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Abstract - Brain Tumour (BT) is a common and aggressive disorder that leads to a very short life expectancy in high-grade 

grades. Therefore, treatment planning is the primary phase in enhancing the quality of patient care. Numerous image models 

like Computed Tomography (CT), ultrasound imaging, and Magnetic Resonance Imaging (MRI) were employed to assess a 

brain's cancer region. Compared to other image techniques, MRI images are used to analyze the tumour in the brain. Conversely, 

the enormous amount of data generated by MRI scans prevents the manual classification of non-tumours and tumours in a 

precise manner. However, it is time-consuming and requires knowledge to examine the MRI imaging. Currently, the development 

of Computer-Aided Diagnosis (CAD), Machine Learning (ML), and Deep Learning (DL) models permits the expert to recognize 

BT. This manuscript presents a Hybrid Artificial Intelligence-Based Brain Tumor Classification with Transfer Learning and 

Metaheuristic Optimization (HAIBTC-TLMO) model using MRI imaging. The HAIBTC-TLMO model aims to develop an 

effective and accurate method for classifying BTs. Image pre-processing begins with noise removal using a bilateral filter (BF), 

followed by skull removal through Otsu thresholding and morphological operations. Moreover, the proposed HAIBTC-TLMO 

model utilizes the NASNetMobile method for feature extraction to detect the BT region from the input image data. The hybrid 

Graph Convolutional Gated Recurrent Network (GCGRN) method is also employed for classification. Finally, the Spotted Hyena 

Optimizer (SHO) optimally adjusts the hyperparameters of the GCGRN method, resulting in improved classification 

performance. The experimental analysis of the HAIBTC-TLMO approach is conducted on a BT MRI dataset. The performance 

validation of the HAIBTC-TLMO approach demonstrated a superior accuracy output of 94.64% over existing methods. 

Keywords - Artificial Intelligence, Brain tumor classification, Transfer learning, Metaheuristic optimization, MRI. 

1. Introduction 
The brain is the control centre and a crucial part of the 

nervous system for regulating daily activities [1]. It receives 

signals or stimuli from the body's sensory organs and 

processes them to make choices, sending commands to the 

muscles. BT represent a critical condition where abnormal 

brain cells grow uncontrollably, leading to a disorder [2]. It is 

possible for virtually any person of any age. It can even change 

from one therapy period to another, but its causes cannot be 

the same for any person [3]. BT appears in different images at 

different locations and intensities and is of various sizes and 

shapes. BT of low-level is named as benign. Likewise, the 

high level is called malignant [4]. Benign cancer is not a 

tumorous cancer. Therefore, the brain does not spread to other 

parts. Nevertheless, the malignant tumour is cancerous. 

Consequently, it spreads fast with unpredictable borders to 

different zones of the body [5]. It also causes direct death. 

Treatment of BT utilizes many approaches. Nevertheless, 

MRI is selected over other imaging methods, namely Positron 

Emission Tomography (PET), CT, and X-rays, because it has 

no interfering features [6]. MRI is recognized as a robust and 

efficient technique for visualizing the brain, allowing 

continuous tracking over longitudinal, non-invasive, and 3D 

assessment of soft tissue morphology, function, physiology, 

and metabolism [7]. MRI's data has seriously grown the 

information of standard and health research on disorder 

anatomy and is the main section in diagnosis and planning 

treatment. MRI is the prevalent method for the early detection 

of BT. 

 

The traditional system of brain MRI identification and 

human inspection treatment is tumour detection, including 

MRI, which is affected by the operation implementation and 

can cause serious mistakes in classification. The MRI 

information is obtained via a vast, natural, complex cognitive 

process. Perfect MRI data analysis demands more time and is 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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not a simple procedure. Therefore, the literature survey has 

announced semi-automatic and automatic methods for the BT 

division. Semi-automatic approaches need human 

intervention for BT recognition [8]. Trained radiologists 

perform judgment tasks with considerable accuracy. For 

diagnostic ability and excellent accuracy in the pathological 

classification of brain tissues, Computer-Aided Diagnosis 

(CAD) systems are presented, which can produce diagnosis 

reports depending on MRI and guide the radiologist [9]. The 

CAD method has developed dramatically by applying DL and 

ML applications in the health check imaging area [10]. Such 

techniques result in better precision in identifying BT in the 

CAD system. Swift BT detection significantly enhances 

patient outcomes and guides effective treatment strategies. 

Conventional diagnostic methods often face difficulty with 

tumour size, shape, and location variability across individuals. 

Advanced DL approaches can improve diagnostic precision 

through automated image analysis. Transfer Learning (TL) 

and Attention Mechanisms (AM) can improve tumour 

classification performance, even with limited annotated data. 

