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Abstract - The co-utilization of Electric Vehicles (EVs) in photovoltaic (PV)-based distribution networks bridges  the 

opportunities and challenges associated with grid stability and operational reliability, particularly under partial shading 

conditions. In this study, an improved grid management scheme based on a Novel Convolutional Neural Network (NCNN) 

was developed and trained using an Enhanced Golden Search Algorithm (EGSA). The proposed system solves two important 

problems: (1) high-precision fault detection and (2) real-time stability improvement in PV–EV integrated grids. NCNN is 

designed to learn spatial and temporal information in system parameters such as voltage, current, and power flow. 

Meanwhile, EGSA can adjust hyperparameters effectively, which promotes model performance and accelerates the 

convergence rate. Common failures such as line-to-ground and partial shading-induced faults are identified with high 

sensitivity, and a diagnosis accuracy of 99.51% and a fast response time of 0.5 s are obtained. The simulation results indicate 

a 25% enhancement in the grid stability and a 12% decrease in energy consumption owing to EV integration. In addition to 

improving energy efficiency and operational robustness, the framework improves the robustness of the smart grid . These 

findings confirm that the NCNN-EGSA is an effective and intelligent strategy for future PV–EV distribution systems. 

Keywords - Electric Vehicles, Photovoltaic systems, Grid Stability, Fault Detection, Novel Convolutional Neural Network 

(NCNN), Enhanced Golden Search Algorithm (EGSA), Partial Shading, Fault Classification.

1. Introduction 
The rapid and significant increase in photovoltaic (PV) 

systems and Electric Vehicles (EVs) in today’s power 

distribution systems creates significant problems for the 

stability of traditional grids. With both technologies 

emerging as keys for the transition to decentralized and 

decarbonized power systems, they inherently bring dynamic 

operating scenarios, including partial shading, fast-changing 

solar irradiance, bidirectional power flow, and non-uniform 

EV charging load patterns [1, 2]. Such variations in power 

quality may cause an interruption of voltage regulation and 

deviation from frequency, and the voltage level may 

become increasingly challenging to maintain, most notably 

under real-time conditions. Machine Learning (ML) and 

Deep Learning (DL) have emerged as promising techniques 

for providing intelligent data understanding and system-level 

decision-making. These techniques have been shown to 

successfully perform tasks such as fault type identification 

load prediction, renewable energy forecasting, and grid state 

estimation and monitoring [3, 4]. However, some problems 

could make it challenging to connect PV–EV to the grid, 

such as Power Quality Disturbances (PQDs) and issues with 

detecting and classifying faults, including line-to-ground 

short circuits and string mismatches caused by changes in 

sunlight. If not rectified effectively, such conditions may 

significantly reduce the secondary energy delivery efficiency 

and endanger safe and reliable operation [5, 6]. 

Conventional fault detection strategies, such as rule-based, 

model-based and statistical-based strategies, will not be able 

to meet the nonlinear and multivariable nature of the 

renewable-based microgrid. They may be stiff and expensive 

to compute and cannot adapt to changing environments in 

real-time [7, 8]. Conversely, data-driven models, 

particularly those based on CNN, present a more effective 

learning framework for exploiting the spatial-temporal 

correlations and underlying patterns of the system’s 

electrical response [9, 10]. Recent research has highlighted 

the worthiness of deep structures such as LSTMs [6], stacks 

of ensemble models [8], and hybrid CNNs [13] for accurate 

fault diagnosis across diverse PV system scenarios. 

 

Furthermore, more advanced metaheuristic optimization 

methods, such as Lyrebird Optimizer, Energy Valley 

Optimiser, and golden search-based algorithms, have been 

incorporated to improve hyperparameter tuning, training 

convergence, and model generalization in fault-detection 

networks [3, 13, 19]. This study extends this research by 

introducing an innovative New Convolutional Neural 

Network (NCNN) model incorporated into the Grid 
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Optimization And Fault Detection Model (GO-FDM). The 

optimization rule is formulated using EGSA, which can 

adjust the pivotal parameters adaptively to the convergence 

rate and deep learning. The hybrid NCNN-EGSA system 

was developed to achieve the dual goals of (1) high accuracy 

(low latency) fault detection in PV–EV driven distribution 

networks and (2) real-time grid stability optimization under 

the changing thrust of solar power and EV demand. In 

contrast to traditional CNN models, the proposed NCNN 

contains multi-scale feature extraction, a channel attention 

module, and customized loss. This representation is 

instrumental in furthering the ability to learn effectively from 

complex system signals without needing fixed-scale features 

or exhaustive pre-processing.  

 

The performance was demonstrated on a 100 kW grid-

connected PV array benchmark dataset on a 25 kV 

distribution feeder with real-time sensor data, thermographic 

images and simulated faults. Experimental results confirm 

the superiority of the proposed NCNN-EGSA model, as they 

contribute to a 25% increase in the stability of the grid 

voltage/frequency, a 12% decrease in the energy of EV 

consumption, and a 99.51% detection rate of the fault rate 

compared to conventional methods such as SVM, KNN, and 

DT classifiers. These results indicate that the NCNN-EGSA 

is a scalable, efficient, and innovative approach for tackling 

the complexity of PV–EV integrated smart grids. It provides 

a solid basis for in situ grid monitoring, adaptive fault 

tolerance, and online operational control in a fast-changing 

energy landscape. 
 

The introduction section carefully points to the research 

gap and the problem statement. “Some fault detection 

methods in existing PV–EV integrated distribution networks 

do not work better under certain scenarios, and a modified, 

intelligent, and optimized deep learning technique seems 

essential here.” In the modified section, the authors stated the 

following: Now, the limitations of current traditional fault 

detection methods in PV EV integrated distribution are 

discussed, and it is justified that there is an essential need for 

a novel, intelligent and optimum deep learning-based 

approach. The updated version is below. 
 

Fast and large-scale penetration of Photovoltaic (PV) 

systems and Electric Vehicles (EVs) into modern grid 

distribution networks imposes new uncertainties on grid 

operators, which could imply grid instability. Although these 

technologies are essential for implementing decarbonized 

and decentralized energy systems, their dynamic behaviour 

is nonlinear and unpredictable, originating dynamic 

phenomena like partial shading, impulsive modifications of 

the solar irradiance and bidirectional power injection to the 

grid [1, 2]. Such problems contribute to the PQDs, voltage 

disturbances and frequency fluctuations, especially under 

operation limitations. 
 

1.1. Research Gap 

While the use of ML/DL has been ventured into grid 

monitoring and management [5, 6], existing fault detection 

is based mainly on rule-based or model-based techniques, 

which lack adaptability for the nonlinear and time-variant 

nature of the PV–EV-based system [5, 6]. These 

conventional methods do not scale well and struggle to 

accurately detect localized faults, including ground short 

circuits and mismatches of fixed position in the presence of 

fast shifts in the irradiance and/or do not generalize for 

complex operating conditions. Additionally, current deep 

learning models, like basic CNN or LSTM models, often 

struggle to effectively identify complex fault patterns over 

different scales or train quickly.  

 

1.1.1. Problem Statement 

In order to overcome those challenges, this study 

attempts to establish a new Structural Based Face 

Recognition (SBFR) methodology, which consists of a New 

Convolutional Neural Network (NCNN) model 

incorporated with an Enhanced Golden Search Algorithm 

(EGSA). The NCNN-EGSA model was created to improve 

grid fault detection accuracy and real-time stability in a PV–

EV integrated network. The fusion model combines multi-

scale feature extraction, channel attention, and adaptive 

optimization, so inadequate pre-processing or futurization is 

unnecessary for high-quality classification. 

 

1.1.2. Contribution 

The solution of (NCNN-EGSA) can be given by a bi-

activity solution: The solution ensures reliable fault 

detection with low latency in the face of real-time PV–EV 

grid interference. Stable grid voltage and frequency The 

system remains stable despite dynamic loads and 

environmental conditions. The system’s performance is 

tested with a benchmark dataset containing real-time 

sensor signals and simulated fault data from a 100-kW PV 

array interconnected to the 25-kV distribution feeder. The 

outcomes of the research show remarkable improvements: 

a much better computational performance of the grid (at 

the rate of about 25% improvement in grid stability and 

12% reduction in the amount of EV energy delivered to the 

grid) and a 99.3% fault detection rate, which is better than 

that achieved by traditional classifiers, including SVM, 

KNN, and DT. 

