
SSRG International Journal of Electronics and Communication Engineering                                             Volume 12 Issue 7, 62-73, July 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I7P106                                                         © 2025 Seventh Sense Research Group® 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

EBiGRU: An Enhanced Bidirectional GRU-Based Multi-

scale Neural Network for Intelligent Waste Segregation  

Anupriya1, Ratish Kumar2 

 
1,2Computer Science and Engineering, Chandigarh University, Mohali, Punjab, India. 

 
1Corresponding Author : anupriyag199@gmail.com 

 

Received: 03 May 2025 Revised: 05 June 2025 Accepted: 06 July 2025 Published: 31 July 2025 

 

Abstract - The demand for effective waste management systems increases with evolving technology, and an intelligent system is 

needed to classify and segregate waste easily and optimally. With this focus, this paper proposes a novel method of waste 

classification that utilizes the benefits of Convolutional Neural Networks (CNN) to improve the performance of Bidirectional 

Gated Recurrent Units (BiGRU) and develop an Enhanced BiGRU (EBiGRU). Here, a novel Multi-Scale Linear Aggregation 

Network (MLAN) in CNN is a backbone for BiGRU and extracts scale-invariant features to understand the local and global 

context of the information in the captured images. These feature maps are then sequentially embedded with customized BiGRU 

to define the dependencies between forward and backwards directions. This combination not only improves the feature 

representation but also enhances contextual awareness and makes the model robust to scale variations. The proposed system is 

evaluated using two separate datasets (Waste Segregation Image and Garbage Classification dataset) and one with their 

combination. The performance is computed based on accuracy, loss, and correct classification rate, which declares the efficacy 

of the proposed method and presents its robustness. 

Keywords - Waste classification, Deep Learning, BiGRU, EBiGRU, Multi-scale features. 

1. Introduction 
The growth of technology and advancements in Artificial 

Intelligence (AI) have introduced different cutting-edge 

technologies to our daily lives. These advancements have 

provided intelligent and automated solutions for different 

problems. From different application areas, waste 

management is the prominent application that needs 

automation for different related tasks (Fatimah et al., 2020). 

This application area also requires resource efficiency to 

advance the process of waste collection or recycling. The 

population growth and increase in waste also raise a lot of 

complexities in the existing waste management systems. 

Nowadays, based technologies are included to offer better 

solutions and provide simple but effective systems (Cheema 

et al., 2022). With this aim, the proposed research work also 

incorporates AI with waste management systems and 

introduces an efficient and intelligent system for waste 

segregation. 

Most of the existing real-world waste management 

systems are handled manually, and human labourers are 

involved in the process of collection, sorting, etc. Though this 

method is not physically hard, toxic waste materials such as 

chemicals, medical waste, etc., can badly affect the health of 

workers. This can also lead to reduced accuracy and recycling 

rates (Andeobu et al., 2022). The overall efficacy of the 

manual systems is also lower due to the bias factor and 

demands a better system for the task of waste classification 

(Salem et al., 2023). 

AI-based technologies can be one of the possible 

solutions for providing an effective system for waste 

classification. Different algorithms of AI, such as Machine 

Learning (Ml), Neural Networks (NN), etc., can help automate 

this manual process by recognizing and classifying different 

waste materials. Computer vision technology uses image- or 

video-based data and integrates AI algorithms to provide a 

better and more precise system  (Strollo et al., 2020). Also, it 

helps reduce human involvement and provides a more 

sustainable solution for waste classification systems. AI-based 

devices or approaches with computer vision resolve safety and 

health issues and boost recycling rates, which is a critical 

aspect in the field of Waste Management System (Sharma, 

2023). Nowadays, Deep Learning (DL) methods with 

computer vision play a significant role in advancing various 

systems, so it can also be opted for in waste management 

systems (Malik et al., 2022). DL methods train the models 

with deeper layers, extract relevant feature information 

automatically, and process it at the end layer. Mainly, DL 

methods use Convolutional Neural Networks (Cnns) or 

Recurrent Neural Networks (RNNs) to extract complex 

feature information and derive possible solutions. This 
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research study also aimed to include the DL approach for 

enhancing the abilities of the existing systems. 