 

This manuscript presents a Hybrid Artificial Intelligence-

Based Brain Tumor Classification with Transfer Learning and 

Metaheuristic Optimization (HAIBTC-TLMO) model using 

MRI imaging. The HAIBTC-TLMO model aims to develop 

an effective and accurate method for classifying BTs. Image 

pre-processing begins with noise removal using a Bilateral 

Filter (BF), followed by skull removal through Otsu 

thresholding and morphological operations. Moreover, the 

proposed HAIBTC-TLMO model utilizes the NASNetMobile 

method for feature extraction to detect the BT region from the 

input image data. The hybrid graph Convolutional Gated 

Recurrent Network (GCGRN) method is also employed for 

classification. Finally, the Spotted Hyena Optimizer (SHO) 

optimally adjusts the hyperparameters of the GCGRN method, 

resulting in improved classification performance. The 

experimental analysis of the HAIBTC-TLMO approach is 

conducted on a BT MRI dataset. The major contribution of the 

HAIBTC-TLMO approach is listed below. 

 The HAIBTC-TLMO model utilizes the BF model for 

noise reduction while conserving critical edges, 

enhancing the clarity of MRI images. It improves tumour 

localization through precise skull removal utilizing Otsu 

thresholding and morphological operations. 

 The HAIBTC-TLMO method employs the 

NASNetMobile technique for extracting deep, 

discriminative features from brain MRI scans, capturing 

complex tumour characteristics. This improves its 

capability to distinguish between diverse tumour types 

accurately. 

 The HAIBTC-TLMO approach implements the hybrid 

GCGRN model to effectively capture spatial and 

sequential patterns in feature representations from MRI 

scans. This strengthens the model's classification 

accuracy across various tumor types. 

 The HAIBTC-TLMO methodology integrates the SHO 

model to fine-tune parameters, enabling faster 

convergence during training. This results in improved 

performance and stability across classification tasks. 

 The HAIBTC-TLMO model presents a novel unified 

model incorporating BF-based pre-processing, 

NASNetMobile-based feature extraction, and GCGRN-

based classification. It also includes the SHO method for 

parameter tuning and optimizing learning efficiency. This 

novel approach improves both tumour classification 

accuracy and computational performance. 

2. Related Works 
In [11], an automated model deploying a Particle Swarm 

Optimizer (PSO) is implemented to generate a CNN structure 

mainly improved for the classification of MRI-based BT. PSO 

is scientifically searching for an optimum configuration of 

structural parameters. Abdusalomov et al. [12] combine 

YOLO-v5, an advanced structure of OD, with a Non-Local 

Neural Network (NLNN) model. This paper begins by 

organizing a complete database, including brain MRI scans 

from several resources. The NLNN and YOLO-v5, SPPF+, 

and K-means+ models were combined inside a unified 

structure to assist effective fusion. The BT database upgrades 

the YOLO-v5 technique over applying the TL models. In [13], 

a fast and precise BTSC method was advanced depending 

upon a TL-based Convolutional Neural Network (CNN). The 

images are partitioned by utilizing the VGG-19 method. 

Afterwards, the final classified output was attained from the 

adapted VGG-19 framework. Kumaar et al. [14] developed an 

innovative model that employs an auxiliary classification of 

BT and a style-based generative adversarial network. An 

open-source MRI database supported the presented model. 

Sachdeva and Kushwaha [15] developed an AI-based 

automated structure to categorize tumours. The given 

structure leverages the hierarchical feature learning ability of 

the CNN model and an enhanced boosting technique. 

Hyperparameters of the boosting classifier are adjusted with a 

Bayesian optimizer. 

 

Ramakrishnan et al. [16] project a hybrid CNN structure 

applying VGG16, Inception-V3, DenseNet, and ResNet-50. 

Primarily, this model eliminates characteristics from MRI 

images and subsequently categorizes the tumour utilizing the 

mask image, which is later incorporated with the original 

image. Lastly, the resultant image is categorized using diverse 

CNN methods, particularly VGG16, Inception-V3, DenseNet, 

and ResNet. Kumar et al. [17] introduce an advanced structure 

for the classification of BT, incorporating XGBoost for 

classification and EfficientNet-B0 for feature extraction. The 

pre-processing phase contains normalization, resizing, and 

data augmentation of brain MRI pictures to guarantee high-

quality input. The parameter efficacy and computational speed 

of the EfficientNet-B0 model are employed to remove 

discriminative characteristics, which are categorized utilizing 

the XGBoost model. Global Average Pooling and a dropout 

ratio of 0.3 methods were used. Tariq et al. [18] propose a DL 
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methodology using EfficientNetV2 for effectual feature 

extraction and a Vision Transformer (ViT) for capturing 

global context in brain tumour classification. Sajol and Hasan 

[19] explore seven advanced models, comprising transformer-

based and self-attention replicating architectures, for BT 

classification utilizing MRI scans.

