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Abstract - The emergence of federated cloud–edge computing has brought challenging issues in scheduling dynamic tasks, 

which require the consideration of energy efficiency, latency, SLA satisfaction and migration of resources together. 

Primitive approaches such as rule-based and heuristic scheduling can be too rigid and unable to deal with the volatile 

and diverse behavior of contemporary distributed systems. Although recent deep reinforcement learning (DRL) methods 

have achieved favorable performance, most existing methods possess issues such as hard reward specification and a lack 

of support for multi-objective optimization and federated scalability/privacy. To fill these gaps, we propose FedTaskRL in 

this paper, a new federated DRL-based DT scheduling framework for a cloud–edge ecosystem. The proposed model 

employs a neural Q-learning algorithm with an augmented state representation and a raw multi-objective reward 

function. Such a design allows the model to adaptively learn customized scheduling policies to cut down energy, reduce 

response time, comply with SLA, and save migration cost over time for federated learning while considering the data 

locality of these clients. We conduct thorough, extensive experiments in a federated simulated setting and show that 

FedTaskRL outperforms state-of-the-art methods , including DRL-TS, A3C Scheduler, DRLIS, EdgeTimer, and MA-DRL. 

The designed framework has a 28 kWh Use of Energy, 145 ms Average Response Time, 97.5% of SLA fulfilment, and a 

lower cost of $4.8 for the migration. These findings also confirm the effectiveness and efficiency of FedTaskRL in real-

time cloud workload management. In summary, FedTaskRL provides a scalable, adaptive, and privacy-respecting solution 

for intelligent task scheduling, resulting in significantly improved performance and practicality in federated cloud–edge 

resource management. 

 

Keywords - Federated Cloud Computing, Task Scheduling, Deep Reinforcement Learning, SLA Compliance, Energy 

Efficiency. 

 

1. Introduction  
The growth of edge computing, Internet of Things 

(IoT), and cloud infrastructures resulted in more 

distributed, heterogeneous, and latency-critical computing 

environments. When applications from health care, 

autonomous driving, and smart cities request real-time 

response and low energy consumption, the efficient 

scheduling of tasks over federated cloud–edge systems 

becomes a key challenge. Conventional rule-based static 

scheduling schemes are not adaptable to dynamic workload 

volatility and network conditions. One powerful paradigm 

for enabling intelligent, adaptive decision-making in these 

kinds of complex environments in recent years is that of 

deep reinforcement learning (DRL) [1], (DRLs) [2]. 

However, existing DRL-based schedulers are still 

insufficient in the multi-objective optimization, 

interpretability, and federated scalability [3, 4]. 

Increasingly, in the literature, we observe federated DRL 

frameworks that have the objective of minimizing 

communication overhead and enhancing data privacy by 

distributing the learning process [5, 6]. However, these 

methods tend to use a shallow state representation, fixed 

reward functions, or single-agent approaches that do not 

generalize well with changing system loads. This is the 

rationale behind the development of a reliable federated 

multi-objective DRL approach that can jointly optimize 

task scheduling, energy efficiency, response latency and 

resource migration cost. 

 

To address these challenges, we have designed a novel 

framework-FedTaskRL, which introduces adaptive 

federated DRL for intelligent task scheduling to maximize 
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the efficiency of the deep cloud–edge ecosystems7. The 

main goal of this study is to propose a scalable and smart 

scheduler via neural Q-learning with an enhanced state 

space and a novel composite reward shaping. Novelty: The 

key novelties involve dynamic state-space augmentation, 

multi-objective optimization and a federated training 

architecture for private learning that focuses on state 

privacy preserving and performance efficiency. 

 

This paper makes the following contributions: (i) a 

new federated DRL framework supporting adaptive task 

scheduling, (ii) a compound reward function leveraging 

energy consumption, latency, SLA, and migration cost, 

(iii) a scalable and privacy-preserving learning framework 

for real-time decision, and (iv) extensive performance 

analysis over state-of-the-art baselines in various metrics. 

The remainder of this paper is structured as follows: 

Section 2 outlines the related work by analyzing recent 

DRL-based scheduling models and their shortcomings. 