1.1. Motivation 

This research work aims to enhance the existing AI-aided 

architecture for the problem of waste segregation. Based on 

recent developments, DL methods have found optimistic 

results in different image classification tasks, including waste 

segregation. While CNNs are proficient at extracting spatial 

information, they often lack in modeling temporal 

dependencies. On the other hand, RNN-based architectures 

can learn temporal or sequential patterns but fail in extracting 

spatial information. In order to increase the efficiency of the 

existing systems, the challenges, such as scale variations, 

contextual richness, etc., which are essential components, 

need to be considered while designing DL architectures. So, 

to bridge the gap between the existing challenges, this research 

proposes a novel enhanced bidirectional GRU-based multi-

scale neural network. The detailed contribution in terms of 

novelty is discussed in the next sub-section.  

1.2. Contribution of the Paper 

The focus of this paper is to develop an intelligent waste 

segregation method, based on which the contributions of the 

paper are: 

 Design and Development of an Enhanced Deep Learning 

Architecture for Waste Segregation: This research 

proposes an Enhanced Bidirectional GRU (EBiGRU) that 

integrates CNN to effectively capture spatial and 

sequential patterns from the waste images and improve 

the overall accuracy of the segregation system.  

 Novel Multi-Scale Linear Aggregation Network (MLAN) 

in CNN: By providing scale-invariant features, MLAN 

enhances the information of the object(s) present in an 

image and also handles the object’s variable size. These 

features enrich the data and hence improve the 

performance of the proposed system. 

 Feature Embedding with Bidirectional Learning: The 

sequential patterns of BiGRU allow learning in both 

forward and backwards directions and hence improve the 

contextual understanding to improve the classification 

decisions. 

The following sections of this article go into critical areas 

of the research, offering a thorough examination of the subject. 

Section 2 analyze the existing studies in the domain of waste 

classification using traditional as well as learning-based 

approaches. Section 3 provides the detailed methodology of 

the work, including dataset details, different methods, all the 

setups for experimentation, etc. Section 4 is the 

experimentation section that details experimentation and 

outcomes from the implementation and compares them with 

existing studies. The final section is a conclusion that provides 

concluding remarks and future visions.  

2. Related Work 
The related work section mainly covers the details of the 

existing studies. In this work, the main aim is to classify the 

waste based on the existing studies that have been selected. 

Relevant resources, including journals and conference 

contributions, are discussed along with their gaps. The study 

situates the suggested model within the larger landscape of 

waste management technology by critically reviewing 

existing studies. This comprehensive overview educates the 

reader on state-of-the-art waste segregation and highlights the 

distinctive contributions and innovations made by the 

remaining sections of the article. 

In recent years, growing global concern about the 

environmental impact of incorrect waste disposal has fuelled 

an increase in R&D projects. The increasing volume of 

garbage created, which is frequently disposed of in 

ecologically harmful ways, has forced a rethinking of waste 

management procedures. Both the industrial and home sectors 

contribute considerably to this growing problem. However, a 

lack of attention on waste separation at the source, notably in 

families, has resulted in the neglect of industrial waste. V.P. et 

al. (V.P. et al., 2020) addressed this essential issue by 

emphasizing industrial waste segregation and designing a low-

cost intelligent bin system. They have targeted small and 

medium-sized industries that mainly contribute to metallic and 

non-metallic waste, such as electronic circuits or 

microprocessors, etc. and designed a classification system for 

them in order to segregate the waste efficiently.  

A low-cost automated waste classification system was 

developed by Sunehra et al. (Sunehra et al., 2021) to classify 

the waste into moist, metallic and dry for both plastic and 

paper waste. They built a model prototype using an Arduino 

Uno board and sensors that recognizes the waste material and 

also segregate it. Another waste segregation system named 

SWS was designed by Rakib et al. (Rakib et al., 2021) to 

monitor and classify wet and dry waste. They have used 

different sensors, including ultrasonic and moisture sensors, 

and an alert system using GSM services to notify the 

authorities of the waste level.  