 

 
Fig. 1 Overall flow of HAIBTC-TLMO model 

 

Wang et al. [20] introduce MSegNet, a Transformer-

based segmentation model incorporating cross-modal 

attention and multi-view approach. The method comprises 

three data augmentation methods to improve robustness and 

generalization. Lai et al. [21] explore pre-trained models for 

BT classification, concentrating on the novel Vision Mamba 

(Vim) architecture. The method also utilizes TL methods for 

the tuning process. Li and Zhou [22] present a BT MRI 

classification model with a dual-branch structure: ResNet50 

with a Multi-Head Self-Attention (MHSA) model for global 

context and VGG16 for local features. An attention-enhanced 

fusion module combines features, and a category attention 
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block addresses class imbalance. Pacal et al. [23] present an 

improved EfficientNetv2 model with Global AM (GAM) and 

Efficient Channel Attention (ECA), improving feature 

extraction and classification accuracy. Preetha, Priyadarsini, 

and Nisha [24] propose a three-branch CNN with 

EfficientNetB2 fusion for multiclass BT classification, 

outperforming existing multi-branch architectures. Srinivas et 

al. [25] introduce a fine-tuned transformer model integrating a 

data-efficient image transformer (DeiT) and the Firefly 

algorithm (FA) technique for BT classification. The model 

utilizes self-attention and hyperparameter optimization to 

capture intrinsic patterns in MRI images. 

Despite crucial improvements in BT classification using 

diverse DL models, there remains a research gap in attaining 

consistent high accuracy across diverse MRI datasets due to 

variability in tumour types and imaging conditions. High 

computational costs and inadequate generalization across 

diverse data sources limit several existing techniques. 

Furthermore, while AMs and transformers have exhibited 

superiority, their application in BT classification is still under-

explored, specifically in integrating multimodal data for 

enhanced robustness. Enhancing model interpretability and 

mitigating overfitting in small datasets are also critical 

challenges. 

 

3. Methodology 
This manuscript proposes the HAIBTC-TLMO technique 

using MRI imaging. The method aims to classify BTs. To 

perform that, the HAIBTC-TLMO model comprises pre-

processing, feature engineering, BT-based classification, and 

parameter tuning. Figure 1 signifies the complete flow of the 

HAIBTC-TLMO model. 

 

3.1. Image Pre-Processing  

First, the BF model removes noise and skulls using the 

Otsu threshold and morphological operations.  

 

3.1.1. BF for Noise Removal 

Bilateral is a nonlinear filter that preserves edges and 

smooth images [26]. Compared with conventional 

convolutional filters, it utilizes various kernels to calculate 

proximity in intensity areas. BF represents a weighted average 

of neighbouring pixels. 

 

𝐼𝑝 =
1

𝑊𝑝

∑ 𝐺𝜎𝑠

𝑞∈𝑠

(‖‖𝑝 − 𝑞‖‖)𝐺𝜎𝑟
(‖𝐼𝑝 − 𝐼𝑞‖)𝐼𝑞          (1) 

 

Whereas (𝑊𝑝) is the normalization feature that is 

delineated as shown: 

𝑊𝑝 = ∑ 𝐺𝜎𝑠

𝑞∈𝑠

(‖𝑝 − 𝑞‖)𝐺𝜎𝑟
(‖𝐼𝑝 − 𝐼𝑞‖)𝐼𝑞                 (2) 

 

The parameters 𝜎𝑠 and 𝜎𝑠 state the filtering level applied 

to the image (𝐼). If (𝑞) pixels’ intensity values may vary (𝐼𝑝), 

the Gaussian range 𝐺𝜎𝑠
 lessens their effect. 𝐺𝜎𝑠

 refers to the 

Gaussian weight applied to reduce the distant pixel effects. 

3.2. Skull Removal 

3.2.1. Otsu Threshold 

This is used for segmenting the denoised images for BT 

[27]. This approach employs between-class variation as a 

criterion to determine the optimal threshold. This value that 

maximizes the difference among class labels is the optimal 

threshold. Assume 𝐿 signifies the complete amount of diverse 

grey levels and 𝑛𝑖 symbolizes the complete pixel counts using 

the grey level value 𝑖. When the pixel’s grey levels in the 

image 𝑓(𝑥, 𝑦) range from 0 to L‐l. 

 

𝑁 = ∑ 𝑛𝑖

𝐿=1

𝑖=0

                                          (3) 

 

The frequency designated is applied to estimate the 

possibility of the pixel having a grey level value, i, whereas 𝑝𝑖  

denotes probability. 

