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Abstract - Hyperspectral Imaging (HSI) is crucial to remote sensing and in applications involving Unmanned Aerial Vehicles 

(UAVs) because it has the ability to provide detailed scene analyses that take advantage of broad spectral information. However, 

the large amounts of data involved with HSI pose big challenges for real-time processing and transmission on board. Utilising 

a light deep learning model optimised for Unmanned Aerial Vehicle (UAV) platforms with limited computing capabilities, this 

study introduces a new mechanism of efficiently compressing hyperspectral images. The spectral-spatial convolutional 

autoencoder attains high compression rates while maintaining meaningful information by taking advantage of the spectral 

redundancy and spatial correlations in hyperspectral data. Attributed to its efficient memory and CPU resource needs, as well 

as the provision of a compromise between efficiency and speed, the new approach suits real-time deployment in UAVs more 

than other compression techniques. A broad sweep of experimentation based on benchmark hyperspectral data testifies to 

significant model size minimisation and runtime reduction, further proving the method to surpass all current methods through 

improved compression rates. The system is backed by autonomous low-latency hyperspectral data processing within UAV 

systems through this lightweight paradigm. 
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1. Introduction  
Hyperspectral Imaging (HSI) records accurate spectral 

data that covers several adjacent spectral bands to provide a 

more complete view of an object, compared to traditional 

RGB or multispectral photography [1].  Precision agriculture, 

environmental monitoring, mineral mining, and precision 

surveillance are some of the many industries where high 

spectral resolution has been applied. The collection of high-

resolution information over areas of interest from agile and 

flexible low-altitude platforms has been transformed by 

Unmanned Aerial Vehicles (UAVs) with hyperspectral 

sensors [2].  While onboard real-time applications show great 

promise, the large volumes of hyperspectral data that they 

generate pose an inherent challenge. To minimise onboard 

data storage, make real-time judgments, and transcend 

transmission bandwidth limitations, efficient data 

compression is necessary. Some of the common techniques for 

lossy or lossless compression of hyperspectral data are 

transform coding, predictive coding, and vector quantisation 

[3]. Even though these techniques can provide good 

compression ratios, they can fall short when it comes to 

embracing the hyperspectral images' intrinsic connected 

spatial-spectral redundancy. Their computational and memory 

requirements further increase the complexity if implemented 

on UAV platforms with minimal resources.  In order to 

counteract the limitations of UAV platforms due to their real-

time operation, lightweight and efficient compression 

algorithms must be designed.  Due to this limitation, high-

complexity models become even less useful [4]. Using deep 

learning techniques, hyperspectral imaging can record 

complex, nonlinear relationships in high-dimensional data 

again. Autoencoders are a new but highly useful technique for 

unsupervised data compression and feature extraction. Once 

trained to compress incoming data, autoencoders can decode 

latent representations of the data, allowing them to recover lost 

information [5]. As autoencoders learn how to minimise 

reconstruction loss, the most pertinent input features are kept 

current. Since they value correctness over thriftiness, the 

hyperspectral compression techniques using deep learning 

today are too bulky and inefficient to be worthwhile for 

onboard real-time processing. In order to overcome these 

limitations, you have a well-conceived strategy that is a 

balance between being computationally tractable and having 

worthwhile compression. Using a light convolutional 
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autoencoder structure, spectral-spatial features of the 

hyperspectral images can be compressed and extracted [6]. 

This method cuts down on storage space requirements without 

compromising original data quality by taking advantage of 

redundancy in two areas: spectral repetition between 

succeeding bands and spatial coherence within each band. For 

reducing computational redundancy, the model gives more 

importance to the most informative channels with depthwise 

separable convolutions and channel attentiveness techniques 

[7]. Since depthwise separable convolutions enable the 

reduction of parameters and processing, the model fits 

onboard real-time applications perfectly. The initial process of 

compressing the input hyperspectral image cube is to transmit 

it through a spectral attention module.  The module, according 

to the contribution of each spectral band towards data 

reconstruction, adaptively reweights them.  The subsequent 

process is the utilisation of a series of small convolutional 

blocks in order to encode the spatial context within each band. 

Mapping the merged spatial and spectral model to a 

comparatively constrained latent space is the next step [8]. 

Once the latent form is transmitted or saved, a symmetric light 

decoder is applied to restore the hyperspectral image. To 

ensure minimal information loss during compression, training 

seeks to minimise the Mean Squared Error (MSE) between the 

original and reconstructed images. The main aim of the 

method is to facilitate maximum retention of hyperspectral 

data with minimal architectural complexity and inference 

latency. Onboard electronics such as the NVIDIA Jetson or 

the ARM processors employed in most UAVs can execute the 

light model, reducing the requirement for expensive GPUs and 

long training hours. The architecture sacrifices the use of deep 

and wide convolutional layers in favour of highly efficient 

attention modules to meet the real-time requirements of aerial 

missions [9]. Employing UAVs for distant sensing enables 

mission efficiency and processing speed to take precedence. 