Another system with ultrasonic sensor, color sensor, servo 

motors, etc., was designed by Leo et al. (Megalan Leo et al., 

2022) to classify the biodegradable and non-biodegradable 

waste. A similar classification system was designed by Nair et 

al. (Nair et al., 2023), in which they also utilized cloud 

infrastructure for transferring visual data and analyzing it. 

Then this analysis was sent back to the hardware unit, and the 

appropriate bin was selected for the waste material. Another 

hardware module was designed by Shreeshayana et al. 

(Shreeshayana et al., 2022) to separate dry and wet waste. 

They also added a composite unit to convert the organic waste 

into compost. All these are sensor-based solutions that are not 

cost-friendly and affordable for the general population. 
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Apart from these sensor-based solutions, an intelligent 

solution using DL-based algorithms has also been introduced 

over the past few years and is discussed here in this section. A 

single-shot detector and a mobilenet architecture were 

proposed by Koganti et al. (Koganti et al., 2021) for the 

segregation of biodegradable and non-biodegradable waste. 

They also designed a hardware prototype using a camera and 

a Raspberry Pi to identify the waste and put it into the bin 

accordingly. This architecture is purely a CNN architecture 

and learn through spatial information. Hence, it lacks 

contextual understanding and is less accurate, specifically for 

small objects in the image frame. Another DL based approach 

was designed by Kapadia et al. (Kapadia et al., 2021) to 

classify dry waste, including cans and bottles. This research 

mainly focuses on classifying solid waste, such as cans, 

bottles, etc. The performance of this architecture is 

comparatively better, but needs validation with other classes 

of waste. 

The integration of learning methods in hardware units 

was designed by Parvin et al. (Parvin et al., 2022) for 

automatic identification and classification of waste materials. 

In the hardware unit, an infrared sensor was used to detect the 

blockages, based on which a Raspberry Pi triggers the DC 

motor for forward rotation, and accordingly, the conveyor belt 

moves. With this belt, a sensor was attached that can identify 

the type of waste. The DL method embedded in the Arduino 

Uno with different sensors was designed by Kavithamani et al. 

(A et al., 2023) to measure the level of the filled bin and 

automatically open and close based on user proximity. The 

deep CNN architecture was designed by Nafiz et al. (Nafiz et 

al., 2023)  for the accurate classification of waste. An 

ultrasonic sensor, GSM connectivity, a remote control unit, 

and an Android application were designed to provide a cost-

efficient solution for the same. With advancements, DL 

architectures are able to detect waste material and classify it. 

A YOLOv5 architecture was used (Puthussery et al., 2023) for 

the detection of waste and its classification with good 

accuracy. They also used a motorised conveyor belt and 

integrated this architecture into a hardware unit. This effective 

trash sorting technology promises not just speedier recycling, 

but also time and resource savings.  

An IoT and ML-based most recent development in 

automatic waste segregation effectively helps in waste 

management (Chavhan et al., 2023). The main aim of this 

system was to automate waste segregation and improve the 

recycling rates. In this, a ResNet-101 model achieves an 

accuracy of 95% which can categorize the waste into organic, 

recyclable, and non-recyclable materials. However, the 

additional complexity and overfitting concerns make the 

ResNet model difficult to train and deploy efficiently in some 

contexts. While its deep architecture enables outstanding 

feature learning and representation capabilities, the risk of 

overfitting emerges when working with small datasets. 

Furthermore, increasing processing needs may impede real-

time applications and deployment on resource-constrained 

devices. 

Most conventional systems have depended heavily on 

sensor-based technology that increases the cost of the solution 

and makes a burden on individuals as well as governments. 

However, the recent incorporation of deep Learning 

constitutes a huge step forward and adds a new dimension to 

the continuing evolution. Using only images, these 

technologies provide efficient solutions in several different 

application areas, so this proposed research work not only 

improves the capabilities of existing systems but also provides 

a cost-friendly solution for Intelligent waste classification 

systems. 