𝑝𝑖 =
𝑛𝑖

𝑁
                                               (4) 

 

When 𝑇 is applied as the threshold value for binary 

segmentation, the pixels of the image are separated into two 

classes, selected as 𝑐0 and 𝑐1. In contrast, 𝑐0 and 𝑐1 

correspondingly represent pixel groups with pixels with grey 

values in [0, 𝑇] and [𝑇 + 1, 𝐿‐ 𝑙]. There is a limited critical 

statistic, which is required to be involved before the interclass 

variance is described, comprising the value of the mean pixel 

grey 𝑐0 and 𝑐1, in addition to the weighting parameters that are 

decided individually as symbols 𝜇0(𝑇), 𝜇00(𝑇), 𝜇0(𝑇). 

3.2.2. Morphological Operations 

The morphological processes of erosion, dilation, closing, 

opening, thickening, and thinning are applied, 

correspondingly, to divide the images and eliminate smaller 

objects by making a disk-shaped structuring component with 

a radius of 8 that relies on the skull, tumour, and image size 

[28]. A similar size is selected for each image; therefore, 

attaining the best number of disks is simpler. The radius value 

is significant because it verifies the size of the disk-shaped 

structuring component and successively influences how much 

of the image is measured to be a portion of the object to be 

removed. A large radius leads to a significant structuring 

component and might eliminate more objects than projected. 

However, a small radius gives a small structuring component 

and can leave some items behind. To establish a suitable 

radius for a particular image, dissimilar radii are verified to 

discover the one that best eliminates the object while 

preserving a significant amount of the neighbouring tissue as 

promising. This might include running the object removal 

model numerous times with dissimilar radii and comparing the 

outcomes to verify which gives the best result. Finally, while 

a radius of 8 is recommended as a starting point, the particular 
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value of the disk-shaped structuring component must be 

selected according to the features of the pending image. Now, 

the opening operator displays more precise outcomes for 

tumour area computation. 

3.3. Feature Extraction 

 Moreover, the proposed HAIBTC-TLMO model 

implements the NASNetMobile methodology to extract the 

feature process to remove the BT region from the input image 

data. The NASNetMobile methodology is a mobile-optimized 

Neural Network (NN) structure for image classification 

tailored to the neural structure [29]. It attains advanced 

precision on ImageNet classification amongst mobile-sized 

methods. This study presents a NASNet searching region, 

which allows effective framework search on a smaller dataset, 

namely CIFAR-10, and transmits the learned framework to 

larger-scale difficulties such as ImageNet classification. The 

search model utilizes a control RNN that samples child 

network structures that are trained and estimated. It captures a 

static 224x224 input image, which initially passes through 

Stem convolutional layers for the initial feature extraction. 

The Stem supports stacked modular blocks named cells 

consisting of dual categories: (1) Normal Cells to take spatial 

features over processes such as 1x1, 3x3 pooling, skip 

connections, and convolutions; and (2) Reduction Cells to 

decrease the width and height of features through extensive 

pooling and convolutions. Consecutive intermediary 

convolution layers then process features, previously global 

average pooling shortens the outputs for the last classification 

layer, usually comprising as many neurons as classes. 

NASNetMobile hit a good spot for precision efficacy 

calculated for embedded uses, exceeding hand-designed 

methods. Figure 2 depicts the NASNetMobile model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Framework of NASNetMobile 

3.4. BT Classification Model  

The hybrid of the GCGRN technique is employed for the 

BT classification model. GCN is an NN structure specified for 

graph‐structured data [30]. The graph‐structured data contains 

edges and nodes that connect pairs of nodes. Compared with 

sequence, graph, and grid-structured data, the inter-

relationships among nodes can be explained by using edges. 

The undirected graph is typically stated as shown: 

 

{

𝐺 = (𝑉, 𝐸, 𝑋, 𝐴)

𝑉 = (𝑣0, 𝑣1, … , 𝑣𝑁)

𝐸 = (𝑣𝑖 , 𝑣𝑗), 𝐺 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ

           (5) 

 

Whereas signified by 𝑉 represents a set of nodes using 𝑁 

nodes, represented by 𝐸 denotes edge collection, 𝑋 ∈ ℜ𝑁×𝑑 

characterizes the node’s feature matrix by 𝑑 dimension 

attributes, and 𝐴 ∈ 𝑅𝑁×𝑁 refers to the matrix of weight 

adjacency. The nodes might characterize the sensors' 

measuring point and the edges' weighting. 