While monitoring land cover changes, searching for 

pollutants, or monitoring the health of crops, the onboard 

ability to fuse hyperspectral data significantly enhances 

operational efficiency. No longer are bulky communication 

wires required due to a light autoencoder-based scheme that 

allows direct real-time processing of compressed data and data 

selective transfer. The transmission of only the most important 

spectral data can reduce the load without sacrificing the 

analysis’s worth. Unmanned Aerial Vehicle (UAV) platforms 

can incorporate this method of compression in order to boost 

their autonomy and scalability across different environments 

and geographic locations. It enables UAVs to travel farther 

because storage and transmission constraints are eliminated. 

The growing demand for peripheral computing solutions is 

ideally suited to this approach [10]. Latency is reduced by 

these solutions because data is processed locally on sensor 

platforms instead of servers. A light-weight deep learning-

based method could also be applied to onboard hyperspectral 

image compression for UAV use. Due to its high computing 

efficiency support, superior spectral-spatial feature coding, 

and built-in deployment fit, it is a great option.  It provides 

scalable, high-fidelity data gathering and processing in 

remote, changing conditions and allows UAVs to be equipped 

with the capability to perform hyperspectral sensing in real-

time. Though deep learning-based hyperspectral compression 

techniques have had great success, most current algorithms are 

computationally demanding and inappropriate for use on 

UAV platforms with limited resources. This void emphasises 

the requirement of lightweight, real-time compression systems 

that maintain high-fidelity reconstruction while running 

effectively on low-power edge hardware. Designed especially 

for UAV-based hyperspectral applications, the proposed work 

solves this difficulty by building a lightweight convolutional 

autoencoder that combines compression efficiency with 

onboard practicality. Despite progress in Hyperspectral Image 

(HSI) compression, most existing solutions are either 

computation-heavy or limited to offline environments. UAV 

platforms, which often have minimal processing capacity, 

memory, and energy availability, cannot accommodate these 

bulky models. This research addresses the lack of a 

deployable, efficient, and real-time capable HSI compression 

framework specifically optimised for UAVs. The gap in 

existing literature lies in achieving high compression with low 

model complexity and minimal latency, which is critical for 

aerial missions requiring onboard processing. The work 

introduces a lightweight deep learning model that specifically 

targets these constraints while preserving high spectral-spatial 

fidelity.  

2. Literature Review  
Guo et al [11] suggested that the HCCNet's contrastive 

learning framework is designed to retain semantic features 

even with high compression ratios using hyperspectral image 

compression. Contrastive-Invariant Feature Recovery (CIFR) 

and Contrastive Informative Feature Encoding (CIFE) are two 

of the key elements of the strategy. Whereas CIFR fine-tunes 

contrastive learning to recover lost attributes, CIFE boosts 

discriminative representation by maximising inter-channel 

differences to mitigate feature collapse. This architecture uses 

semantic guidance to keep data useful and optimise for rate 

distortion, which is different from conventional approaches. It 

surpasses other datasets in experimental tests carried out on 

five different HSI datasets. For example, it was able to raise 

the PSNR from 28.86 dB to 30.30 dB in the Chikusei dataset 

while using low bit rates, thus proving its effectiveness in 

compressing and retaining vital spectral information for 

further analysis. Beusen et al [12], this research investigates a 

vector quantised autoencoder model specifically targeted at 

hyperspectral data in the MOVIQ project, following the earlier 

Sentinel-2 compression using CORSA. The model is 

optimised for low-resource systems and then fine-tuned for 

onboard execution in an int8 quantised form. Yet another thing 
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that it investigates is the use of a model trained on EnMAP 

data on PRISMA images, which are not part of the training 

corpus. These evaluations of transfer learning are applied to 

guarantee resilience under different inputs from satellites. The 

model's adaptability and usability for actual Earth observation 

missions with limited computational resources are confirmed 

by this research, which prioritises cross-dataset performance 

and onboard viability, unlike other methodologies that have 

trained and tested within the same domain of the dataset. 