Despite significant improvements in the waste 

classification system, there is no such system, to the best of 

the author’s knowledge, that uses both spatial and temporal 

characteristics to train the model and improve the contextual 

understanding for improving classification decisions. Also, in 

the existing systems, the lack of multi-scale information 

reduces the chances of detecting small objects. Based on these 

limitations, it is clear that the waste classification requires an 

accurate and robust system to improve the overall efficiency 

of the waste segregation system.  

3. Materials and Methods 
The fundamental goal of the research is to develop an 

intelligent waste segregation system capable 

of categorizing garbage and determining whether it is 

biodegradable or non-biodegradable. So, for this work, an 

EBiGRU architecture that uses the CNN-based backbone for 

the proposed BiGRU architectures is proposed. The novel 

MLAN backbone gives several benefits to the proposed 

architecture for classifying waste using images. This section 

discusses the details of the novel MLAN and EBiGRU 

architecture and basic GRU and BiGRU. 

3.1. Gate Recurrent Unit (GRU) 

With the evolution of deep Learning, which involves 

using neural networks with numerous layers or deep neural 

networks, different specialized concepts have been designed 

to meet specific issues in data processing. Convolutional 

Neural Networks (CNN) emerge as a significant advancement 

in deep Learning, intended primarily for processing structured 

grid data like images. CNNs use convolutional layers to scan 

and filter incoming data, allowing them to record spatial 

hierarchies and extract detailed information from images. 

While CNNs are suitable for grid-like data, Recurrent Neural 

Networks (RNNs) excel at handling sequential data. RNNs 

keep a hidden state that changes with each time step, allowing 

them to detect temporal connections in sequences. However, 

classic RNNs face long-term dependencies and the vanishing 

gradient problem. In response to these issues, the GRU was 

proposed as an improvement to regular RNNs. Cho et al. 
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introduced the GRU in 2014, which integrates gating features 

into the network design. These systems control the flow of 

information, finding a balance between recording long-term 

relationships and addressing the vanishing gradient problem. 

The GRU’s functioning is dependent on two fundamental 

components. Similar to other RNNs, the hidden state changes 

with each time step in the sequence, acting as the network’s 

memory. This concealed state retains relevant information 

from previous inputs, allowing a better grasp of context over 

time. GRU has two critical gating mechanisms: the reset gate 

(ri) and the update gate (ui), as shown in Figure 1. 

The reset gate controls the amount to which previous 

information is discarded in the next time step, allowing the 

model to adjust to changing data patterns. The update gate, on 

the other hand, controls how much new information should be 

absorbed into the current concealed state, allowing for a more 

selective and nuanced updating of the network’s memory. The 

equations used to compute the reset and update gates are given 

below: 

𝑟𝑖 = 𝜎(𝑤𝑟 × [𝑦𝑖−1, 𝑥𝑖])                   (1) 

𝑢𝑖 = 𝜎(𝑤𝑢 × [𝑦𝑖−1, 𝑥𝑖])                     (2) 

 

 
Fig. 1 Schematic diagram of Gated Recurrent Unit 

Further, the current hidden state (yi) is calculated from the 

candidate hidden state (yi’), which is computed as: 

𝑦𝑖
′ = 𝑡𝑎𝑛ℎ(𝑤𝑦 × [𝑟𝑖 × 𝑦𝑖−1, 𝑥𝑖])                      (3) 

In this work, instead of using the tanh activation function, 

the rectified linear unit (ReLU) is used as an activation. Here, 

the capacity of ReLU to deliver a non-saturated outcome in 

response to positive inputs helps in supporting the network’s 

continued robust signal propagation. Moreover, ReLU is used 

for faster training and to improve the model’s performance. 

Therefore, the updated candidate hidden state (yi’’) is 

computed as follows: 

𝑦𝑖
′′ = 𝑅𝑒𝐿𝑈(𝑤𝑦 × [𝑟𝑖 × 𝑦𝑖−1, 𝑥𝑖])                                (4) 

𝑦𝑖 = (1 − 𝑢𝑖) × 𝑦𝑖−1 + 𝑢𝑖 × 𝑦𝑖
′′                                 (5) 

In the above equations, wr, wu, and wy are learnable 

weights, xi is the input at the ith state, yi-1 is the previous hidden 

state, and yi is the current hidden state. By employing this 

gating mechanism, GRUs selectively update the hidden state 

at each timestep, enabling it to collect and model data patterns 

accurately. 