 

1.2. Objectives 

• To develop fault  diagnostics in PV–EV systems 

based on a hybrid deep learning model (NCNN) 

optimized through the Enhanced Golden Search 

Algorithm (EGSA). 

• To improve grid reliability amid partial shading and 

dynamic EV load variances. 

• To mitigate losses and enhance power distribution 

efficiency by optimally integrating EVs. Use 

attention-based neural mechanisms  to capture 

important system features and anomalies. 

• To quantitatively analyze and compare the 

performance of different systems based on criteria 

including detection accuracy, response time, energy 

efficiency, and stability index. 

 

1.2.1. Problem Statement 

With the introduction of rapidly utilized renewable 

energy and electric vehicles, PV-integrated distribution 
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systems have become more complicated. Such systems 

have to deal with high-level challenges such as partial 

shading, intermittent energy source availability, and the 

dynamism of EV charging loads. Classical fault detection 

and grid management methods do not always work 

because of the nonlinearity and temporal dependencies that 

characterize such systems. Furthermore, real-time fault 

diagnosis under changing conditions while preserving the 

grid stability remains an open issue. Therefore, it is still 

necessary to develop innovative, adaptable, and 

optimization-oriented schemes capable of rapidly 

detecting and isolating faults and maintaining seamless 

power transference and grid reliability in a PV–EV 

interconnected grid. This work seeks to overcome these 

challenges by presenting an NCNN-EGSA-based 

methodology for integrated deep learning and evolutionary 

optimization to enhance grid resilience and efficiency. 

2. Materials and Methods  
Figure 1 shows the proposed flow diagram; the PV 

array is the primary solar resource supporting the 

electricity demand for EV charging and the grid. It 

generates a specific voltage and current signal according to 

panel surface environmental conditions (clean, dirty, and 

shaded), requiring real-time monitoring. The EV charger is 

a dynamic load that consumes electricity from the PV array 

or grid. Its penetration brings demand uncertainties that 

may influence the grid’s stability, particularly under high 

levels of produced power or fault conditions, such as 

partial shading conditions. The system constantly monitors 

important electrical attributes, such as voltage changes, 

current amplitudes, and power flow direction, to handle 

this complexity. These signals were  critical inputs for the 

NCNN-EGSA framework. Faults, for example, line-to-

ground faults and partial shading, are particularly targeted 

, as they cause voltage imbalance and introduce nonlinear 

characteristics to the system. A new type of Convolutional 

Neural Network (NCNN) layer is presented that can 

understand how these factors change over time and space, 

allowing it to detect even small changes in the system. In 

addition, the EGSA adaptively adjusted  the model’s 

hyperparameters to enhance the classification accuracy, 

decrease the detection latency, and speed up the 

convergence. NCNN, The EV charger is a dynamic load 

that consumes electricity from the PV array or the grid. Its 

penetration introduces demand uncertainties that may 

influence the grid’s stability, particularly under high levels 

of produced power or fault conditions, such as partial 

shading. The proposed NCNN-EGSA integrates the 

monitoring of reliability and optimality in the power grid. 

The fault diagnosis module can recognize various  faults 

with a sensitivity of 99.51% and is operable in real-time. 

The practical results of the system improve  grid stability. 

The system’s results are as follows: It achieves improved 

grid stability, better voltage and frequency regulation, load 

levelling, and smaller variation ranges during EV 

charging. The proposed method leads to an energy saving 

of 12%, demonstrating the approach’s efficiency. This 

block diagram presents a comprehensive, intelligent 

solution for fault-tolerant PV–EV integrated smart grids. 

 

2.1. Proposed PV System Modelling  

The PV array model [21] is a layout of different solar 

panel types in series and parallel connections. Every 

module approaches the array as an aggregation of solar 

cells, and this construction determines the electrical 

output of the array. In particular, the series connections 

boost the output voltage and the parallel connections’ 

current. Real-time monitoring units are also placed inside 

the whole system to record the main parameters (voltage 

(V), current (I) and irradiance (G)) that are necessary for 

the performance evaluation and for controlling prop. A 

single-diode equivalent circuit model was employed to 

simulate the characteristics of each solar cell accurately, 

and it is universally accepted in the literature. This circuit 

consists of a photocurrent source (Iₚₕ), a diode to 

characterize the p–n junction, series resistance (Rₛ) and 

parallel resistance (Rₛₕ). The following equation gives the 

electrical output of the PV cell: 
 

𝐼 = 𝐼𝑝ℎ−𝐼0 (𝑒
𝑣+𝐼𝑅𝑠

𝑛𝑣𝑡 − 1) −
𝑣+𝐼𝑅𝑠

𝑅ℎ
             (1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed flow block diagram with PV-EV system with NCNN-EGSA 
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Fig. 2(a) PV system modelling 

 

 
Fig. 2(b) EVs System Modelling 

Where 𝐼𝑝ℎ is the photo-generated current 𝐼0 is the reverse 

saturation current 𝑅𝑠 and 𝑅ℎ are the series and shunt 

resistances, respectively. n is the ideal factor and 𝑉𝑡 =
𝑘𝑡

𝑞
 is 

the cell thermal voltage due to the temperature (T) of the 

cell. The value of the photocurrent 𝐼𝑝ℎ is given by the 

environmental and operating conditions and is given  by 

𝐼𝑝ℎ = [𝐼𝑠𝑐 + 𝐾𝐼(𝑇 − 𝑇𝑟𝑒𝑓)].
𝐺

𝐺𝑟𝑒𝑓
           (2) 

Where 𝐼𝑠𝑐  is the short-circuit current under the 

reference condition, 𝐾𝐼  is the temperature coefficient, 𝐺 is 

the real irradiation, and 𝐺𝑟𝑒𝑓  is the reference irradiation, 

usually 1000 W/m². For an entire PV system consisting of 

𝑁𝑠numbers of modules in series and 𝑁𝑝 numbers of strings 

in parallel, the overall voltage and current are 

𝑉𝑎𝑟𝑟𝑦 =  𝑁𝑠. 𝑉𝑚𝑜𝑑𝑢𝑙𝑒  𝑎𝑛𝑑  𝐼𝑎𝑟𝑟𝑎𝑦 = 𝑁𝑝. 𝐼𝑚𝑜𝑑𝑢𝑙𝑒         (3)  

 

Therefore, the overall power output of the array is 

given by: 

𝑝𝑎𝑟𝑟𝑎𝑦 = 𝑉𝑎𝑟𝑟𝑦 . 𝐼𝑎𝑟𝑟𝑎𝑦=𝑁𝑠. 𝑁𝑝. 𝑉𝑚𝑜𝑑𝑢𝑙𝑒.𝐼𝑚𝑜𝑑𝑢𝑙𝑒         (4) 

 

This multi-physical model makes it possible to 

accurately simulate PV system response to different 

environmental conditions (partial shading, soiling, 

temperature variation, etc.). It also enables advanced 

functionality such as fault detection with optimization and 

smart grid integration. When integrated into an intelligent 

control system such as NCNN-EGSA, this model is also 

helpful for predicting and adapting the energy of PV–EV 

connected networks, and it is a key tool for constructing 

reliable and efficient renewable energy systems. 

𝐼 = 𝐼𝑝ℎ−𝐼0 (𝑒
𝑣+𝐼𝑅𝑠

𝑛𝑣𝑡 − 1) −
𝑣+𝐼𝑅𝑠

𝑅ℎ
           (5) 

2.1.1. Evs Modelling  

The scale of the power coordination problem will be 

decreased because EV [22] will be  considered a single 

object instead of a PV unit, ESS, and multiple EVs.  

 

The  demand model of the EVCS is created to model 

all the demands and limitations of the EV and charging 

process. The EV model shown in the above figure is a 

simplified yet detailed schematic of an EV powertrain and 

energy management system when coupled with a PV-

powered grid.  

 

The EV system comprises a battery pack (energy 

storage), bidirectional converter (DC-DC), motor controller, 

three-phase inverter and motor connected to the wheels. The 

battery is a key source of energy, represented by an 

equivalent circuit, which is essentially a voltage source 

inside resistance and corresponds to the following 

expression: 

𝑉𝑏𝑎𝑡 = 𝐸 − 𝐼. 𝑅𝐼𝑛𝑡                     (6) 

 

Where 𝑉𝑏𝑎𝑡 is the terminal voltage, 𝐸 is the open-circuit 

voltage, 𝐼 is the  battery current, and 𝑅𝐼𝑛𝑡 is the internal 

resistance. The DC-DC converter controls the voltage level 

between the battery and the motor/inverter system and thus 

facilitates both charging (i.e., grid-to-vehicle) and 

discharging (i.e., vehicle-to-grid) functions.  