Section 3 describes some preliminary notions, such as 

system modeling and problem definition. Section 4 

elaborates the proposed FedTaskRL method, i.e., network 

structure, state–action representation and federated 

learning. Section 5 presents our experimental setup, 

results and performance evaluation. Discussion and 

analysis are given in Section 6, while the study’s 

limitations, such as advertisements by Shareaholic, will be 

discussed. Finally, Section 7 ends the paper and provides 

some future work. 

 

2. Related Work 
This section discusses the most recent deep 

reinforcement learning solutions to both task scheduling 

and resource allocation in federated and edge cloud 

frameworks. In recent years, federated and edge-cloud 

computing work has witnessed an increasing interest in 

applying deep reinforcement learning (DRL) for intelligent 

task scheduling and energy-efficient resource management. 

When it comes to proposing a fog task scheduling strategy, 

the one by Choppara and Mangalampalli [1] will pop up 

into our mind, where an adaptive fog task scheduling 

mechanism was developed based on Federated Deep Q-

Network (DQN) collaboration with K-Means clustering, 

which helped to enhance the distribution of workloads and 

provide latency control. Shidik et al. [2] proposed a new 

unsupervised clustered Q-learning technique to minimize 

the energy consumption of federated edge clouds by 

optimizing scheduling policies. Wang et al. [3] developed 

a DRL-based real-time task scheduler that is latency-aware 

and achieves high and stable performance under dynamic 

workloads. Ammal and Thanapal [4] present EMO-TS, a 

multi-objective task scheduling algorithm designed to 

efficiently reduce energy consumption in cloud data 

centers. Chen et al. [5] introduced a two-stage DRL 

scheme to create the DRL at the server level for dynamic 

client scheduling in hierarchical federated learning. 

Mohammed et al. [6] proposed the use of federated 

reinforcement learning for medical IoT, with a primary 

focus on kidney disease image processing. Kianpisheh and 

Taleb [7] investigated DRL-based control schemes in the 

context of federated 6G networks for DDoS detection. 

Zhang et al. [8] applied DRL for task concern and 

multimedia source allocation in MEC. Ho et al. [9] 

characterized task scheduling for robot autonomy with 

their federated DRL. Baghban et al. [10] utilized Actor-

Critic Deep Reinforcement Learning (DRL) for energy-

efficient IoT service provisioning in federated edge 

settings. 

 

Tianqing et al. [11] presented an asynchronous 

federated reinforcement learning method in IoT edge 

settings, where the dynamic resource management can be 

improved by updating policies simultaneously. Huang et 

al. [12] proposed the FedDSR, a federated DRL-based 

daily scheduling recommender model that learns user-

specific schedules in a privacy-preserving manner. Zhang 

et al. [13] proposed a DRL-empowered federated learning 

method to enhance the data distribution at the edge nodes 

for IIoT data management. Shishira and Kandasamy [14] 

proposed a combinatorial neural model (BeeM-NN) that 

combined bee mutation and workload minimization 

techniques in the formulation of federated clouds for 

uniform resource allocation. Zhao et al. [15] used Q-

learning to optimize edge environments for low-load task 

scheduling, aiming to minimize latency. Yuvaraj et al. [16] 

proposed a DRL-based and hybrid Grey Wolf 

Optimization model to enhance the scheduling efficiency 

of serverless environments. Chen et al. [17] applied Actor-

Critic Deep Reinforcement Learning (DRL) to the problem 

of resource allocation in data centers, where resources are 

dynamically scaled. Fathima and Shakkeera [18] integrated 

federated learning with blockchain to improve task 

offloading and scheduling for mobile cloud 

systems.MongoDB reads data from primary storage and 

performs updates by sending an acknowledgement of the 

write to the clients. Rjoub et al. [19] developed an 

interpretable Enhanced DQN for federated IoT task 

scheduling while guaranteeing trust. Iqbal et al. [20] 

developed a Double DQN-based solution for energy-

efficient resource allocation in C-RANs, focusing on 

maximizing throughput and power utilization. 

 

Zhang et al. [21] proposed a deep reinforcement 

learning-based scheduling scheme for federated learning 

over sensor-cloud environments to enhance model 

convergence and communication efficiency. Wang et al. 