 

The GCN is made by streamlining spectral graph 

convolutions using a first‐order calculation. Therefore, they 

first briefly analyze the spectral graph convolutions. Assume 

𝐺 = (𝑉, 𝐸, 𝑋, 𝐴) denotes an undirected graph; the matrix of 

standardized Laplacian of 𝐺 was provided by: 

 

𝐿 = 𝐼𝑁 − 𝐷−
1
2𝐴𝐷

1
2                                      (6) 

 

On the other hand, 𝐷 = 𝑑𝑖(𝑙𝑔(∑ 𝐴𝑖𝑗𝑗 ) denotes the degree 

matrix of 𝐺, and 𝐼𝑁 refers to a matrix of identity. 

The eigenvalue decomposition of 𝐿 is expressed as: 

 

𝐿 = 𝑈𝛬𝑈𝑇                                              (7) 
 

Here, 𝛬 denotes the eigenvalues diagonal matrix, 𝑈 

represents the eigenvectors matrix, and 𝑇 characterizes the 

transpose operator. Formerly, the spectral graph convolution 

was described as: 

 

ℎ = 𝑔𝜃 ⋆ 𝑋 = 𝑈𝑔𝜃𝑈𝑇𝑋                                (8) 

 

Now, ℎ denotes feature mapping after graph convolution, 

𝑈𝑇𝑋 signifies the graph Fourier transform of 𝑋, ⋆ denoting the 

operator of the graph convolution, and 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝜃) 

characterizes filters within the Fourier field parameterized by 

𝜃 ∈ ℜ𝑁 that is assumed as the function of 𝛬, for example, 

𝑔𝜃(𝛬).  

𝑔𝜃′(𝛬) ≈ ∑ 𝜃𝑘
′

𝐾

𝑘=0

𝑇𝑘(�̃�)                                   (9) 
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Whereas 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) with 𝑇0(𝑥) = 1 

and 𝑇1(𝑥) = 𝑥, �̃� =
2

𝜆𝑚𝑎𝑥
𝛬 − 𝐼𝑁 and 𝜆max epitomizes the 

larger eigenvalues of 𝐿. Formerly, the convolution of the graph 

was provided by: 

ℎ = 𝑔𝜃′ ⋆ 𝑋 = ∑ 𝜃𝑘
′

𝐾

𝑘=0

𝑇𝑘(�̃�)𝑋                         (10) 

 

with �̃� =
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑁. As it solely relies on the 𝐾𝑡ℎ 

neighbourhood order. 

 

Afterwards, the function of nonlinear activation, the GCN 

using only the message passed stage, is described as: 

 

𝐻(𝑙+1) = 𝜎 (𝐷−
1
2𝐴𝐷−

1
2𝐻(𝑙)𝑊1

(𝑙)
+ 𝐻(𝑙)𝑊0

(𝑙)
+ 𝑏(𝑙))   (11) 

 

Whereas represented by 𝐻(𝑙) ∈ ℜ𝑁×𝑑𝑙(𝐻(0) = 𝑋, for 

example, the input node feature matrix denotes a hidden node 

representation matrix with dimensions 𝑑𝑙 within the 𝑙𝑡ℎ layer. 

𝜎 denotes the activation function of ReLU. 𝑊0
(𝑙)

 ∈ ℜ𝑑𝑙×𝑑𝑙+1  

and 𝑊𝑙 ∈ ℜ𝑑𝑙×𝑑𝑙+1  they are learnable parameter matrices. 𝑏 

signifies a biased vector. 𝐷−1/2𝐴𝐷−1/2 denote the matrix of 

the standardized adjacency. To additionally lower the 

parameters of the model, the only GCN parameter method in 

𝑡ℎ𝑒 𝑙𝑡ℎ layer was provided by: 

 

𝐻(𝑙+1) = 𝜎 (�̃�−
1
2�̃��̃�−1/2𝐻(𝑙)𝑊𝑉

(𝑙)
+ 𝑏(𝑙))       (12) 

 

Here, �̃� = 𝐴 + 𝐼𝑁 , �̃�−1/2�̃��̃�−1/2 characterizes the matrix 

of standardized adjacency with additional self‐connections 

and �̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 . 𝑊(𝑙) ∈ ℜ𝑑𝑙×𝑑𝑙+1  IT is the matrix of 

learnable parameters. The difficulty of the particular GCN is 

𝑂(𝑁2𝑑𝑙 + 𝑁𝑑𝑙𝑑𝑙+1). 