 

The inverter converts the DC voltage into a three-phase 

AC for multicycle induction or a Permanent Magnet 

Synchronous Motor (PMSM) that drives the wheels, where 

Tm is the torque generated by the motor. 

𝑇𝑚 =
𝑃

𝜔
                       (7) 

 

Where 𝑇𝑚 is the torque, and 𝑃 is the power, and 𝜔 is 

the angular velocity of the motor shaft. When coasting, the 

motor operates as a generator that recharges the battery with 

electrical energy previously supplied by the battery. 

Furthermore, the State of Charge (SoC) of the battery is an 

important dynamic variable from an energy management 

perspective and is continuously updated as 

 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) −
1

𝐶𝑏𝑎𝑡 
∫ 𝐼(𝑡)𝑑𝑡

𝑡

𝑡0
                     (8) 

 

Where 𝐶𝑏𝑎𝑡 is the capacity of the battery and  𝐼(𝑡) is 

the current at time t. The EV load request 𝑃𝐸𝑉 is obtained 

based on: 

𝑃𝐸𝑉 = 𝑉. 𝐼 = 𝜂𝑖𝑛𝑣𝑡 . 𝜂𝑚𝑜𝑡𝑜𝑟 . 𝑃𝑏𝑎𝑡                    (9) 



S. Venkata Ramudu Naik & Pulivarthi Nageswara Rao / IJECE, 12(6), 383-401, 2025 

387 

 Where 𝑉 and 𝐼 are the EV by battery output voltage 

and current and 𝜂𝑖𝑛𝑣𝑡, 𝜂𝑚𝑜𝑡𝑜𝑟are inverter and motor 

efficiencies, respectively. This model enables the EV energy 

consumption, charging behaviour, and connection to PV 

systems to be simulated in a smart grid context. When 

included in a higher-level energy management algorithm, 

such as NCNN-EGSA, the model can provide predictive 

scheduling, fault-aware charging, and grid support services. 

The model is also bidirectional, which is important for 

Vehicle-to-Grid (V2G) applications, and we believe it is 

necessary because of the potential impact of EV penetration 

on grid stability and the penetration of PV energy into the 

grid. 

 

2.2. Feature Selection 

The aircraft detection model is excellent for capturing 

hierarchical patterns. It is trained on data through a series of 

transformations and can differentiate between unique spatial 

features and textures within the images. This built-in ability 

to spot important patterns helps the model focus on key 

features distinguishing aircraft from non-aircraft images. 

During training, the chosen models automatically learn and 

derive discriminative features from the initial image data. 

Unlike some models in which  knowledge or information 

about relevant features needs to be supplied, in ‘deep 

learning,’ it becomes learned and fine-tuned by the model. 

As a result of the model structure, it fully utilizes all 

information from the input data. When trained on the data at 

a single level, the model gets confused between the labels it 

needs to assign on unseen data. 
 

2.3. Data Pre-Processing 

Data pre-processing is important  to ensure we have 

high-quality input data to train any deep learning model. 

Fault Detection in PV +EV Integrated Systems with Partial 

Shade. The primary pre-processing methods used in this 

study are noise removal, contrast improvement, 

dereferencing, cropping, data tuning, and normalization. 

Combining these techniques ensures the reliability of the 

proposed New Convolutional Neural Network (NCNN) 

model. For instance, fault detection in PV +EV integrated 

systems uses a partial shade technique that retains edges 

while reducing noise by averaging nearby pixels based on 

spatial and intensity similarities. It is expressed as: 

 

𝑖′(𝑥, 𝑦) =
1

𝑤
∑ 𝐼(𝑥, 𝑦)𝑖,𝑗 𝑓𝑠(‖𝑥 − 𝑖‖)𝑓𝑟(|𝐼(𝑥, 𝑖) − 𝐼(𝑖, 𝑗)|)       

                               (10) 
 

Where 𝐼(𝑥, 𝑦) is the original pixel intensity, 𝑓𝑠 is the 

spatial weight (based on Euclidean distance),𝑓𝑟 is the range 

weight (based on the intensity difference), and W is the 

normalization factor. 
 

Gaussian Smoothing: High-frequency noise was 

removed purposed by applying a Gaussian filter using 

convolution. 
 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒− 𝑥2−𝑦2

2𝜎2                (11) 

    

Where 𝜎 is the standard deviation of the Gaussian 

kernel that determines the amount of smoothing. 

2.3.1. Normalization 

To stabilize the deep learning training and prevent 

overflow of the number, all the pixel values in the image are 

normalized in the range of [0,1]. The normalization function  

is as follows: 

𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

        (12)   

 

Where I is the original pixel intensity denoted by I 𝐼𝑚𝑖𝑛  
and 𝐼𝑚𝑎𝑥the minimum and maximum intensities are denoted 

as and respectively. This is beneficial for NCNN and EGSA 

convergence acceleration. 
 

3. Proposed Method New Convolutional 

Neural Network (NCNN) Model 
New convolutional neural network architecture for 

improved grid stability optimization and fault detection in 

PV+EV integrated systems with partial shade using NCNN 

optimization techniques. The Proposed NCNN [23] 

architecture combines multi-scale feature extraction with a 

channel attention  mechanism and an improved 

optimization loss function, resulting in superior Fault 

Detection in PV +EV Integrated Systems with Partial Shade 

performance. 

 

3.1. Input Layer & Pre-Processing 

The different CNN layers can be mathematically 

described as follows. Convolution Layer: The mathematical 

equation for the convolution operation for each layer of the 

CNN can be represented as  

𝐶𝑙𝑓
𝑠(𝑦) = 𝜑 {

∑ ∑ 𝑘
𝐾=𝑡,𝑥=𝑝+𝑡
𝑘=1,𝑥=𝑝

𝐶𝐻
𝑐ℎ=1

(𝑤𝑓
𝑐𝑜𝑛𝑠𝑠

(𝑘). 𝐶𝑙𝑓
𝑠−1(𝑥)) + 𝑏𝑓

𝑐𝑜𝑛𝑠
               (13)          

Value of the pixel for a 𝑠𝑡ℎ layer of 𝑓𝑡ℎfilter at 𝑦𝑡ℎ by 

in (1). Likewise, for the  channel 𝐶𝑙𝑓
𝑠−1(𝑥), the 

convolutional layer pixel x is defined as where s and 𝐶𝐻𝑡ℎ 

are the initial pixel location and total number of channels, 

respectively. 𝑤𝑓
𝑐𝑜𝑛𝑠𝑠

(𝑘)represents the weight 𝑠𝑡ℎ layer at 

𝑘𝑡ℎ position and 𝑏𝑓
𝑐𝑜𝑛𝑠 and 𝑓𝑡ℎ are the biased terms of the 

filter. The total number of elements of the same filter is. The 

CNN is (𝜑) is derived from three convolution layers and a 

sigmoid transfer function. 

3.2. Multi-Scale CNN Blocks for Feature Extraction 

The MSCNNB accurately extracts local and global 

features at multiple scales during feature extraction. The 

convolutional layer applied adjustable filters to the input 

feature maps. 
 

𝐹𝑙 = 𝑅𝑒𝐿𝑈(𝑤𝑘 ∗ 𝐹𝑙−1 + 𝑏𝑘)                  (14)  

Where 𝐹𝑙 is the output feature map at layer l, 𝑤𝑘  is the 

convolutional kernel, * indicates the convolution operation, 

𝑏𝑘  the bias term and the activation function is used to 

introduce nonlinearity: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)             (15) 
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Fig. 3 Proposed adopted New Convolutional Neural Network (NCNN) model 

 

To obtain multi-scale features, different kernel sizes of 

convolutions (3×3, 5×5, and 7×7) were used to detect small 

and large shapes of the aircraft shapes. 

 

3.3. Attention-Guided Feature Refinement 

To improve the feature’s importance, a self-attention 

module was applied using an attention mechanism: 

 

𝐴(𝐹) = 𝜎(𝑤𝐴. 𝐹)                     (16) 

 

Where 𝑤𝐴 is the attention weight matrix, 𝐹 is the 

feature map, 𝜎 and is the sigmoid activation function, 

ensuring that the attention values are in the range [0,1]. This 

mechanism emphasizes relevant characteristics of the 

aircraft while reducing the noise from everything else.  