Ghasemi et al [13] discuss the existing deep learning methods 

applied to hyperspectral image processing, with the focus 

being on architecture design, computational efficiency, and 

training problems. It analyses the performance of different 

models in encoding spectral-spatial information, including 

RNNs, GANs, autoencoders, and CNNs. Models that are 

relatively light and onboard processable, like 1D-CNNs, are 

given priority. The paper also identifies problems like data 

limitation and suggests solutions, like using GANs to augment 

data and minimise noise. Also explored is the possibility of 

hardware accelerators, including Field-Programmable Gate 

Arrays (FPGAs), to augment onboard processing. The article 

highlights the need to advance deep learning methods to meet 

the ever-changing hyperspectral data-processing requirements 

and recent integration trends within global missions like 

Copernicus. Afrin et al [14] present the current state of the art, 

future challenges, and potential solutions to hyperspectral 

image compression through deep learning methods in this 

literature review. This discusses convolutional and recurrent 

networks with a focus on their capacity to compress the large 

amounts of spectrum data that are acquired by current sensors. 

The primary challenges that are addressed are storage 

complexity, model generality, and hardware constraints. This 

paper emphasises the growing importance of Deep Learning 

(DL) in striking a balance between efficiency in compression 

and quality in reconstruction. In addition, it uncovers ongoing 

shortcomings, such as the simplicity with which models can 

be understood, the limited availability of quality data sets, and 

the challenges of applying them in real-time. One suggestion 

for future study is to construct domain-adaptive models and 

investigate methods for unsupervised training. Another 

solution is to improve the compatibility of peripheral devices 

to allow onboard deployment on low-resource systems. 

Kumar et al. [15] propose that this method uses a low-

complexity encoder and a parallel deep learning decoder to 

realise a two-stage framework for real-time hyperspectral data 

cube compression. The encoder makes use of a coded 

measuring matrix to produce compressed images, thus 

reducing the amount of onboard stored data. The decoder’s 

neural network-based sparse recovery technique allows 

compression to be accomplished very quickly with very low 

computational latency. The technique is especially suitable for 

operation on less powerful computing platforms, like UAVs 

or satellites, because it can operate directly in the compressed 

domain. However, it is more efficient and performs better than 

transform-based implementations at the expense of a lower 

PSNR. That trade-off serves to favour high-performance real-

time over exacting accuracy when analysing and making 

decisions on board. While numerous deep learning-based 

approaches have emerged for hyperspectral image 

compression, many focus on maximising reconstruction 

quality without regard to the hardware constraints inherent in 

UAV applications. Furthermore, transferability across 

platforms and datasets, as discussed in Beusen et al. [12], 

remains limited in current models. Ghasemi et al. [13] 

highlight challenges in model complexity and data scarcity, 

whereas Afrin et al. [14] stress the importance of lightweight 

architectures but stop short of providing a deployable solution. 

The proposed method builds on these insights by offering a 

deployable, efficient framework with demonstrated 

performance across multiple datasets 

3. Proposed Work 
3.1. Overview of the Compression Framework 

For applications in unmanned aerial vehicles, 

hyperspectral image compression necessitates a customised 

framework that facilitates maximum compression efficiency 

with minimal computational requirements [16, 18]. The 

compression system proposed here is based on a lightweight 

convolutional autoencoder tailored to the specific nature of 

hyperspectral data and the requirements of UAV operations. 

The system uses a single deep learning-based technique. The 

modular yet end-to-end system begins with the reception of 

hyperspectral image cubes, proceeds to a learning 

compression process, and finally decompresses the 

compressed information into either onboard or at the ground 

station. The process begins using a hyperspectral image cube, 

usually composed of hundreds of spectral bands. These high-

dimensional inputs are inherently redundant because of their 

strong spectral and spatial correlation. The model seeks to 

integrate spectral and spatial information at the same time, 

using these duplications during the feature extraction stage. To 

merge the dimensions instead of treating them individually, 

the approach incorporates a combined learning mechanism 

into the encoder component of the autoencoder. The encoder 

part of the model compresses the input data into a low-

dimensional latent representation. The goal of optimising such 

a latent space is to preserve only the most useful spectral-

spatial characteristics and reject any unnecessary or redundant 

information. Figure 1 depicts the system architecture. The 

model employs internal attention mechanisms to compress 

data by focusing on low-power convolutional operations and 

effective spectrum areas [20]. Since they significantly 

minimise model size and computation time, such techniques 

are perfectly suited for use in real-time in low-resource 

applications, for example, in UAVs. Latent vectors can be 

efficiently transmitted or stored even over low-capacity 

communication systems. More rapid onboard decisions and 

transfer are facilitated through the compressed form, greatly 

compressing the data payload. When retrieving the 
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hyperspectral image from its latent state, the decoder verifies 

whether the spectrum and spatial arrangement are not 

compromised. Through processes of up-sampling and 

transposed convolution, the decoder recovers the initial 

dimensions of the hyperspectral cube, reflecting the encoder's 

architecture in reverse. The application of pruning, low-

precision operations, and model quantisation methods can cut 

down on memory requirements and power consumption, thus 

enhancing this compression framework. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed system architecture 

Due to these changes, the framework is now compatible 

with hardware in UAVs, including embedded GPUs and edge 

AI processors. Through this use of metrics such as PSNR and 

SSIM, it can be observed that the framework can decrease the 

amount of hyperspectral data without compromising signal-

to-reconstruction fidelity. A robust and scalable onboard 

hyperspectral image compression solution for UAV systems 

is offered by the compression framework, which integrates a 

spectrum-aware encoder-decoder model with highly efficient 

feature learning and computation optimisation. 