3.2. Bidirectional GRU 

GRUs, like other RNNs, have difficulty collecting 

contextual information from both past and future sequences 

while processing sequential data. The underlying difficulty is 

their potential struggle with long-term dependencies, which 

limits their capacity to use information in both directions in a 

sequence fully. These GRUs were then enhanced to provide 

detailed context awareness by integrating bidirectional 

processing called BiGRU. In applications such as time series 

analysis or natural language processing, BiGRUs enhanced 

the ability of the models by extracting patterns and 

relationships in the sequence data. In this, two GRU layers, 

forward and backwards, are shown in Figure 2. One processes 

the input sequence forward, while the other processes it 

backwards, computed as follows: 

𝑦𝑖
𝑓
= (1 − 𝑢𝑖

𝑓
) × 𝑦𝑖−1

𝑓
+ 𝑢𝑖

𝑓
× 𝑦𝑖

𝑓′′
                            (6) 

𝑦𝑖
𝑏 = (1 − 𝑢𝑖

𝑏) × 𝑦𝑖−1
𝑏 + 𝑢𝑖

𝑏 × 𝑦𝑖
𝑏′′                            (7) 

The outputs from both directions are often concatenated, 

resulting in a complete representation of the input sequence, 

as shown below.  

𝑦𝑖 = [𝑦𝑖
𝑓
|𝑦𝑖

𝑏]           (8) 

3.3. Multi-scale Linear Aggregation Network (MLAN) 

In DL-architectures, CNN introduces the feature 

extraction, which extracts the spatial information at high 

resolution levels and channel information at lower resolution 

levels in order to improve the efficiency of the classification 

systems. By retaining spatial information, a model can make 

more accurate predictions by understanding the context and 

structure of the image. So, with this aim, a novel MLAN is 

proposed that aggregates the output of different convolution 

layers and extracts scale-invariant features in order to preserve 

the information of different-sized objects.  

As shown in Figure 3, an input image of size (H×W×3) is 

passed through an initial convolution (Conv) layer of kernel 

size 3×3 and ‘n’ kernels to extract C different channel features. 

For deeper and different feature representations, a Conv layer 

with stride=2 is then used and extracts 2C, i.e., double the 

number of features. 
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Fig. 2 Schematic diagram of BiGRU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Proposed MLAN 
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The object (trash) size in an image is not fixed and is 

highly dependent on the distance of the camera, so further 

multi-scale feature extraction layers are proposed. The 

previous layer output with output channels 2C divided the 

channels into two halves, where the first half of the 

information remained as it was. However, the other C channels 

are further divided into two C/2 channels, where the first half 

is passed through two 3×3 Conv layers and extracts features 

of a wider receptive field equivalent to 5×5, and the other half 

is passed through one 3×3 and one 5×5 to extend the receptive 

field wider, equivalent to 9×9.  

These multi-scale features are then concatenated to obtain 

richer feature maps that capture both the local and global 

context. After concatenation, an upsampling layer is added to 

restore the spatial dimensions of the feature maps, allowing 

the model to recover lost spatial information. It is specifically 

beneficial for the task of classification. 

3.4. Proposed Custom Bidirectional GRU 

The design of the custom BiGRU, as shown in Figure 4, 

has been notably adapted to tackle the waste classification 

problem, where the aim is to accurately identify garbage based 

on sequential data patterns. The input layer is set to accept data 

representing a 128x128 grid with a single channel, which is 

commonly used for waste image data. The model consists of 

three BiGRU layers, each with eight GRU units, which allow 

it to grasp temporal relationships in the sequential nature of 

waste data. The bidirectional feature guarantees that the model 

takes into account information from both previous and future 

sequences simultaneously, improving its contextual 

comprehension. 