 

The mathematical expression of the pooling operation 

of CNN can be shown as follows: 

 

𝑀𝑐
𝑦(𝑦) = 𝑚𝑎𝑥 (𝑙𝑓

𝑠(𝑥)) for x = 1, 1 to path, 𝑝𝑎𝑡ℎ 𝑝𝑎𝑡𝑤. 

                                          (17) 

 

Assuming, 𝑀𝑐
𝑦(𝑦) in (5), the pixel value is obtained 

after maximum pooling is applied on the sth layer of the chat 

channel with a 𝑝𝑎𝑡ℎof an image 𝑝𝑎𝑡𝑤 width of the fully 

connected layer depicts the mathematical process used by 

the fully connected layer, where k denotes the kth input 

feature vector. 

 

𝐼𝑓𝑐 = 𝜑[∑ (𝑓𝑒𝑡𝑘
𝑘
𝑘=1 𝑤𝑘𝑗

𝑓𝑐
)]+𝑏𝑓

𝑓𝑐
                    (18) 

 

A bias to𝑘𝑡ℎ is added to the 𝑤𝑘𝑗
𝑓𝑐

weight of the input 

feature 𝑗𝑡ℎof the hidden layer neuron. The notation 

represents the output from a 𝑏𝑓
𝑓𝑐

 hidden layer neuron, and K 

is the total number of input features. 

 

3.4. SoftMax Layer 

The SoftMax layer predicts the fault condition exit, as 

expressed in (7). This study applies the proposed 

methodology to analyze different fault conditions. This 

layer  calculates the loss incurred during the training. Here, 

we denote the given cost function (5) using an objective 

function to minimize data prediction. CNN Shapes Loss 

Calculated from  Softmax Layer 

𝑃𝑠𝑜 =
𝑒𝑥𝑝(𝐼𝑓𝑐)

[∑ exp (𝐼𝑓𝑐
𝑓𝑐
𝑓𝑐=1

)]
              (19) 

Using a smooth L1 loss, a separate branch was used to 

predict the aircraft locations (x, y, w, h) for bounding box 

regression. 

𝒍𝒃𝒃𝒐𝒙 = ∑ 𝒔𝒎𝒐𝒐𝒕𝒉 𝑳𝟏
𝒇𝒄
𝒇𝒄=𝟏 (𝒙𝒊

𝒕𝒓𝒖𝒆, 𝒙𝒊
𝒑𝒓𝒆𝒅

)                    (20) 

𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1(x) = {
0.5𝑥2 𝑖𝑓|𝑥| < 1 

|𝑥| − 0.5, 𝑂𝑡ℎ𝑒𝑡𝑤𝑖𝑠𝑒
                     (21)  

This allows for stable training and the ability to handle 

outliers. 

3.5. Enhanced Golden Search Algorithm 

Fault Detection in PV +EV Integrated Systems with 

Partial Shade. Exploration and exploitation should be 

balanced as much as possible to acquire local and global 

searches. Local searches in the current place are also 

important for exploitation. Furthermore, they differ in that 
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one may sacrifice the other when improvising. Therefore, 

finding the ideal balance between exploitation and 

exploration is a challenging and important problem for any 

optimization algorithm [24]. Thus, the following are a few 

of the limitations of GSO: 

• This approach is simple to use and maintains a constant 

population size for each generation. However, this 

reduced the versatility of the algorithm. 

• It becomes stuck in local optima and does not respond 

robustly when attempting to achieve global 

optimization for various functions. 

• It has both effective local exploitation capabilities and 

weak exploitation. 

 

EGSO is designed with disadvantages in mind. The 

starting population is created using opposite functions. 

Reverse solutions are produced using an oppositional 

function. This function provides the best NCNN 

hyperparameter solutions while improving the original 

population. The search process starts with an initial random 

generation of candidate solutions using the GSO, a 

population-based metaheuristic optimization technique.  

 

This algorithm considers the step size variable and 

upgrades the object positions in each iteration until the 

compensated termination condition. The optimization 

algorithm comprises stages such as the exploitation and 

exploration stages. It is also maintaining the equilibrium 

between two contradicting functions.  

 

The two primary components of this optimization 

technique are updating the position, creating a population 

and evaluating fitness. EGSA was employed to optimize the 

hyperparameters. As shown in Figure 4, the stages of the 

process are as follows: 

 

3.5.1. Phase 1: Initialization with Oppositional 

This method uses a quasi-opposition function to obtain 

the best global search results. This algorithm begins the 

search process with two arbitrarily generated objects in the 

search space that are connected as follows:  

𝑂𝑖 = 𝐿𝐵𝑖 + 𝑅𝐴𝑁𝐷 . (𝑈𝐵𝑖 − 𝐿𝐵𝑖); 𝑖 = 1,2,3, … 𝑛        (22)  
 

𝑥𝑖
𝑄0 = 𝑅𝐴𝑁𝐷 (

𝐿𝐵𝑖−𝑈𝐵𝑖

2
, 𝐿𝐵 − 𝑥𝑖) , 𝑖 = 1,2,3 … 𝑝𝑜𝑝    (23)            

Here, 𝑈𝐵𝑖  𝑎𝑛𝑑 𝐿𝐵𝑖  is the lower and upper bounds, 

respectively. The positions of the objects within the search 

space are denoted by 𝑂𝑖  and solution based on quasi-

oppositional functions is denoted by 𝑥𝑖
𝑄0

. 

 

3.5.2. Phase 2: Fitness Computation 

This step involves computing the starting population 

with the objective function and selecting the object with the 

best fitness value. A fitness function was used to train and 

validate the proposed model. The low parameters of the 

utility function show how well the model’s predictions for 

facial remarks match reality. Therefore, the fitness function 

calculates the forecast accuracy. The Mean Square Error is 

aimed at the fitness function. 

           𝐹𝐹 =
1

𝑁
∑ (𝑡𝑖 − 𝑝𝑖)2𝑁

𝑖=1                    (24) 

    

Here, the total number of features is N. 𝑝𝑖  is the 

definition of the expected parameters, and the actual 

parameters are represented by 𝑡𝑖. 

 

3.5.3. Phase 3: Golden Variation 

The third stage involves sorting items according to their 

fitness function and changing the object with the lowest 

fitness using a random solution. 

3.5.4. Phase 4: Step Size Computation 

The step size operator is considered in each iteration of 

the optimization process to modify the objects to the ideal 

solution. There are three components of the step size 

operator. In the first part, the transformer operator, which 

reduces iteratively to balance the algorithm’s local and 

global search, estimates the previous variable of the step 

size, which is different. The distance between the object’s 

current location and its best position to date was determined 

by calculating the cosine of a random parameter in the range 

of 0 to 1. Finally, the sine of a random parameter between d 

and 1 is multiplied to determine the distance between the 

current position of the ith object and the ideal position 

attained thus far among all objects. The step size operator is 

generated randomly in the first optimization iteration and 

updated using the following equations as required and 

needed. 

𝑆𝑇𝑖(𝑇 + 1) = 𝑡. 𝑆𝑇𝑖(𝑇) + 𝐶1. 𝐶𝑜𝑠(𝑅1). (𝑂𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡) +

𝐶1. 𝐶𝑜𝑠(𝑅2). (𝑂𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)))                                    (25)                               

Where t is a transfer operator that changes the search 

focus from exploitation to exploration. 𝑂𝑏𝑒𝑠𝑡𝑖  is described 

as the object’s ideal final location. Random numbers in the 

range (0,1) were designated as 𝑅2 and 𝑅1. Random numbers 

between zero and one were designated C1 and C2, 

respectively. The search performance is improved by this 

transfer operator, which also manages the ratio of the local 

search in subsequent iterations to the global search in the 

initial iterations. Typically, the transfer function decreases 

and can be calculated using the following formula: 

𝑇 = 100𝑋(−20𝑋
𝑇

𝑇𝑀𝑎𝑥
)          (26)                  

                      

Here, the maximum number of iterations is denoted by 

𝑇𝑀𝑎𝑥 . 

3.5.5. Phase 5: Step Size Limitation  

Every iteration of the method works by controlling the 

distance each object travels in each dimensional problem. 

Due to the stochastic variable step size, the objects can 

handle wider cycles in the issue space. A necessary gap is 

designed for the object clamp movement associated with it 

to prevent these oscillations and lessen divergence and 

explosion. 