3.2. Spectral-Spatial Feature Extraction 

Naturally, hyperspectral imaging acquires two disparate 

yet related components: the spatial and the spectral. Spectral 

characteristics illustrate the chemical nature of the scene 

constituents and the formation process, whereas spatial 

characteristics refer to aspects like texture, shape, and object 

boundaries [17]. It is crucial to use hyperspectral image 

compression that exploits both domains appropriately to 

remove redundant data while preserving semantic 

information. Using a joint spectral-spatial feature extraction 

strategy, the presented approach extends the initial step of the 

compression scheme. The initial convolutional block is tasked 

with spectral-spatial feature extraction and operates on the 

whole hyperspectral cube. A spectral attention module first 

operates on the spectrum dimension, potentially involving 

hundreds of contiguous bands. This module continuously 

estimates the importance of each band. This attention method 

computes channel-wise statistics by initially conducting 

global average pooling, then non-linear activations, and 

finally scaling factors. The output is a reweighted 

hyperspectral cube that maximises the fidelity of downstream 

compression by favouring bands with higher information 

richness. The model retains spatial relationships within bands 

and band-to-band correlations by using 3D or pseudo-3D 

convolutions after spectral reweighting. These convolutions 

work along the spectral axis as well as the spatial axes (height 

and breadth) to ensure that both domain features are learned 

simultaneously. The architecture emphasises the use of 

shallower layers and smaller convolutional kernels to optimise 

computational efficiency. Numerous lightweight blocks are 

stacked through skip connections rather than deep and 

intricate transformations to preserve gradient flow and reduce 

vanishing effects. Figure 2 depicts the feature extraction.  

The model employs internal attention mechanisms to 

compress data by focusing on low-power convolutional 

operations and effective spectrum areas. Due to the fact that 

they significantly minimise model size and computation time, 

such techniques are perfectly suited for use in real-time in low-

resource applications, for example, in UAVs. Latent vectors 

can be efficiently transmitted or stored even over low-capacity 

communication systems. More rapid onboard decisions and 

transfer are facilitated through the compressed form, greatly 

compressing the data payload. When retrieving the 

hyperspectral image from its latent state, the decoder verifies 

whether the spectrum and spatial arrangement are not 

compromised [19]. Through processes of up-sampling and 

transposed convolution, the decoder recovers the initial 

dimensions of the hyperspectral cube, reflecting the encoder's 

architecture in reverse. The application of pruning, low-

precision operations, and model quantisation methods can cut 

down on memory requirements and power consumption, thus 

enhancing this compression framework. Due to these 

improvements, the system is now compatible with UAV 

hardware, such as embedded GPUs and peripheral AI 

processors. Signal-to-reconstruction integrity is ensured by 

this system, as confirmed by metrics such as PSNR and SSIM, 

while the amount of hyperspectral data is efficiently 

compressed. The compression platform provides a scalable 

and reliable onboard hyperspectral image compression 

solution for UAV applications by combining a spectrum-

aware encoder-decoder model with highly fast feature 

learning and computation optimisation. Below is the 

pseudocode. 

UAV 

HSI Sensor 

Compression Module 

Transmission 

Ground 

Station/Onboard 
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Fig. 2 Feature extraction 

 

3.2.1. Pseudocode 

Input: Hyperspectral Image Cube (HSI_Cube)  

1. Extract spectral-spatial features using attention-enhanced 

convolutions.  

2. Encode features into compressed latent representation via 

a lightweight autoencoder.  

3. Apply an attention mechanism to prioritise informative 

spectral bands.  

4. Quantise latent codes and perform entropy-based 

compression.  

5. Transmit compressed data to the ground station or store 

onboard.  

6. Decode latent codes to reconstruct the hyperspectral 

image.  

7. Evaluate PSNR, SSIM, Compression Ratio, and Latency 

metrics.  