 

LSTM and GRU are two popular RNN versions 

extensively applied to model temporal dependencies in time 

series. The forward propagation at instant 𝑡 is provided by: 
 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑉𝑟ℎ𝑡−1 + 𝑏𝑟)                        (13) 
 

𝑢𝑡 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑉𝑢ℎ𝑡−1 + 𝑏𝑢)                       (14) 
 

ℎ̃𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑉ℎ(𝑟𝑡 ⊙ ℎ𝑟−1) + 𝑏ℎ)            (15) 
 

ℎ𝑡 = 𝑢𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑢𝑡) ⊙ ℎ̃𝑡                   (16) 
 

Here, ⊙ characterizes the Hadamard product. 𝑟𝑡 ∈ ℜ𝑑ℎ×1 

signifies the reset gate. 𝑢𝑡 ∈ ℜ𝑑ℎ×1 denotes the update gate. 
 

𝑥𝑡 ∈ ℜ𝑑𝑥×1 epitomizes the present input. ℎ𝑡−1 ∈ ℜ𝑑ℎ×1 

and ℎ𝑡 ∈ ℜ𝑑ℎ×1 embody the preceding and present hidden 

layer (HL). ℎ̃𝑡 ∈ ℜ𝑑ℎ×1 refers to candidate HL. 𝑑𝑥 and 𝑑ℎ 

represent the sizes of 𝑥𝑡 and ℎ𝑡−1 individually. {𝑊𝑟 , 𝑊𝑢 , 𝑊ℎ} ∈

ℜ𝑑ℎ×𝑑𝑥  and {𝑉𝑟 , 𝑉𝑢 , 𝑉ℎ} ∈ ℜ𝑑ℎ×𝑑ℎ denotes weighting matrices 

to 𝑥𝑡 and ℎ𝑡−1, correspondingly. {𝑏𝑟 , 𝑏𝑢, 𝑏ℎ} ∈ ℜ𝑑ℎ×1 

symbolizes biased vectors. 𝜎 stands for the function of 

sigmoid activation. 𝑡𝑎𝑛ℎ refers to the function of hyperbolic 

tangent activation. The core concept of the GRU comprises 

update and reset gates that control how much data from the 

previous hidden state is retained and how much of the current 

input is passed to the output, addressing the gradient vanishing 

issue in RNNs and handling time dependencies in sequences. 

3.5. SHO-based Parameter Tuning 

Finally, the SHO approach optimally alters the 

hyperparameter value of the GCGRN model and results in 

better classification performance. The SHO model is a meta-

heuristic optimizer model developed by the social hierarchy 

and searching actions of spotted hyenas [31]. This model 

simulates the cooperative searching tactics and social 

communications noted in Hyena, which effectively resolve 

optimizer problems. Naturally, spotted hyenas search in 

crowds and show an intricate social hierarchy. In the same 

way, during SHO, the optimizer procedure is influenced by the 

candidate solution's population, which is observed as a group 

of members. Hyenas work together throughout searches, 

utilizing tactics like coordinated attacks, cooperative hunting, 

and information sharing. During SHO, these behaviours 

transform into information exchange amongst individual 

hyenas (candidate solutions) to improve the exploitation and 

exploration of the searching region. Inside a hyena group, 

leading individuals frequently guide and organize the group's 

movements. During SHO, leading roles are allocated to 

capable leaders (solutions) that lead the exploitation and 

exploration stages.  

 

The pre-defined target function evaluates all candidates' 

solutions' fitness, which states the solution quality regarding 

the optimizer issue. This estimation defines the achievement 

of the candidate solution (Hyena) within the optimizer 

procedure. This model repeats over numerous groups 

(epochs), whereas candidate solutions develop and adjust 

according to their communications and the supervision of 

leaders. The model remains until an ending condition is 

encountered, like a maximum number of solution reiterations 

to the satisfaction level. The following series of equations 

characterize the surrounding activities in the SHO. (17) & 

(18). 

�⃗�ℎ = |𝐴 ∙ 𝐶𝑝(𝑋) − 𝐶(𝑋)|                              (17) 

 

𝐶(𝑋 + 1) = 𝐶𝑝(𝑋) − �⃗⃗� ∙ �⃗�ℎ                           (18) 

 

The distance covered by the spotted Hyena to the 

admission of its target is represented as �⃗�ℎ. The present 

iteration is specified by 𝑥. 𝐶 and 𝐶𝑝 individually represent 

position vectors for the spotted Hyena and the victim. The 

symbols || and ∙ denote absolute values and multiplication 
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vectors. The vectors of coefficients 𝐴 and �⃗⃗� are calculated as 

shown: 

𝐴 = 2 ∙ �⃗� 𝑑1                                            (19) 
 

𝐴 = 2 ∙ ℎ⃗⃗ ∙  𝑑2 − ℎ⃗⃗                                       (20) 

 

ℎ⃗⃗ = 5 − (
𝐼𝑡𝑟 × 5

Max𝑙𝑡𝑟

)                                     (21) 

 

Whereas 𝑖𝑡𝑟 = 0,1,2 … . , Max𝑙𝑡𝑟 

 

The ℎ⃗⃗ value reduces from (5-0) during all iterations. The 

randomly formed vectors 𝑥 𝑑1 and 𝑥 𝑑2 capture values in 

intervals of (0,1). Changing the position vectors 𝐴 and �⃗⃗� 

allows the exploration of dissimilar locations. In addition, by 

utilizing the succeeding equations, the hyenas' searching 

behaviours are replicated, permitting the recognition of 

possible searching areas. 