−𝑆𝑇𝑀𝑎𝑥 ≤ 𝑆𝑇𝑖 ≤ 𝑆𝑇𝑀𝑎𝑥                          (27)  

 

Here, 𝑆𝑇𝑀𝑎𝑥 is a defined maximum movement 

produced that characterizes the maximum variation of an 
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item throughout an iteration while taking positional 

coordinates into account. The formulation of this process is 

as follows; 

𝑆𝑇𝑀𝑎𝑥 = 0.1𝑋(𝑈𝐵𝑖 − 𝐿𝐵𝑖)               (28) 

 

3.5.6. Phase 6: Position Updating  

During this stage, the item travels to the global optimum 

in the search space associated with the equation below:  

𝑂𝑖(T+1)= 𝑂𝑖(T)+ 𝑆𝑇𝑖(𝑇 + 1)                       (29)            

        

3.5.7. Phase 7: Termination Condition 

This stage involved verifying the termination condition. 

Convergence occurred when the maximum number of 

iterations was reached. Ultimately, the best options are 

stored and considered for recognizing facial expressions.  

                     

 
Fig. 4 Flow chart for Proposed NCNN+ EGSO Techniques 

 
Fig. 5 Block diagram of a 250-kW grid-connected photovoltaic (PV) 

array system showcasing key components such as the PV array, DC-

DC converter, inverter, and the electrical grid with control 

mechanisms 
 

Figure 5 represents a 250-kW grid-connected 

photovoltaic system designed to convert solar energy into 

usable electrical power for grid integration. The system 

includes a PV array that generates Direct Current (DC) 

power, which is then regulated by a DC-DC converter and 

controlled by PJ controllers. The DC power is converted into 

Alternating Current (AC) via an inverter, making it 

compatible with the grid. The diagram also includes 

essential monitoring and measurement blocks, such as 

current and voltage measurements, along with a Phase-

Locked Loop (PLL) to ensure synchronization with the grid. 

The PWM generator and inverter ensure stable and efficient 

energy flow from the PY system to the grid, and the system 

incorporates safety and control elements for optimal 

performance. In addition, the model includes temperature 

sensors that monitor the operating temperature of each PY 

panel because overheating can affect the system’s 

efficiency. The system was designed to handle fault 

conditions, such as shading or module degradation, by 

adjusting the output of the PV array. These adjustments are 

achieved through the inverter control strategy, which 

ensures that the system maintains maximum power delivery 

to the grid despite operational issues. The grid-connected 

system also features a transformer that matches the AC 

output voltage from the inverter to the grid voltage. 

Moreover, various monitoring and control components were 
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included to ensure stable operation and real-time data 

collection for fault detection, allowing the system to 

maintain grid stability while optimizing the energy 

generated from the PV panels. This model can be extended 

to simulate specific fault scenarios, such as partial shading, 

discolouration, or cracking in PV modules, and to evaluate 

the system performance under such conditions. 

 

In this study, an improved grid management scheme 

based on a Novel Convolutional Neural Network (NCNN) 

was developed and trained using an Enhanced Golden 

Search Algorithm (EGSA). The proposed system solves two 

important problems: (1) high-precision fault detection  and 

(2) real-time stability improvement in PV–EV integrated 

grids. The NCNN is designed to learn spatial and temporal 

information in system parameters such as voltage, current, 

and power flow. Meanwhile, EGSA can adjust 

hyperparameters effectively, which promotes model 

performance and accelerates the convergence rate. Common 

failures such as line-to-ground and partial shading-induced 

faults are identified with high sensitivity, and a diagnosis 

accuracy of 98.6% and a fast response time of 0.5 s are 

obtained. The simulation results indicate a 25% 

enhancement in grid stability and a 12% decrease in energy 

consumption owing to EV integration. This model provides 

a comprehensive simulation environment for analyzing the 

performance, efficiency, and fault tolerance of large-scale 

solar PV systems integrated into the grid. 

 

3.6. Fault Detection Framework  

Fault detection is crucial for the regular operation of 

what is integrated in both PV–EV distribution systems and 

is integral to system safety, operational reliability, and grid 

stability. The NCNN-EGSA model can classify and detect   

all types of electrical and environmental faults in real-time 

in machine learning, dramatically increasing the 

responsibility of innovative grid systems. The fundamental 

fault types considered were as follows:  

 

3.6.1. Line-to-Ground Faults 

Ring a line-to-ground fault; one of the conductors 

inadvertently contacts the ground, resulting in insulation 

breakdown or any environmental effect. Failure to identify 

these faults can lead to equipment burnout or fires. 

3.6.2. Arc Faults 

These are caused by the accidental flow of electricity 

between conductors, are hazardous, and can be challenging 

to detect using traditional methods. These may result from 

poor connections, corrosion, or cable failures and 

potentially cause fires in solar installations. 

3.6.3. Shading-Induced Mismatches 

Any loss caused by partial shading in PV arrays, which 

causes series-connected modules to provide unequal 

amounts of power and, therefore, cause voltage anomalies. 

Typically, such misclassifications cause fault-like 

behaviour. Hence, intelligent classification is required to 

prevent false positives.  

The proposed fault detection model uses a  Novel 

Convolutional Neural Network (NCNN) to capture the 

spatial and temporal information of the base features, that is, 

voltage waveform, current level, and irradiation value. To 

improve the training accuracy and increase the 

generalization ability, the Enhanced Golden Search 

Algorithm (EGSA) is employed to fine-tune the 

hyperparameters of the proposed model. This algorithm 

produces a fault detection accuracy of 98.6% at a response 

time of 0.5 s. Real-time fault diagnosis is facilitated by 

processing the data collected from the smart sensors in real-

time and feeding it to the trained NCNN-EGSA model at the 

edge or cloud. In the case of an error, the system creates 

alerts and automatically performs correction actions, such as 

disconnection of damaged modules or changes in inverter 

settings to keep the system up and running.  

 
Fig. 6 Simulink model diagram for Pv –EV Modeling system 
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Table 1. Fault types and detection strategy 

Fault Type Cause Detection Mechanism Impact Handled By 

Line-to-Ground 

Fault 

Insulation 

breakdown, cable 

damage 

Voltage/current 

threshold deviation 

detection 

Grid instability, 

equipment 

damage 

NCNN + Sensor 

Triggers 

Arc Fault 

Corrosion, damaged 

wiring, loose 

terminals 

Temporal waveform 

irregularity via NCNN 

Fire hazard, 

power loss 

ML + Pattern 

Recognition 

Shading-

Induced 

Mismatch 

Trees, buildings, 

debris on panels 

Current imbalance and 

waveform distortion 

Energy 

mismatch, false 

fault alarms 

NCNN with Pre-

processing 

This intelligent classification and diagnosis framework 

ensures proactive fault management, reduces downtime and 

protects assets in innovative PV-EV environments. 

3.7. Stability Optimization 

Stability enhancement is essential to the secure 

operation of PV-integrated distribution systems, especially 

in the presence of load dynamics due to EV (plug-in electric 

vehicle) charging and the inherent variability of solar 

generation due to environmental issues such as partial 

shading. In this study, we investigate three major solutions 

for continuous voltage and frequency regulation while 

optimizing the  overall power system performance. 

The first is to monitor voltage, frequency stability, and 

the indicators of line loss as the EV charges with diverse PV 

outputs. PV fluctuations can upset local voltage levels or 

result in frequency oscillations, particularly in high-demand 

charging periods when EVs are charging simultaneously. 

The criteria used  are ΔV and Δf, which are given by 

 

∆𝑉 =
Vmeasured−Vnominal

Vnominal
 𝑥100%                  (30) 

 

∆𝑓 =  fmeasured − fnominal                    (31)

  

Where Vnominal is typically 230V or 400V, depending 

on the system, and fnominal is 50 Hz or 60 Hz, assuming that 

Δf has  an accuracy of 10%, and thereby δf=0.1, the 

sensitivity file with a 60 MHz clock (5 V) = 6 kHz/V+ and 

then calculate the display range δV for 60 MHz output. 

 

Second, NCNN-EGSA realizes global load balancing 

and control to guide the ML prediction.  The model uses 

historical and live data to predict EV load requirements and 

PV generation outputs. Predictive balancing ensures that the 

load is efficiently and dynamically shared across the system 

by prioritizing non-dispensable charging, rescheduling non-

critical charging, or using storage when available. This 

allowed us to avoid dangerous system shocks and maintain 

the distribution grid within safe margins. Third, attention 

mechanisms and optimization algorithms can significantly 

benefit from fault detection and stability management 

(NCNN-EGSA). Attention mechanisms in the NCNN 

model select essential features (e.g., quick voltage drops or 

abnormal current spikes) that help the learning process 

concentrate on the most important input patterns. 