Output: Reconstructed HSI with high fidelity and reduced 

storage footprint 

3.3. Lightweight Convolutional Autoencoder Design 

Light convolutional autoencoder architecture is the 

building block of the suggested compression framework for 

hyperspectral images. As a result of the careful planning that 

was conducted to reach an equilibrium point between 

reconstruction quality and model efficacy, this neural 

architecture can be applied on UAV platforms with limited 

processing and power resources. Latent representation is 

produced by encoding high-dimensional hyperspectral data 

with compression. Later, a decoder uses this compact 

representation to regenerate the original image. An 

autoencoder consists of these two units. Following 

transmission through a series of spectral-spatial convolutional 

blocks, the encoder starts processing the input hyperspectral 

cube. In an attempt to reduce their computational load, these 

blocks are designed to utilise depthwise separable 

convolutions. To separate individual spatial features, 

depthwise convolutions are used separately for each input 

channel (spectral band). Pointwise convolutions are then used 

to detect cross-band correlations.  

The model can have a high representational capacity with 

far fewer parameters compared to regular convolutions using 

this two-stage filtering process [23]. To promote convergence, 

stability, and add non-linearity, the encoder applies a batch 

normalisation and an activation function like ReLU following 

each convolutional layer. Channel attention mechanisms can 

be optionally used to boost the encoder to choose the most 

informative spectral channels. Spatial dimensions are reduced 

step by step by using stride convolutions or max-pooling 

layers, and data is packed into a compressed, low-dimensional 

latent tensor to downsample. The latent space is the bottleneck 

of the autoencoder, capturing the hyperspectral data in its 

compressed state.  

Figure 3 depicts the autoencoder architecture. Its sparse 

encoding of the spectral and spatial properties necessary for 

accurate reconstruction is adequate. The desired 

reconstruction quality and target compression ratio dictate the 

size of this region. In applications for unmanned aerial 

vehicles, this latent form can be saved for subsequent 

processing or delivered efficiently over networks of limited 

bandwidth. The decoder module is structurally the opposite of 

the encoder module. It restores spatial resolution by beginning 

with the latent vector and employing transposed convolutions 

(or up-sampling following convolution). Subsequently, in 

each up-sampling iteration, a convolutional block to the 

encoder is appended to the reconstructed features to improve 

them further.  

Residual connections are used wherever possible to allow 

gradient flow and avoid the loss of small details during 

reconstruction [21]. The decoder operates on low-channel-

extension efficient operations and does not replicate data and 

overly deep layers to keep its lightweight nature. Activation 

functions and normalising layers are employed to stabilise and 

control the decoding process once more.  

The decoded output is an equivalent-sized reconstructed 

hyperspectral cube constructed from compressed latent 

features. Additional optimisation for processing on peripheral 

AI hardware is provided using post-training compression 

methods such as weight pruning, quantisation-aware training, 

and low-bit encoding. The overall design of the autoencoder 

provides low-latency operation, low energy efficiency, and 

satisfactory reconstruction fidelity, and thus it is a good 

candidate for UAV systems integration to achieve real-time 

hyperspectral image compression. 

Input Cube 

Spectral Attention 

Depthwise Conv 

Pointwise Conv 

Output Features 
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Fig. 3 Autoencoder architecture 

3.4. Attention Mechanism for Spectral Band Prioritisation 

It is imperative to implement an attention technique for 

spectral band priority to enhance the quality of hyperspectral 

picture compression [25]. Hyperspectral data is highly 

redundant across spectral dimensions, meaning that not all 

bands contribute the same information to the overall image. 

The attention mechanism is used to dynamically assign 

importance ratings to different spectral bands, allowing the 

model to pay attention to the most useful features and ignore 

the less important ones. This technology is applied to the 

encoder part of the lightweight autoencoder architecture. First, 

a compressed spectral descriptor vector is obtained from the 

input hyperspectral cube by global average pooling over 

spatial dimensions. This vector preserves the average activity 

of every band over the full spatial range of the scene. The 

compressed vector is then passed to a Multi Layer Perceptron 

(MLP), which has two fully connected layers with a non-linear 

activation function, e.g., ReLU between them. By comparison, 

layer one acts as a bottleneck to allow compact representations 

to be learned through the reduction of the spectral 

dimensionality, while layer two restores it to the original band 

dimension. Figure 4 depicts the attention mechanism. After 

applying the MLP, the outputs are converted from 0 to 1 

employing a sigmoid activation function. Subsequently, the 

attention weights are computed by multiplying the terminal 

values by the initial spectral feature maps. The spectral bands 

that contain greater discriminative or semantic information are 

assigned greater weight in higher levels through this weighted 

modulation. By learning to tune to scene context and target 

compression ratio, the network can learn to favour different 

bands. The attention mechanism serves a second purpose of 

warning the model when it senses abnormal materials or 

spectral abnormalities, which may be only perceivable in 

extremely specific bands. Utilisation of these rare spectral 

signatures is routine in remote sensing applications such as 

mineral identification and plant stress detection. By 

highlighting these bands with an attention-guided encoder, the 

encoder can improve reconstruction accuracy and enable 

understanding of latent representations [22].  