 

�⃗�ℎ = |𝐴 ⋅ 𝐶ℎ − 𝐶𝑘|                                     (22) 

 

𝐶𝑘 = 𝐶ℎ − �⃗⃗� ⋅ �⃗�ℎ                                       (23) 

 

�⃗⃗�ℎ = 𝐶𝑘 + 𝐶𝑘+1 + ⋯ , +𝐶𝑘+𝑁                           (24) 
 

𝑁 refers to iteration counts that are measured as 

demonstrated: 

 

𝑁 = 𝐶𝑜𝑢𝑛𝑡𝑛𝑜𝑠(𝐶ℎ, 𝐶ℎ+1, 𝐶ℎ+2, ⋯ , 𝐶ℎ+𝑀)              (25) 

𝐶(𝑋 + 1) =
�⃗⃗�ℎ

𝑁
                                        (26) 

 

The operational stage of the SHO model originates after 

the size of �⃗⃗� is lower than one, and it is randomly initialized 

in the interval of [‐1, 1]. During the process of SHO, the 

optimizer procedure starts by making a population of arbitrary 

solutions. Primarily, the searching agents group together by 

enlightening the locations of the best‐performing agents and 

then fine-tuning their locations. During all iterations, the 

features ℎ and 𝐸 linearly reduce. After the iteration is 

effectively finished, the optimal locations related to the 

searching agents are recovered. 

 

Fitness selection is a crucial aspect that influences the 

accomplishment of the SHO approach. The hyperparameter 

range process involves a solution-encoded system used to 

evaluate the efficiency of candidate outputs. In the SHO 

method, accuracy is the primary criterion for determining the 

fitness function. Its mathematical model is given below: 
 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max(𝑃)                              (27) 
 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                     (28) 

 

Meanwhile, 𝐹𝑃 and 𝑇𝑃 signify the positive values of false 

and true. 
 

4. Performance Validation 
The analysis of the HAIBTC-TLMO technique is 

investigated under the BT MRI dataset [32]. This dataset holds 

7013 counts under dual classes, such as non-cancerous and 

cancerous, as depicted in Table 1. Figure 3 explains the sample 

images. Figure 4 demonstrates the pre-processing and 

extraction images. 

Table 1. Dataset specification 

Classes Images Count 

Non-Cancerous 5392 

Cancerous 1621 

Total Count 7013 

 

 
Fig. 3 Sample images  

 
Fig. 4 (a) Pre-processed image, and (b) Extracted image. 

Figure 5 exhibits the classifier outputs of the HAIBTC-

TLMO technique under 70%TRAPHA. Figure 5(a) presents 

the confusion matrix with the precise classification and 

identification of overall classes. Figure 5(b) denotes the PR 

curve, notifying the maximal outcome through all class labels. 

Eventually, Figure 5(c) represents the ROC inspection and 

establishes competent outputs with higher ROC values for 

several classes. 
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Fig. 5 TRAPHA 70% (a) confusion matrix, and (b) PR and ROC curves. 

Figure 6 exhibits the classifier outputs of the HAIBTC-

TLMO method under 30%TESPHA. Figure 6(a) illustrates the 

confusion matrix with precise classification and detection of 

every class. Figure 6(b) illustrates the PR examination, 

designating the highest values across both class labels. 

Ultimately, Figure 6(c) illuminates the study of ROC, 

exemplifying effective outputs with extraordinary ROC for 

diverse classes. 

 
Fig. 6 TESPHA 30% (a) confusion matrix, and (b) PR and ROC curves. 

Table 2 and Figure 7 indicate the BT detection of the 

HAIBTC-TLMO technique on 70%TRAPHA and 

30%TESPHA. The results recommend that the HAIBTC-

TLMO technique accurately identifies the samples. With 

70%TRAPHA, the HAIBTC-TLMO model presents average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 𝑀𝐶𝐶  of 94.64%, 98.42%, 

94.64%, 96.36%, and 92.98%, individually. Moreover, with 

30%TESPHA, the HAIBTC-TLMO model provides average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 𝑀𝐶𝐶  of 93.34%, 98.14%, 

93.34%, 95.49%, and 91.35%, correspondingly. 