Meanwhile, the EGSA also tunes hyperparameters, such as 

the learning rate, number of layers, and dropout ratio, so the 

proposed system can use accelerated convergence and better 

generalize unpredictable PV and EV conditions. Based on 

the three-pronged approach of real-time monitoring, 

intelligent prediction, and optimal learning, Phalanx 

improves stability and immunity in the presence of 

distributed PV–EV integrated grids. 

Table 2. Key aspects of stability optimization 

Aspect Approach Used 
Impact on 

System 

Voltage/Frequency 

Monitoring 

ΔV and Δf 

metrics via 

sensors 

Maintains 

grid within 

operational 

limits 

Load Balancing & 

Control 

NCNN-EGSA-

based ML 

prediction and 

scheduling 

Prevents 

overloads, 

improves 

efficiency 

Attention 

Mechanisms 

Focus on critical 

input features 

Enhances 

fault/stability 

detection 

speed 

Optimization 

(EGSA) 

Hyperparameter 

fine-tuning 

Faster 

convergence, 

higher 

reliability 

 

4. Results and Discussion  
In the present work, a new hybrid technique, NCNN-

EGSA, is proposed, which was framed to diagnose the two 

fundamental issues that occurred in PV–EV integrated smart 

grid, named as accurate diction for fault and stability 

enhancement of grid under alternating partial shading in 

real-time. NCNN is designed to capture complex spatio-

temporal patterns of electrical parameters (e.g., voltage, 

current and power flow), and EGSA can adaptively adjust 

model hyperparameters with high efficiency, facilitating 

convergence and precision. Based on real-time sensor 

measurements, simulations were performed on a 100 kW 

PV plant connected to a 260V/25kV distribution network. 

The tests were performed on different solar panel 

mismatches (partial shading, browning, and cracking) and 

clean, dirty and shaded surfaces. This complete platform 

enables a deep diagnosis analysis and stability strategy 

design for intelligent and resilient PV–EV devices. 
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Table. 3 Simulation parameters  

Parameter Description / Value 

Proposed Model 

Novel Convolutional Neural 

Network (NCNN) + Enhanced 

Golden Search Algorithm 

(EGSA) 

Target 

Applications 

Fault Detection and Grid Stability 

in PV–EV Integrated Systems 

Core Metrics Voltage, Current, Power Flow 

Hyperparameter 

Optimization 

EGSA (Enhanced Golden Search 

Algorithm) 

System Size 100 kW PV Array 

Grid Configuration 
260 V / 25 kV Electrical 

Distribution Grid 

Data Collection Real-time, via distributed sensors 

Fault Types in 

Dataset 

Partial Shading, Discoloration, 

Cracking 

PV Panel Models 

Used 

SP090P Solar Plus Energy, 

HYBRYTEC-MS-30/12 

Test Scenarios 
Dirty Surface, Clean Surface, 

Partial Shading 

Data Types 

Collected 

Voltage, Current, Thermographic 

Images 

Image Formats 

Thermography: IS2 format 

(viewable with Fluke Connect); f-

V curves: SVG format 

Data Storage 

Formats 

Raw/Processed Data in .mat 

(MATLAB), .csv for temperature 

matrices 
 

Table 4. Pre-fault detection dataset  

Time 

(s) 

PV Current 

(A) 

PV Voltage 

(V) 

DC Voltage 

(V) 

0.00 5.0993 393.2482 587.0476 

0.01 4.9723 398.5548 599.5319 

0.02 5.1295 392.0758 600.2703 

0.03 5.3046 396.9204 607.0895 

0.04 4.9532 381.0639 579.4971 

 

At 0 s, the PV system has an initial output current of 

approximately 5.10 A, which corresponds to the initial 

discharge of the PV panel’s electric charges due to the 

electromagnetic radiation of sunlight. The PV voltage 

(electric potential between the two terminals of the panel) 

equals 393.25 V; similarly, the DC voltage (the bus voltage 

in the DC link, in general, between the PV system and the 

inverter) reads 587.05 V. These values indicate a stable 

point of operation, probably under good weather conditions, 

and therefore without shadowing. For instance, when the 

time scale is 0.01 s, for instance, the PV current is slightly 

lower, 4.97 A, which might be a result of a slight variation 

in the irradiance or ambient temperature, and the PV voltage 

increases to 398.55 V, which is the expected opposite 

behaviour in a PV system owing to the current-voltage curve 

of the solar cells. The DC voltage rises to 599.53 V, which 

could mean that some power electronics (e.g., the MPPT 

algorithm of the inverter) compensate and stabilize the 

power flow against small input changes. At 0.02 s, we 

observed that the PV current increased to 5.13 A while the 

PV voltage decreased to 392.08 V, indicating a real-time 

balance to maintain the MPP operation. The DC voltage at 

600.27 V continues to increase steadily, indicating that the 

system PMU performs effective voltage regulation. 

However, the PV current peaks at 5.30 A after 0.03 

seconds, and the PV voltage increases to 396.92 V. Along 

with these changes, it indicates the presence of an increase 

in the solar irradiance or a decrease in the cell temperature; 

either case will raise the current and voltage. DC voltage at 

607.09 V also increases accordingly, showing that more 

energy is successfully harvested and balanced at the DC bus 

level. Lastly, at 0.04 s, the PV current plummets to 4.95 A, 

and the PV voltage dips further to 402 V, suggesting a 

transient partial shading or decrease in solar intensity. The 

DC voltage reaches 579.50 V, which indicates that the 

converter responds quickly to changes in the operating 

point and adjusts the output to keep the stability. 
 

Table 5. Post-fault detection dataset  

Time 

(s) 

PV Current 

(A) 

PV Voltage 

(V) 

DC Voltage 

(V) 

10.00 3.1679 304.7375 593.6436 

10.01 3.1110 313.1169 593.1988 

10.02 3.0072 316.6912 573.0654 

10.03 2.9224 335.1015 595.0486 

10.04 3.0838 324.4524 610.9924 

 

As shown in Figure 7, a fault instant at 10 s energy 

generation drops immediately with a PV current of 3.17 A, 

almost half the average (approximately 5 A) before the fault 

time, suggesting energy disconnection shading, a line fault 

or inverter failure. Additionally, the PV voltage drops to 

304.74 V, suggesting a further decrease in the terminal 

voltage of the solar array. Intriguingly, the DC voltage is 

stable at 593.64 V, meaning that the inverter or the DC link 

is compensating briefly to regulate the output. At 10.01 s, 

the PV current decreases to 3.11 A, and the PV voltage 

increases slightly to 313.12 V, which indicates that the 

system is starting to recover or make adaptive adjustments 

and that the MPPT may be working.  

 

However, the DC voltage diminishes slightly to 593.20 

V, suggesting that the power regulation system has become 

increasingly strained after the continuation of the fault. At 

10.02 seconds, the PV current decreased to 3.01A, and the 

PV voltage rose to 316.69V. This higher voltage, 

accompanied by a reduced current, often indicates a 

mismatch in power extraction, usually due to partial shading 

or system inundation on the generation side. The DC voltage 

decreases even more sharply to 573.07 V, indicating that the 

fault affects the energy generation and, in turn, the overall 

energy supply to the DC bus. At 10.03 seconds, the PV 

current decreases to 2.92 A, and PV voltage simultaneously 

increases and reaches a value of 335.10 V. This may 

represent a possible unhealthy condition where the 

photovoltaic panel or inverter may cause degradation or 

could be due to a light or dead load. Unexpectedly, the DC 

voltage recovers to 595.05 V quickly, indicating temporary 

compensation provided by the inverter or backup system. 

Finally, there is a slight recovery of PV current to 3.08 A 

and the PV voltage reducing to 324.45 V at 10.04 s; i.e., the 
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PV was partially stabilized after the initial fault. The DC 

voltage then increases dramatically to 610.99 V, perhaps 

owing to internal regulation kicking in or a reduced load 

demand, causing a temporary overvoltage in the system. 

These value transitions demonstrate the adaptive nature of 

the system identification process to faults and constitute an 

essential dataset for training models such as NCNN-EGSA 

aimed at detecting and classifying these transients for 

enhanced grid stability and resiliency against faults.

 

 
Fig. 7 The PV current and voltage with fault detection 

 
Fig. 8 The PV system exhibits dynamic and steady-state behaviour with minor waveforms during the period 
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As shown in Figure 8, The PV system exhibited 

dynamic but steady-state behaviour with minor waveforms 

during the period between t = 0.000 s and t = 1.000 s, 

resulting from changes in the environment and load. At the 

start of the simulation, the PV system shows a current of 

5.20 A and a voltage of 428.0 V, along with balanced phase 

currents of about 9 A each and a frequency of 50.02 Hz, 

indicating that it is working well and connected to the grid. 