Ying et al. [22] designed TF-DDRL, a transformer-aided 

distributed Deep Reinforcement Learning (DRL) 

algorithm, to minimize the delay and energy consumption 

of cross-edge-cloud IoT task scheduling. In [23], Yaraziz 

and Hill provided a detailed survey of resource allocation 

techniques in IoT systems, highlighting the importance of 

DRL for maximizing system performance. Chaudhary et 

al. [24] used an AI-driven model order reduction technique 

to improve the queueing and scheduling routines in the 

cloud for scale-out. Slathia et al. [25] introduced SHERA, 

a SHAP-empowered Virtual Machine (VM) scheduler that 

utilizes explainable and intelligent resource allocation in 

cloud computing. Panwar and Supriya [26] introduced 

RLPRAF, a proactive RL-based model that dynamically 
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allocates resources to handle varying workloads. Yu and 

Tang [27] also studied D2D communications and presented 

a hybrid centralized-distributed DRL architecture for 

optimal resource allocation. Noman et al. [28] propose 

FeDRL-6G, a federated DRL scheme for optimizing an 

energy-efficient scheduling in D2D-enabled 6G systems. 

Ansere et al. [29] presented a DRL-based approach for 

computation resource allocation specifically designed for 

energy-efficient edge IoT networks. Lastly, Wang et al. 

[30] proposed an end-edge-cloud computing approach 

based on Deep Reinforcement Learning (DRL) for 

resource allocation in digital twin-enabled industrial 

Internet of Things (IoT), aiming for low latency and 

system reliability. 

 

Madhavan et al. [31] proposed a resource allocation 

on 6 G-enabled edge via a 6G edge environment[31] 

31.5074213 13 optimized proximal policy-based federated 

learning to improve decision making under uncertainty. 

Scarvaglieri et al. [32] presented a lightweight, fully 

distributed AI framework for LoRa networks, emphasizing 

intelligent local agents and energy-efficient resource 

allocation. Zhang et al. [33] focused on elastic task 

offloading and resource scheduling across hybrid cloud 

environments using the DRL method, achieving higher 

flexibility and cost performance. Tran et al. [34] developed 

a multi-agent Deep Reinforcement Learning (DRL) model 

for energy-efficient resource provisioning in UR-LLC 

grant-free Non-Orthogonal Multiple Access (NOMA) 

systems, which reduced overhead and enhanced reliability. 

Jamil et al. [35] introduced an intelligent edge resource 

scheduling method for 6G, which employed DRL for 

dynamic task offloading and service allocation. Bushra 

Jamil et al. [36] proposed IRATS, a deadline-aware Deep 

Reinforcement Learning (DRL) model for vehicular fog 

networks, with a focus on urgent tasks and energy 

efficiency. Roy et al. [37] employed federated learning and 

subjective logic for distributed task assignment in MDC, 

thereby enhancing trust and adaptability. 38] introduced a 

multi-dimensional bin packing heuristic for improved load 

balancing in cloud data centers, which builds upon the bin 

packing algorithm [38]. Tang et al. [39] proposed a joint 

DRL approach for network selection and task offloading in 

vehicular edge computing. Swarup et al. [40] investigated 

DRL-enabled task scheduling over the cloud, revealing 

improved throughput and resource utilization performance. 

To improve inference performance, Ben Sada et al. [41] 

introduced a multi-agent DRL scheduling and offloading 

scheme that emphasizes the trade-off between precision, 

real-time and energy consumption in  edge computing, but 

more complex models are devised. Hao et al. [42] designed 

EdgeTimer, a multi-timescale DRL-based scheduler to 

improve the delay sensitivity and system adaptability, at 

the cost of an overhead in learning coordination among 

different scheduling layers. Wang et al. [43] 

presentedDRLIS, a DRL-based scheduling mechanism 

DRLIS aimed at minimizing the system load and response 

time in fog computing, which provides noticeable 

improvement, with the limitation that it need massive 

retraining for dynamic scenarios. Tuli et al. [44] studied 

stochastic scheduling by extending A3C and adding 

residual RNNs, while providing evidence for the necessity 

of adapting its weight initialization based on non-

deterministic workload arrivals, albeit after increased 

convergence times. Sheng et al. [45] proposed a DRL-

based IoT edge computing task scheduling scheme with an 

energy-efficient performance gain due to its limitation of 

scalability in the cloud-fog with the high workload 

scenario. Although advanced, these competitive models 

are not able to solve the four challenges with high 

performance on scalability, energy efficiency, SLA 

satisfaction, and dynamic task migration in the federated 

cloud. 