Permute layers are carefully positioned to rearrange 

dimensions in the input data to ensure compatibility with the 

GRU layers. Each BiGRU layer undergoes Batch 

Normalization (BN) to stabilize training and enhance 

convergence. Let α and β be the learnable parameters, then 

after applying the BN on the output of BiGRU (yi) given in 

Equation (9), it is as follows: 

𝐵𝑁(𝑦𝑖) = 𝛼.
𝑦𝑖−𝜇

√𝜎2+𝜖
+ 𝛽                                    (9) 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 4 Schematic diagram of proposed custom BiGRU 

Here, µ is the mean, σ is the standard deviation, and ϵ is a 

small constant. After BN, Global Max Pooling (GMP) layers 

extract key characteristics from the sequential input, given as 

follows: 

 

𝐺𝑀𝑃(𝐵𝑁(𝑦𝑖)) = 𝑚𝑎𝑥(𝐵𝑁(𝑦𝑖))                               (10) 

 

The characteristics generated from different layers are 

subsequently concatenated along the sequence axis, as shown 

in Figure 4, thus bringing together the context recorded by 

each BiGRU layer.  

3.5. Proposed EBiGRU 

The proposed EBiGRU architecture, specifically for 

waste classification, is able to detect complicated patterns and 

correlations in waste image sequences and classify them into 

biodegradable and non-biodegradable waste. The proposed 

architecture first extracts the multi-scale features using a novel 

MLAN backbone, which is then sequentially processed by a 

custom BiGRU.  

 

It improves the feature representations by capturing local 

and global patterns and enhances the sequential dependencies. 

In this way, a model can handle objects at different scales, 

enhance contextual awareness, improve long-range 

dependencies and give smooth transitions across different 

scales.  

 

This proposed architecture extracts the relevant 

information from the images and improves the system’s 

capabilities. A dense layer at the end classifies the waste using 

learned features, as shown in figure 5. 
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Fig. 5 Proposed EBiGRU architecture for waste classification 

4. Experimentation and Result Analysis 
The experiment section discusses different aspects of 

implementation, including dataset details, experimentation 

parameters, etc., for the problem of waste classification using 

proposed and other existing methods. The performance in 

terms of different performance metrics describes the model’s 

effectiveness and provides an understanding of the proposed 

model architecture. 

4.1. Dataset Details 

The dataset used in this work is an image-based dataset 

that consists of different types of waste images. Two publicly 

available datasets, including the Waste Segregation Image 

dataset (Dutt & Dutt, 2023) and Garbage Classification 

(Chang, 2018), are used to evaluate the proposed model. 

Additionally, by combining these two datasets, a third dataset 

is generated that contains a greater number of classes for waste 

type. The details of all three datasets are discussed in this 

section, and sample images are shown in Figure 6. 

4.1.1. Dataset 1 

This dataset includes eight different types of waste 

images, such as paper, plastic bottles, bags, e-waste, metal 

cans, leaves, wood trash, and food. In total, this dataset has 

14178 image samples for all these classes. Notably, the dataset 

systematically categorizes these classifications into the 

broader categories of biodegradable and non-biodegradable 

trash, which is an important difference in waste separation. It 

is worth noting that all images in this dataset vary in size and 

dimensions. However, these differences have been shown to 

have no discernible effect on the dataset’s overall 

performance. This flexibility demonstrates the dataset’s 

resilience since it can handle a wide range of image properties 

without impacting the models’ performance in subsequent 

investigations. 

4.1.2. Dataset 2 

This dataset covers a wide range of waste categories, 

including glass, cardboard, metal, paper, plastic, and trash. To 

allow for a more thorough study, the garbage is divided into 

two categories: biodegradable and non-biodegradable, 

depending on the underlying character of each waste kind. It 

is worth mentioning that while glass does not technically fall 

into the conventional categories, it is included in the 

biodegradable group. This inference derives from the fact that, 

while glass is not biodegradable in the traditional sense, it has 

unique recyclability properties that make it environmentally 

sustainable. As a result, for this assignment, glass has been 

classified as biodegradable to recognize its potential for 

recycling and reuse, contributing to a more complete and 

environmentally responsible waste categorization strategy. 