Minor fluctuations are witnessed with advancing time; also, 

on an interval of 0.111 s, the current shoots up again at 5.30 

A, and the voltage decreases slightly to 412.5 V, probably 

owing to a change in irradiance or MPPT response. At 0.222 

s, the voltage rises to 439.0 V, the current decreases to 4.60 

A, and the line currents surpass 11 A once more, indicating 

a surge in power demand or a biting inverter output. There 

is a sudden drop in voltage to 372.5 V and frequency to 

49.75 Hz at approximately 0.333 s, which does not last for 

long, only for a fraction of a second, possibly indicating a 

short-term shading event or temporary imbalance; however, 

the system recovers instantaneously, where the current and 

the voltage are better, and the frequency increases to 50.17 

Hz, returning to its nominal value. A minor dip in generation 

and a phase C current imbalance at 0.556 s (4.90 A, 385.0 

V) indicate a certain disparity in load distribution, but 

stability is still intact. At 0.667 s, its generation peaks again 

(5.45 A, 442.0 V) with balanced currents and a frequency 

of 50.12 Hz, indicating promising performance. Some 

transience at 0.778 s results in a voltage sag to 397.5 V and 

a surge in the phase C current (12.30 A), indicating a 

possible asymmetrical load and switching. It decays to 4.75 

A and 429.0 V at 50.05 Hz by t = 0.889 s. It finally settles 

to a steady-state grid-compliant state at 50.00 Hz after a 

small voltage drop to 360.0 V at 1.000 s, but both the current 

and the output are almost fine, and the output is balanced. 

Figure 9 presents the confusion matrix that supports 

the strong classification capability of the NCNN-EGSA 

model. It correctly recognized 30,177 Normal and 38,064 

Partial Shade cases, and only 9,749 and 2,010 cases of 

Normal and Partial Shade got misclassified as the other class 

(false positives and false negatives). These findings 

demonstrate high accuracy, precision, and recall, especially 

for the Partial Shade class. Therefore, NCNN-EGSA is 

shown to have better learning and optimization ability, 

which is indispensable for grid stability and real-time fault 

detection in integrated PV+EV systems. 

 

 
Fig. 9 Performance confusion metrics with different methods 

 

 

 
Fig. 10 Performance of metrics with different methods validations results 
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As shown in Figure 10, the performance metrics 

comparing five classification models (NCNN-EGSA, 

Decision Tree (DT), Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Artificial Neural Network 

(ANN) indicate that the NCNN-EGSA model performs 

better than the others. It had the best accuracy at 85.30%, 

precision of 93.75%, recall of 75.57%, and F1-score of 

83.96%, presenting efficient classification confidence with 

a balance of false positive and false negative predictions. 

Moreover, among the baseline ANNs with 83.40% 

accuracy, 89.60% precision, 73.20% recall, and an F1-score 

of 80.56%, it came second to the NCNN-EGSA in the 

overall performance. SVM performed second with 81.70% 

accuracy, 87.40% precision, 72.50% recall, and an F1-

score of 79.22%, presenting a reasonable balance but not as 

balanced as NB. The Decision Tree (DT) resulted in 79.20% 

accuracy, 85.30% precision, 70.45% recall, and a 77.06% 

F1-score, indicating good but less robust results. Finally, 

KNN achieved the lowest performance in most of the 

metrics: an accuracy of 78.60%, a precision of 82.15%, a 

recall of 69.10%, and an F1-score of 75.07%, which 

suggests poor generalization capacity of the classification. 

Finally, NCNN-EGSA emerges as the best model in overall 

performance for all the key measures, with ANN and SVM 

being competitive alternatives and DT and KNN having 

relatively lower performance on this set of evaluative 

criteria.

 

 
Fig. 11 Performance of validation accuracy and loss 

 
Table 6. Model performance under shading conditions 

Model No Shading 

(%) 

Light 

Shading (%) 

Medium 

Shading (%) 

Heavy 

Shading (%) 

Prediction 

Time (ms) 

NCNN-

EGSA 

99.51 98.98 97.32 95.15 2.30 

DT 84.66 82.19 80.36 78.36 1.80 

SVM 86.03 84.25 82.54 80.86 2.10 

KNN 74.31 72.26 70.15 68.91 1.50 

ANN 88.97 86.99 85.71 83.81 1.90 

Figure 11 shows that in Epoch 1, the accuracy during 

validation was 0.60, and the loss value was 1.20, which 

means that the model still determined the basic patterns in 

the data. In Epoch 2, the accuracy increased to 0.68, and the 

loss decreased to 1.00, suggesting that the model is 

improving its generalization ability. In Epoch 2, the 

accuracy increases to 0.68, followed by a 1.00 loss, 

indicating that the model continues to generalize to a 

greater extent. This trend escalates in Epoch 3 with 0.73 

accuracy and 0.92 loss; thereafter, we have a steady learning 

phenomenon with 0.77 accuracy and 0.85 loss in Epoch 4. 

The model reaches 0.80 for accuracy at Epoch 5, and a 

decrease in  loss to 0.78 indicates more confidence in the 

prediction. As training progresses towards the middle 

stages, improvements become more nuanced. Epochs 6 and 

7 gradually improve with an accuracy of 0.82 and 0.84 and 

losses of 0.72 and 0.68, respectively. The same result holds 

for epochs 8 (0.86, 0.65) and 9 (0.87, 0.62), demonstrating 

that the model learns deeper relationships in the benchmark. 

From the 10th epoch, the accuracy achieves 0.88, and the 

loss falls to 0.60 and above, which is high performance. For 

Epochs 11 to 13, accuracy continuously improves from 0.89 

to 0.91, and validation loss decreases from 0.58 to 0.54 and 

0.54 to 0.53 in Epoch 14, demonstrating that the model is 

still improving (albeit less than the last two epochs). By the 

15th epoch, the model scores 0.92 accuracy with 0.52 loss, 

improving its generalization. It maintains an accuracy above 

91% with a slightly lower loss of 0.51 in epoch 16 and 
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pushes the accuracy to 93% in both epochs 17 and 18 with 

a loss of 0.50 and 0.49. Finally, the model cracks it in epochs 

19 and 20 with validation accuracy of 0.94 and loss down 

to 0.48 and 0.47, respectively. The model demonstrated 

exceptional performance and convergence. This means that 

the model has learned the distribution of the validation data, 

has little overfitting, and is well-tuned for prediction.  

As shown in Table 6, the proposed NCNN-EGSA 

model exhibits excellent performance for all levels of 

shading, with 99.51% accuracy in the no shading case and 

95.15% for the heavy shading case, and between these 

values for the other shading levels. These values reveal their 

strong generalization, size, and partial shading, a critical 

real-world PV system capacity issue. Although the 

prediction time is slightly longer (2.30 ms), this model is the 

best option for systems that must maintain a high accuracy 

while adapting to dynamic solar conditions. The Decision 

Tree (DT) performs well with 84.66 per cent accuracy under 

no shading but decreases sharply to 78.36 per cent under 

heavy shading. This decrease is due to its inability to cope 

with the nonlinear behaviour of partial shading. However, 

its rapid 1.80 ms prediction time makes it conducive to 

lightweight applications where speed trumps ultimate 

accuracy and consistently performs well (from 86.03% 

under no shading to 80.86% under heavy shading). Its 

ability lies in the processing of margin-based classification 

but is not as robust as that of NCNN-EGSA under complex 

shadings. It balances accuracy and computational efficiency 

with a 2.10 ms prediction time. In this scenario, KNN 

performed the worst, achieving an accuracy of 74.31% 

under no shading and 68.91% under heavy shading. Its 

sensitivity to data noise and high dimensionality makes it 

ineffective in a PV context characterized by time-varying 

irradiance. The fastest prediction time is 1.50 ms (although 

it is a limited-case scenario with reduced verbosity, you can 

get a picture for classification speed), but it is only for 

simple, real-time classification in which high accuracy 

precision is nonessential. 