Table 2. BT detection of HAIBTC-TLMO model under 70%TRAPHA 

and 30%TESPHA 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 𝑴𝑪𝑪 

TRAPHA (70%) 

Non-

Cancerous 
94.64 96.83 100.00 98.39 92.98 

Cancerous 94.64 100.00 89.29 94.34 92.98 

Average 94.64 98.42 94.64 96.36 92.98 

TESPHA (30%) 

Non-

Cancerous 
93.34 96.28 100.00 98.11 91.35 

Cancerous 93.34 100.00 86.68 92.87 91.35 

Average 93.34 98.14 93.34 95.49 91.35 

 

 
Fig. 7 Average of HAIBTC-TLMO model under 70%TRAPHA and 

30%TESPHA 

Figure 8 depicts the TRAN  𝑎𝑐𝑐𝑢𝑦 and VALN 𝑎𝑐𝑐𝑢𝑦 

outcomes of the HAIBTC-TLMO approach. The 

𝑎𝑐𝑐𝑢𝑦 values are calculated within an interval of 0-200 

epochs. The TRAN and VALN 𝑎𝑐𝑐𝑢𝑦 values consistently 

increase, highlighting the improved performance of the 

HAIBTC-TLMO approach across iterations. Additionally, 

their proximity over epochs shows reduced overfitting, 

illustrating the enhanced performance and reliability of the 

model in predicting unseen samples. 

 

Figure 9 illustrates the TRANLOS and VALNLOS graph 

of the HAIBTC-TLMO approach. Loss values are computed 

over 0-200 epochs, with TRANLOS and VALNLOS 

depicting a decreasing trend. This demonstrates the capability 

of the HAIBTC-TLMO approach to balance generalization 

and data fitting. The continuous reduction in loss values 

portrays improved performance and prediction outputs. 
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Fig. 8 𝑨𝒄𝒄𝒖𝒚 curve of HAIBTC-TLMO model 

 
Fig. 9 Loss curve of HAIBTC-TLMO model  

Table 3. Comparison evaluation of HAIBTC-TLMO approach with 

existing models [33-35] 

Approach 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 
Time 

(sec) 

K-NN 85.00 90.35 89.40 94.78 13.30 

SOM Model 92.00 89.04 91.66 93.89 21.14 

U-Net-

DenseNet 
88.70 97.39 92.72 88.06 18.87 

LeUNet 93.55 92.59 88.26 91.82 10.54 

Xception 

Model 
93.97 97.52 93.50 94.82 25.68 

VGG16 

Method 
92.20 89.06 89.38 94.99 13.01 

ResNet152v2 90.78 91.43 88.81 91.40 12.16 

HAIBTC-

TLMO 
94.64 98.42 94.64 96.36 08.61 

 

Table 3 and Figure 10 compare the HAIBTC-TLMO 

model with existing models [33-35] under different measures. 

The outputs underlined that the K-NN, SOM, U-Net-

DenseNet, LeUNet, Xception, VGG16, and ResNet152v2 

methods have gained poor performance.  

However, the presented HAIBTC-TLMO approach 

obtained better performance with maximal 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙  and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 94.64%, 98.42%, 94.64%, and 96.36%, 

individually. 

 
Fig. 10 Comparison evaluation of HAIBTC-TLMO approach with 

existing models 

 
Fig. 11 Time outcome of HAIBTC-TLMO technique with existing 

models 

Figure 11 presents the timely results of the HAIBTC-

TLMO methodology with recent techniques. According to 

time, the HAIBTC-TLMO methodology attains a lower time 

of 08.61sec; however, the K-NN, SOM, U-Net-DenseNet, 

LeUNet, Xception, VGG16, and ResNet152v2 approaches 

reach superior times of 13.30sec, 21.14sec, 18.87sec, 

10.54sec, 25.68sec, 13.01sec, and 12.16sec, respectively. 
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5. Conclusion 
In this manuscript, the HAIBTC-TLMO approach using 

MRI imaging is proposed. The HAIBTC-TLMO approach 

aims to develop an effective and accurate method for 

classifying BTs. The image pre-processing stage initially 

utilizes BF for noise and skull removal using the Otsu 

threshold and morphological operations. Moreover, the 

proposed HAIBTC-TLMO approach implements the 

NASNetMobile method for feature extraction. The hybrid of 

the GCGRN technique is employed for BT classification. 

Finally, the SHO method is implemented for tuning. The 

experimental analysis of the HAIBTC-TLMO approach is 

conducted on a BT MRI dataset. The performance validation 

of the HAIBTC-TLMO approach demonstrated a superior 

accuracy output of 94.64% over existing methods. 
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