

hybrid framework and existing techniques. 

Table 2. Accuracy comparison of the proposed hybrid model with existing approaches 

Author & Ref Model Dataset Accuracy (%) 

Jenitta & Swetha [15] CNN Arecanut images 81.35 

Kumar et al. [6] VGGNet Arecanut leaf images 92 

Xu et al. [17] RF UAV and thermal infrared 

data 

95.5 

Ghate et al. [4] Inception V3 Arecanut images 96 

Naik & Rudra [7] QCNN Arecanut X-ray images 97.72 

Proposed hybrid ResNet 50 + Swin Transformer 

Model 

Arecanut disease dataset 98.42 

 

 
Fig. 12 Accuracy comparison of proposed hybrid model with existing approaches 

5. Conclusion 
This research suggests a hybrid DL framework 

integrating ResNet-50 and Swin Transformer for accurate and 

automated detection of Arecanut diseases. The dataset for the 

research is sourced from Kaggle and comprises 11,063 images 

covering both healthy and diseased plant parts. The suggested 

framework obtained an accuracy of 98.42%, surpassing 

conventional CNN-based models. Utilising ResNet-50 for 

feature extraction and Swin Transformer for capturing long-

range dependencies, the model significantly improves 

classification performance. The study demonstrates that 

integrating transformer mechanisms into plant disease 

detection enhances robustness and generalisation, allowing it 

to be greatly effective for practical agricultural applications. 

In future work, current research can be expanded by 

incorporating multispectral or hyperspectral imaging to 

enhance disease identification, developing lightweight models 

for mobile-based applications, and combining the system into 

a smart agricultural framework for real-time disease 

monitoring. 
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