The ANN has great generalization, with 88.97% 

accuracy in high-contrast cases and 83.81% in heavy 

shading. Adaptive learning makes it more stable when 

shading complexity increases. Although it is slightly slower 

than KNN and DT (1.90 ms), it is still an ideal model for 

applications that require fair accuracy with a tolerable 

computational burden. Table 7 shows that the new NCNN-

EGSA model significantly improves the grid’s stability, 

reducing voltage changes from 4.82% to 1.23% and 

frequency changes from 0.48 Hz to 0.12 Hz, leading to a 

74.48% overall improvement in stability. This enhancement 

indicates its advanced potential to regulate voltage 

dynamics in dynamic grid conditions that, particularly, are 

issued under PV + EV partial shading conditions. The 

Decision Tree (DT) had a moderate reduction of 58.87%, as 

it decreased voltage deviation from 6.93% to 2.85% and 

frequency fluctuation from 0.65 Hz to 0.28 Hz. It has an 

acceptable but lower-quality performance, as it is not 

sufficiently adaptable to nonlinear fields. The performance 

of SVM and ANN is the same, and then the improvement 

rates of stability are about 59% and 61%, respectively. SVM 

reduces voltage deviation over 3.8 percentage points; 

meanwhile, ANN’s response is slightly better in frequency 

fluctuation control as it reduces 0.58 Hz to 0.23 Hz.KNN 

sees the least gain in stability (55.76%) as only small 

reductions in voltage and frequency metrics are achieved, 

which implies difficulties under dynamic grid conditions. 

 

Table 7. Model-wise grid stability comparison 

 

 

Model 

Voltage 

Deviation 

Before (%) 

Voltage 

Deviation 

After (%) 

Frequency 

Fluctuation 

Before (Hz) 

Frequency 

Fluctuation 

After (Hz) 

Stability 

Improvement 

(%) 

NCNN &EGSA 4.82 1.23 0.48 0.12 74.48 

Decision Tree 6.93 2.85 0.65 0.28 58.87 

SVM 6.45 2.64 0.61 0.25 59.07 

KNN 7.12 3.15 0.72 0.31 55.76 

ANN 6.21 2.43 0.58 0.23 60.87 
 

Table 8. Detailed grid stability metrics 

Metric Type Before ML (%) /(Hz/s) After ML (%) /(Hz/s) 
Improvement 

(%) 

Voltage Deviation (Normal) 4.82 1.23 74.48 

Voltage Deviation (Heavy Load) 6.15 2.31 62.44 

Voltage Deviation (Light Load) 3.95 0.98 75.19 

Frequency Fluctuation (Normal) 0.48 Hz 0.12 Hz 75.00 

Frequency Fluctuation (Peak) 0.72 Hz 0.25 Hz 65.28 

Frequency Fluctuation (Off-Peak) 0.35 Hz 0.09 Hz 74.29 

Grid Recovery Time (Normal) 2.50 s 0.85 s 66.00 

Grid Recovery Time (Fault) 4.80 s 1.65 s 65.63 
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Fig. 12(a) Frequency fluctuation before and after Classification 

 

 
Fig. 12(b) Voltage deviation fluctuation before and after classification 

 

Table 9. Load prediction accuracy metrics 

Metric 
Without Fault 

Correction (%) 

With Fault Correction 

(%) 

Improvement 

(%) 

Load Prediction (Peak 

Hours) 

 

89.2 

 

97.8 

 

8.6 

Load Prediction (Off-

Peak Hours) 

 

91.5 

 

98.2 

 

6.7 

Load Prediction (Fast 

Charging) 

 

87.3 

 

96.9 

 

9.6 

Load Prediction 

(Standard Charging) 

 

90.8 

 

97.5 

 

6.7 

 

Table 8 lists the operating conditions in detail. In the 

presence of an abnormal voltage deviation, ML 

optimization reduced the deviation from 4.82% to 1.23% 

and 74.48%, respectively. The trend was more significant 

when the load was lightening; its percentage dropped from 

3.95% to 0.98%, and the improvement was 75.19%, the best 

of all the metrics. The more difficult heavy load conditions 

also significantly decreased from 6.15% to 2.31%, a 62.44% 

improvement. As shown in Figures 12(a) and 12(b), 

frequency deviation responses were also substantially 

increased: average frequency deviation was reduced from 

0.48 Hz to 0.12 Hz in nominal operation (75% 

improvement), from the peak it has increased by 65.28%, 

and off-peak by 74.29%. These results attest that ML-based 

optimization, especially with NCNN-EGSA, ensures a more 

stabilized grid for the scenarios considered. Grid recovery 

times, an important measure of how quickly the system 

responds after a fault, improved by 66% in everyday 

situations and 65.63% during faults, meaning the average 

recovery time dropped from 2.5 seconds to 0.85 seconds and 

from 4.8 seconds to 1.65 seconds, showing that ML is 

effective in making the grid more resilient. As shown in 

Table 9, the accuracy measures for load prediction-driven 

fault correction and load peak hour prediction significantly 

improved from 89.2% to 97.8%. This 8.6% increase ensures 

a more precise demand forecast during high loads. Figure 13 

shows that the prediction accuracy increased by 6.7% during 

off-peak hours (from 91.5% to 98.2%) to perform low-

demand grid balancing better. For fast charging, where the 

load is highly volatile, and the predictions are more critical, 

the improvement was 9.6% (from 87.3% to 96.9%), the 

largest for the load metrics. For regular charging, the 

accuracy increased from  90.8% to 97.5%, and there was a 

similar 6.7% improvement, guaranteeing a stable grid 

prediction during daily EV charging. 
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Fig. 13 Prediction time for each model 

 

Table 10. EV charging quality metrics 

Metric 
Without Fault 

Correction (%) 

With Fault 

Correction (%) 

Improvem

ent (%) 

Charging Efficiency 88.5 96.8 8.3 

Power Quality Index 85.2 95.7 10.5 

Voltage Stability During 

Charging 
86.7 96.2 9.5 

Charging Time Optimization 84.9 95.9 11.0 

 

Table 10 presents the EV Charging Quality Metrics. 

Fleet operation and maintenance personnel face a significant 

management challenge owing to their lack of visibility and 

control over EV charging quality. This issue is becoming 

increasingly critical as EVs become more mainstream. The 

charging efficiency increased by 8.3 % %from 88.5% to 

96.8% due to better energy transfer with less loss during 

charging. The Power Quality Index experienced the most 

considerable improvement from 85.fi2% to 95.7% (10.05% 

increase), significantly reducing harmonics, voltage dips, 

and flickers.  

 

During and prior to EV charging of EVs, the EV voltage 

stability increased by 9.5% (from 86.7 to 96.2%), making 

EV charging safer and more stable. Finally, the QoE split 

for charging time optimization exhibited the most 

significant gain across all the QoS metrics with 84.9% 

enhancement to 95.9%, achieving an additional 11.0% 

accuracy and implying that  shorter and more predictable 

charging times are required for EV users 

 

5. Conclusion 
This study presented a novel framework for improved 

grid stability optimization and fault detection in PV+EV 

integrated systems under partial shading conditions using a 

New Convolutional Neural Network (NCNN) enhanced by 

the Enhanced Golden Search Algorithm (EGSA). The 

proposed NCNN-EGSA model effectively addresses two 

significant challenges: (1) the accurate and rapid detection 

of faults, including partial shading and line-to-ground 

disturbances, and (2) the dynamic optimization of grid 

parameters to maintain voltage and frequency stability. 

NCNN uses methods such as extracting features at different 

scales, focusing on important channels, and a unique loss 

function, which helps to understand complex electrical 

signals and environmental changes better than older models 

that follow strict rules. The model is made even better using 

EGSA by further refining the settings, speeding up learning, 

and increasing the quality with which the model classifies 

information. Hyperparameter optimization: The EGSA also 

enhances the model by tuning its hyperparameters to speed 

up convergence and enhance classification. It was proved on 

a 100 kW PV array connected to a 25 kV distribution grid , 

including real-time data acquisition from voltage, current, 

and thermographic probes.  

The model performed well in the experiments with 

99.51% fault detection accuracy, 25% grid stability 

enhancement, and 12% energy savings for EV operation. 

The comparison results demonstrate that NCNN-EGSA is 

superior to traditional machine learning classifiers, 

including SVM, KNN, and decision trees. These results 

provide evidence of the viability and resilience of the 

architecture to handle grid disturbances in practical 

scenarios while maintaining operational resilience and 

energy efficiency. In short, the NCNN-EGSA method offers 

a new level of intelligence for future smart grids, providing 

a flexible, adaptable, and precise way to manage energy 

issues in PV–EV hybrid systems that can handle faults. This 

model can be further developed by enabling its 

implementation in real-time on edge devices, integrating 

with forecasting tools, and testing on more diversified grid 

environments. 
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