This attention mechanism is lightweight and 

computationally efficient, making it perfect for UAVs because 

of their onboard hardware constraints. Being plug-and-play, it 

is easy to incorporate into convolutional architectures without 

increasing the complexity of the model considerably. Further, 

to maintain processing overhead at a minimum, attention 

weights are computed only once for an input cube in inference.  

Spectral band prioritising as a strategy for attention 

improves compression efficiency and can be employed in real-

time processing in aerial reconnaissance missions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Attention Mechanism diagram 
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3.5. Model Optimisation for UAV Deployment 

To deploy the hyperspectral image compression model on 

UAV platforms, the following factors must be optimised: 

inference latency, computational load, memory use, and 

power consumption. When UAVs are used in field 

applications, the deployment of typical deep learning models 

is more complex because they are constrained by onboard 

resources. Architectural and operating layers of the model are 

carefully tuned to stay within these limits. The optimisation is 

based on the replacement of traditional convolutional layers 

with lighter versions. Depth-wise separable convolutions are 

used to minimise the number of parameters and FLOPs needed 

for forward passes. Utilising this segmentation, the traditional 

convolution is separated into two parts: a depth-wise 

convolution that utilises a single filter per input channel and a 

pointwise convolution that sums the outputs with a 1×1 kernel. 

The model's spatial-spectral informative characteristics are 

still extracted; thus, computation is reduced considerably. 

Quantisation-aware training is another technique utilised to 

improve the performance of the models.  

The model is trained to handle post-training quantisation 

by emulating lower precision calculations, like an 8-bit 

integer, without a loss in accuracy. Consequently, the resulting 

deployment model will be capable of performing inference 

faster on hardware that supports integer processing and uses 

less memory [24]. Furthermore, model pruning methods are 

applied to remove unnecessary or redundant weights. A 

memory-efficient model that complies with UAVs' limited 

storage and memory capacity can be produced by using 

structured pruning, which deletes whole filters or channels, or 

unstructured pruning, which deletes weights on a per-weight 

basis. These optimisations were complemented by batch 

normalisation folding and graph-level simplifications at the 

time of model exportation, leading to a lightweight and 

latency-constrained final inference graph. Besides, edge 

inference engine-compatible frameworks such as TensorFlow 

Lite, ONNX Runtime, and TensorRT are utilised to export and 

train the model. The engines boost real-time performance of 

embedded platforms with support for hardware accelerations 

like GPU, DSP, and NPU.  

Benchmarks show that the enhanced model is ready for 

real-time usage, as it can utilise boards such as the NVIDIA 

Jetson Nano to perform inference rates below 50 ms per frame. 

Power and thermal efficiency are other aspects that are taken 

into account during optimisation. To ensure the UAV operates 

for as long as possible, the model caps the number of 

parameters and computations performed in each frame, 

reducing power consumption. These attributes are especially 

valuable for energy preservation when used in a long-duration 

mission. To achieve this, they transform the effective UAV 

platform operation design with a tightly interrelated 

coordination among architectural design, compression-aware 

training methods, and hardware-oriented deployment 

techniques. Through this, one can have efficient, high-fidelity 

hyperspectral image processing in offline or on-the-move 

scenarios. 

3.6. Compression Workflow and Data Reconstruction 

In the operating cycle of a hyperspectral image encoder-

decoder system, the data reconstruction method and 

compression process are characteristic features. It begins with 

the importation of raw hyperspectral data and ends with 

creating a reconstructed image that's as good as the original. 

This cycle is crucial for applications requiring quick 

communication between UAVs and ground stations or on-

board decision-making. Its architecture balances data size 

reduction and reconstruction accuracy. Preparation of the 

hyperspectral data cube, typically involving patch extraction 

and normalisation, is done at the beginning of the process. To 

allow the model to process large scenes sequentially, the input 

cube is divided into blocks that are overlapping or non-

overlapping with a dimension that corresponds to spatial 

height, width, and spectral bands.  

The feature extraction module gains meaningful 

representations of each block by integrating spectral as well as 

spatial convolutional methods. After they are passed to the 

encoder module, they are compressed from high-dimensional 

features into a lower-dimensional latent vector. To 

progressively reduce spatial resolution while maintaining 

important spectral information, the encoder employs a series 

of down-sampling convolutional layers, each of which is 

followed by activation functions and batch normalisation. The 

dense latent embedding that represents both spatial structures 

and spectral patterns is the output of the encoder.  