4.1.3. Dataset 3 

The third dataset is a synthesis of the two previous 

datasets, seamlessly combining data points to generate a richer 

and more diversified collection. Certain classifications were 

consolidated as a result of this combination, yielding a dataset 

containing a total of ten distinct classes. These classes, in turn, 

have been carefully classified into the broader categories of 

biodegradable and non-biodegradable trash with the 

overarching goal of improving waste categorization. This 

combined dataset not only inherits the variety of the separate 

datasets but also adds a new dimension by combining related 

classes. This strategic combination intends to increase the 

dataset’s resilience by providing a more holistic representation 

of waste categories for thorough analysis and classification 

activities. 

Dense Layers 

Input 

MLAN 
Custom 

BiGRU 

Cout = argmaxiPi 

paper 

Biodegradable 

squeeze 

p1 

p2 

p3 

pk 

C1 

C2 

C3 

Ck 



Anupriya & Ratish Kumar / IJECE, 12(7), 62-73, 2025 

 

69 

 
Fig. 6 Sample images 

 

4.2. Experimentation Setup 

The evaluation of the proposed architecture takes place 

on a Windows-based system that uses its GPU capabilities to 

speed up computing procedures. The other system 

specifications are given in Table 1. The implementation takes 

advantage of the Python platform’s adaptability and extensive 

ecosystem.  

To meet the models’ varying demands, multiple Python 

libraries are carefully installed under the precise requirements 

of each model’s architecture. In total, 70% of the data is used 

for training for both GRU and EBiGRU architecture and the 

rest is used for testing purposes. All the training parameters 

for these architectures are given in Table 2, which has been 

decided based on experimentation.  

Table 1. System specifications 

Hardware Specifications 

Computer Integrated GPU 

CPU Intel Core i7 

RAM 16 GB 

GPU iRISxe (8 GB) 

 

Table 2. Training parameters 

Training Parameter Value 

Epochs 100, 200 

Optimizer Adam 

Loss Function binary cross-entropy 

Learning Rate 0.001 

 

4.3. Results and Discussion 

Different performance metrics such as accuracy, Correct 

Classification Rate (CCR), and loss are used to evaluate the 

performance of the proposed models. The accuracy offers a 

broad picture of a model’s performance; it may not be the most 

appropriate statistic for unbalanced datasets. It is defined by 

the ratio of true vs. false predictions. Another performance 

metric, CCR, is defined as the percentage of accurately 

anticipated instances throughout the test dataset. It offers 

information on how successfully the model identifies and 

assigns the right class labels. It is very effective for dealing 

with datasets having skewed class distributions. Loss during 

training defines the difference between actual and predicted 

predictions. Based on these, the results are shown in Table 3, 

which are computed by setting up the same training 

environment for both GRU and EBiGRU models. 

Table 3. Performance of GRU and EBiGRU on different datasets

Models 
Accuracy Loss 

Dataset-1 Dataset-2 Dataset-3 Dataset-1 Dataset-2 Dataset-3 

GRU (100 epochs) 85.39 57.66 73.01 0.4573 1.1001 0.7945 

GRU (200 epochs) 83.32 68.5 78.47 0.5263 0.8201 0.6426 

EBiGRU (100 epochs) 97.56 73.15 82.27 0.0753 0.0823 0.0918 

EBiGRU (200 epochs) 98.13 78.10 84.29 0.0611 0.0619 0.0884 
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Figure 7 presents that on Dataset-1, the EBiGRU 

outperformed the GRU, with accuracies of 97.56% and 

98.13% at 100 and 200 epochs, respectively. Moving on to 

Dataset 2, the EBiGRU maintained its lead, attaining an 

accuracy of 78.10% at 200 epochs, outperforming the GRU’s 

best accuracy of 68.5% at the same epoch. In Dataset-3, the 

EBiGRU consistently beat the GRU in both epochs, with 

accuracy scores of 82.27% (100 epochs) and 84.29% (200 

epochs). These findings demonstrate the EBiGRU’s constant 

performance advantage over the GRU across a variety of 

datasets and epochs. 