 

The literature presented highlights the advancements 

in DRL-based KS, but also indicates that real-time 

adaptability, multi-objective optimization, and scalability 

remain open issues. To address these issues, the 

FedTaskRL framework incorporates dynamic state-space 

updates, a multi-objective reward function, and a neural Q-

value approximation to optimize scheduling in a federated 

cloud environment. 

 

3. Preliminaries 
This section defines the basic concepts, terminologies,  

and mathematical notations required for the proposed 

methodology. It further highlights the challenges in 

federated cloud systems and the rationale behind our 

proposed DRL-based solution. 

 

3.1. Cloud Federation 

Cloud federation is a collaborative model in which 

multiple Cloud Service Providers (CSPs) pool their 

resources to achieve greater scalability, availability, and 

performance. CSPs function in a federated system in an 

independent yet cooperative manner to provide resources 

in the most effective manner possible without breaching 

SLAs. Resource management in these environments has to 

constantly react to workload variations while seeking to 

keep costs down. 

 

3.2. Task Scheduling in Cloud Federation 
Task scheduling is assigning a computational task to 

run on a resource. In a federated cloud, this process works 

as follows: User requests are divided into finer-grained 

subtasks, which are then packed into Virtual Machines 

(VMs) and placed across multiple Cloud Service Providers 

(CSPs) based on several objectives, including resource 

availability, energy consumption, and Service-Level 

Agreement (SLA).Latest Posts on. Task scheduling is a 

fundamental cloud computing problem that aims to 

minimize response time, decrease energy consumption, 

and meet Service Level Agreements (SLAs) while 

addressing inherent challenges such as resource 

heterogeneity and dynamic workloads. 

 

3.3. Deep Reinforcement Learning (DRL) 
Deep Reinforcement Learning combines concepts 

from reinforcement learning and deep neural networks to 

tackle complex decision-making problems. DRL agents 
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explore the environment to obtain optimal policies. DRL 

can enable dynamic resource allocation in federated clouds 

by predicting workloads and allocating resources 

accordingly. DRL has some key elements: State (S): The 

current environment status. Action (A):  a set of possible 

decisions an agent takes. Reward(R): Rating the 

desirability of an action concerning some target state. 

Policy (π): A function (or mapping) from states’ actions. 

 

3.4. Mathematical Notations 

To formalize the problem, we define the following 

notations: S: A finite set of states representing environment 

parameters such as workload, resource utilization, and 

energy consumption. A(s): Finite actions available in state 

ss, including VM migration and resource reallocation. R(s, 

a): Reward function evaluating the quality of action aa in 

state s. Q(s, a): Q-value representing the expected 

cumulative reward for taking action aa in state s and π(s): 

Policy that defines the probability of taking action aa in 

state s. 

 

3.5. Q-Learning and Optimization Framework 

Q-learning is a model-free reinforcement learning 

algorithm used to find the optimal policy. The Q-value is 

updated iteratively using the Bellman Equation as in 

Equation (1).  

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑅(𝑠, 𝑎) + γ max
𝑎′

𝑄(𝑠′, 𝑎′) −

𝑄(𝑠, 𝑎)]               (1) 

 

Where α is the learning rate, determining the influence 

of new information on the existing Q-value, γ denotes the 

discount factor, which balances the importance of 

immediate rewards versus future rewards, s′ denotes the 

next state after taking action a. Q(s, a) denotes the Q-value, 

representing the expected cumulative reward for taking 

action an in state s. In this research, DRL extends Q-

learning by employing deep neural networks to 

approximate the Q-value function. The neural network 

predicts Q-values for state-action pairs, enabling scalability 

and efficient decision-making in high-dimensional and 

dynamic environments. 