Either the onboard storage or the transmission of this 

latent representation to a ground station over a bandwidth-

limited path is employed. With respect to the original input 

size, the dimensionality of this latent vector controls the 

compression ratio. Figure 5 depicts the compression pipeline. 

After receiving or recovering the data, the decoder module 

performs the inverse of the operations performed during 

encoding to recover the hyperspectral image. To progressively 

recover spatial resolution, the decoder employs up-sampling 

layers (e.g., transposed convolutions or nearest-neighbour 

interpolation).  

Convolutional layers are then employed to recover 

spectral band connections. Merging overlapping neighbouring 

blocks by border smoothing or weighted averaging methods at 

post-processing is also the standard method to provide 

continuity over neighbouring patches. Due to this, the 

reconstructed scene has fewer visual artefacts and enhanced 

spatial coherence. Pixel-level measures, such as PSNR and 

SSIM, and application-level performance metrics, such as 

classification accuracy in downstream tasks, are used to assess 

reconstruction fidelity.   
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Fig. 5  Compression pipeline 

To improve gradient flow and maintain high-grained 

information, particularly in spatial arrangements, the process 

accommodates optional adjustments like the use of skip 

connections between decoder and encoder layers. In case it is 

necessary, the network can skip some abstraction layers 

because of these connections, which allow it to recover high-

frequency components that may have been squeezed out.  

Further, you can utilise adaptive algorithms for 

compression, with the rate dynamically adjusted based on 

scene material or operational requirements. This can compress 

scenes containing similar material more aggressively but 

ensure improved quality in scenes with more critical details. 

The novelty of this research lies in the design and 

implementation of a compact convolutional autoencoder that 

integrates spectral attention and depthwise separable 

convolutions. This design minimises computational load 

while maintaining high-fidelity image reconstruction. Unlike 

prior models such as HCCNet, which focus on semantic 

preservation at the cost of model size, or vector-quantized 

approaches tuned for satellite imaging, the proposed method 

achieves better reconstruction (PSNR 42.11 dB) and higher 

compression ratios (32:1) with faster inference (32 ms) and 

smaller model size (12 MB). This makes it uniquely suited for 

real-time UAV deployments. 

4. Results 
The proposed model was trained and evaluated using two 

widely recognised hyperspectral datasets: Indian Pines and 

Pavia University. Preprocessing included normalisation 

(values scaled between 0 and 1), removal of noisy bands, and 

segmentation into patches of size 64 × 64 pixels. Training was 

conducted on a workstation with an NVIDIA RTX 3060 GPU 

(12 GB VRAM), using Adam optimiser with an initial 

learning rate of 1e-4. The batch size was set to 32, and the 

model was trained for 200 epochs with early stopping based 

on validation loss.  
 

For inference benchmarking on UAV-compatible 

hardware, the model was tested using NVIDIA Jetson Nano 

and Raspberry Pi 4, where inference latency was recorded. 

Model deployment used TensorRT for quantisation and 

acceleration. Reconstruction metrics such as PSNR, SSIM, 

and Compression Ratio were calculated over test samples, 

averaged across 5 runs to ensure consistency. The 

performance of the suggested hyperspectral image 

compression method was tested with two popular benchmark 

datasets: the Indian Pines dataset and the Pavia University 

dataset.  
 

The datasets are best suited for compression, 

classification, and reconstruction research because they have 

ground truth labels and high-dimensional hyperspectral 

imaging. The AVIRIS sensor collected the Indian Pines 

dataset, which has 220 spectral bands of wavelength 0.4 to 2.5 

µm and a resolution of 145 × 145 pixels. Two hundred bands 

were kept for further study after the water absorption bands 

were removed. In the dataset of Pavia University, 610 × 340 

pixels were collected by the ROSIS sensor in 103 spectral 

bands, excluding chaotic bands. Normalisation was carried out 

between the range of 0 and 1 to make training behaviour 

consistent. Segments of 64 × 64 pixels were sampled from 

hyperspectral cubes to evaluate and train the compression 

network.  
 

The network’s acquisition of key spectral-spatial 

correlations was preserved within the limits of GPU training 

computation due to patch batching into the autoencoder 

model. Table 1 depicts the dataset information. Figure 6 

depicts the latency vs model accuracy. A set of quantitative 

measures is used to assess the efficiency of the projected 

hyperspectral image compression technique for reconstruction 

fidelity as well as for compression quality. Some of the 

performance metrics that are likely to be encountered include 

Peak Signal-to-Noise Ratio (PSNR) in Equation (1), where 

MAX is the maximum possible pixel value (1 in normalised 

data) and MSE is Mean Squared Error between original and 

Latent Space 

Input HSI 

Encoder 

Feature Extraction 

Decoder 

Reconstructed HSI 
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reconstructed images. Compaction Ratio (CR) in Equation (2), 

and Structural Similarity Index Measure (SSIM). The overall 

sum of these measures is an indication of the trade-off between 

maintaining image quality and compression efficiency. Table 

2 depicts the output results. Figure 7 depicts the compression 

ratio vs PSNR. 