 

 
Fig. 7 Accuracy Comparison of different datasets 

Similarly, on Dataset-1, the EBiGRU had the lowest loss 

values, at 0.0753 (100 epochs) and 0.0611 (200 epochs).  

These results were far superior to the GRU’s matching 

loss values. Continuing on to Dataset-2, the EBiGRU 

maintained to outperform the GRU, reaching loss values of 

0.0823 (100 epochs) and 0.0619 (200 epochs), respectively. In 

Dataset-3, reflecting the accuracy trend, the EBiGRU 

recorded lower loss values, 0.0918 (100 epochs) and 0.0884 

(200 epochs), compared to the GRU, shown in Figure 8. These 

results highlight the EBiGRU’s persistent advantage over the 

GRU in minimizing loss across datasets and epochs.  

Further, the performance metric CCR also analyses the 

performance of both GRU and EBiGRU on each dataset, 

which is given in Table 4. 

 

 
Fig. 8 Loss comparison of different datasets 
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Table 4. Correct classification rate

The comparison analysis is shown in Figure 9: 

 
Fig. 9 CCR comparison of different datasets 

This analysis reveals that with 100 epochs on Dataset-1, 

EBiGRU beats GRU, earning a CCR of 69.53% vs GRU’s 

42.46%. For Dataset-2, EBiGRU once again outperformed 

GRU with a CCR of 68.45%. On Dataset-3, EBiGRU again 

achieved a better CCR of 79.52%, whereas GRU had a lower 

CCR of 74.37%. After 200 epochs, EBiGRU maintained its 

performance on Dataset-1 with a CCR of 73.18%, whereas 

GRU’s CCR fell to 36.48%. Dataset-2 showed that EBiGRU 

improved, with a CCR of 72.76%, which was higher than 

GRU’s 38.31% percent. For Dataset 3, EBiGRU maintained 

its consistent performance with a higher CCR of 83.06%, 

while GRU’s CCR is 77.59%. 

4.4. Comparative Analysis  

In the performance comparison study findings, the 

suggested EBiGRU’s efficiency is compared to well-

established models, specifically ResNet and EfficientNet B7. 

The comparison is based on the performance metric accuracy 

and loss, and is done using dataset 1 only.  

 

 
(a)                                                                                                       (b)

Fig. 10 Comparative analysis (a) Accuracy, and (b) Loss.
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EBiGRU (100 epochs) 69.53 68.45 79.52 

EBiGRU (200 epochs) 73.18 72.76 83.06 
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The results in Figure 10 present the effectiveness of the 

proposed EBiGRU based on its better performance in terms of 

high accuracy and lower loss compared to the other existing 

architectures. These results indicate the importance of the 

proposed method in this particular problem domain.  

Also, the comparison with other state-of-the-art (SOTA) 

methods is presented in Figure 11, which presents the highest 

accuracy (98.13%) of the proposed architecture. 

 
Fig. 11 Comparative analysis with SOTA 

5. Conclusion 
This research work aimed to develop an automatic waste 

classification technology using deep learning architectures. 

With this objective, CNN and RNN architectures were 

integrated into an EBiGRU architecture. This system is 

designed to be vision-based and uses only images for 

processing. The process starts with the extraction of multi-

scale features using the proposed MLAN architecture from the 

images. Then it passes these features to the customized 

BiGRU architecture, naming it EBiGRU.  

The proposed architecture is evaluated on three different 

datasets with different classes of waste materials, with the 

same training and test parameters. The results in terms of 

accuracy, loss, and CCR presented in different graphs have 

shown the effectiveness of the proposed architecture. The 

comparison with other SOTA methods also shows the 

significant benefits of the proposed method. Further, the 

classified waste is categorized into biodegradable and non-

biodegradable waste. In the future, the proposed method needs 

to be evaluated on a real-time setup and embedded in a 

hardware unit to create an automated robotic system for waste 

segregation. 
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