Table 1. Dataset description  

Dataset 

Name 
Sensor 

Spatial 

Size 

Spectral 

Bands 
Resolution 

Indian Pines AVIRIS 145 x 145 220 20 m 

Pavia 

University 
ROSIS 610 x 340 115 1.3 m 

 

 

Fig. 6  Latency vs Model accuracy 

 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)   (1) 

         𝐶𝑅 =  (
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒
)            (2) 

Table 2. Output metrics 

Dataset 
PSNR 

(dB) 
SSIM 

Compression 

Ratio (CR) 

Indian Pines 39.72 0.9841 28:1 

Pavia 

University 
42:11 0.9878 32:1 

Fig. 7 Compression Ratio vs PSNR 

 

 
Fig. 8 Compression ratio vs SSIM 

 

Table 3. Comparison of the methods  

Method 
PSNR 

(dB) 
SSIM 

Model 

Size 

(MB) 

Inference 

Time 

(ms) 

CR 

PCA + 

JPEG2000 

et al [8] 

34:81 0.9212 N/A 120 15:1 

3D-

SPIHT et 

al [13] 

36:54 0.9375 N/A 140 18:1 

3D CNN 

(baseline) 

et al [24] 

38:96 0.9763 45 85 26:1 

Proposed 

Model 
42:11 0.9878 12 32 32:1 

 
Fig. 9  Comparison of compression methods 

 

The method promoted herein efficiently compresses data 

while sustaining superior reconstruction quality, which is the 

best option for onboard UAV applications demanding real-

time processing, as per these results. Several state-of-the-art 

hyperspectral compression methods were evaluated and 

compared alongside the proposed methodology. These 

techniques included 3D-SPIHT (Set Partitioning in 
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Hierarchical Trees), a more classical PCA-based compression 

technique, and more recent deep learning techniques, 

including 3D CNN-based compression models. 

 
Fig. 10 Output image 

In an attempt to ensure that these were indeed comparing 

apples to apples, the same training and testing parameters were 

used for all methodologies. The quality and suitability of 

compression for deployment in embedded UAVs were 

evaluated by applying measures like PSNR, SSIM, model 

size, and inference time. Figure 8 depicts the compression 

ratio vs SSIM. The proposed technique outperforms 

traditional and deep learning-based methods in terms of 

compression efficiency and performance. The model footprint 

and inference time are reduced, while PSNR and SSIM are 

increased due to the enhanced real-time UAV performance.  

This exceptional performance is due to the combination 

of spectrum attention, efficient design, and lightweight 

convolutions. This innovative study combines spectral 

attention with depthwise separable convolutions into a 

lightweight autoencoder architecture fit for real-time UAV 

deployment. While lowering model size to just 12 MB with an 

inference time of 32 ms, the proposed model achieves a better 

trade-off between compression ratio (up to 32:1) and 

reconstruction fidelity (PSNR of 42.11 dB) compared to 

previous works such HCCNet [11], which stresses semantic 

preservation with higher computational costs, or Beusen et al. 

[12], which explores int8 quantization for onboard 

applications as shown Table 3 and Figure 9 depicts the 

proposed and existing method metrics. Figure 10 depicts the 

final output image. 

5. Conclusion 
Hyperspectral image reduction is still a major problem for 

real-time UAV applications due to data quantity and onboard 

computing resource limitations. A creative, lightweight deep 

learning model that effectively extracts spectral-spatial 

features is integrated into the proposed method, which utilises 

a light-weight convolutional autoencoder structure to solve 

this problem. The model successfully discards redundant data 

while retaining key spatial and spectral features by utilising 

spectral attention techniques and depthwise separable 

convolutions.  

The approach surpasses traditional and current deep 

learning frameworks in compression effectiveness when 

contrasted with benchmarking sets like Indian Pines and Pavia 

University, leading to a much higher PSNR and SSIM. The 

model is also best suited for deployment at edges on UAV 

platforms due to its light weight, capacity to perform fast 

inference, and low energy usage. The experimental results 

validate that such an approach supports efficient data 

transmission and onboard decision-making by largely 

compressing the data while maintaining high-quality 

reconstruction. Overall, the presented compression scheme 

presents a deployable, scalable, and robust solution to modern 

hyperspectral imaging missions operated by Unmanned Aerial 

Vehicles (UAVs). 
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