 

3.6. Challenges in Federated Cloud Environments 

Federated cloud environments are nonlinear; the 

decentralized collection of autonomous computing 

resources poses significant challenges. A key challenge is 

handling workloads that dynamically vary, as user patterns 

are expected to shift drastically over time. This necessitates 

adaptive task scheduling mechanisms that can utilize 

capital resources efficiently while ensuring performance 

and service quality guarantees, and respond to spontaneous 

fluctuations in workload in real-time. Another thing you 

are missing is energy efficiency, which is a crucial aspect. 

Maintaining SLA compliance at any cost can cripple a 

Cloud provider in today’s age. Thus, Cloud providers must 

strike a delicate balance between reducing energy 

consumption and adhering to the SLA compliance itself. 

This means reducing the intensity of actions applied to the 

energy resources while still providing an effective and 

efficient quality of service for the user. Additionally, 

latency and migration costs are also present in federated 

cloud systems. Migrating Virtual Machines (VMs) 

efficiently is crucial for balancing resource utilization 

across multiple providers. However, excessive latency and 

high costs associated with migration can negate the 

advantages of these new optimizations. As a result, there is 

a need for automated and intelligent scheduling 

mechanisms that reduce delays and costs while meeting 

user requirements. Additionally, the disparity of resources 

offered by different cloud service providers makes 

allocating and scheduling tasks complex. As providers 

have various configurations, policies, and capabilities, it 

can be challenging to establish a consistent approach to 

resource management.  

 

Finally, scalability in decision-making processes has 

to be addressed by federated clouds. As demand for cloud 

services surges and more providers enter the market, 

traditional scheduling tactics may no longer be effective in 

keeping up with the scale of logistics and operational 

intricacy. To address these challenges, new solutions, such 

as reinforcement learning–based frameworks, will be 

needed to automate the process and ensure seamless, 

efficient, and cost-effective operations on the cloud. 

 

3.7. Motivation for DRL in Cloud Federation 
Due to the complexity and non-stationarity of 

federated cloud environments, we will motivate the use of 

DRL in this context. Generally, federated clouds run with a 

distributed approach, sharing resources among multiple 

Cloud Service Providers (CSPs) to maximize resource 

utilization. Intelligent decision-making frameworks able to 

adjust within that context are required, yet most traditional 

decision-making approaches (i.e., Static or Rule-based) are 

insufficient. Such challenges can be overcome using Deep 

Reinforcement Learning (DRL), which learns the best 

policies by interacting with the environment; DRL is a 

strong response to these problems. An essential reason for 

using DRL is that it can model variable workloads online. 

DRL agents can recognize patterns in workload based on 

historical data and the time of the day, and make intelligent 

decisions regarding when specific tasks should be 

scheduled and resources allocated. Doing so means 

minimizing the response times and avoiding SLA 

violations due to inadequately allocated resources. In 

addition, the trial-and-error learning mechanism used by 

DRL enables it to dynamically optimize its decisions, even 

in the face of unforeseen changes in user demands or 

resource availability.  Energy consumption is another key 

consideration impacting DRL adoption in federated cloud 

environments. Several DRL-based frameworks can 

optimize resource allocation and reduce energy 

consumption while maintaining the quality of service. 

DRL agents can learn the trade-offs between performance 

metrics such as latency, energy consumption, and 

migration expenses. This leads to an optimal trade-off that 

minimizes costs for each CSP while maximizing user 
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satisfaction.In addition, DRL scalability characteristics are 

designed explicitly for federated cloud environments, 

which naturally arise with many Cloud Service Providers 

(CSPs) that can participate in complex interactions 

between resources. DRL can manage high-dimensional 

state and action spaces, unlike classic optimization 

approaches, and this unique capability allows it to scale 

well as cloud systems become more demanding with larger 

state-action spaces. It can also generalize across 

configurations and utilize other types of resources, making 

it well-suited for application in a federated cloud. 

Therefore, the federated cloud environment supports the 

DRL’s adaptability, which motivates the DRL to overcome 

significant challenges, such as dynamic workloads, energy 

efficiency, and scalability in federated clouds. The 

capability of DRL to learn and make intelligent decisions 

leads to a subsequent boost in cloud performance, which 

reduces operational costs and maximizes resource 

utilization, providing the Cloud Service Provider (CSP) 

and end-user with refined cloud services. 

 

4. Proposed Methodology 
Figure 1 illustrates the framework of the proposed 

methodology, outlining the approach to DRL-based task 

scheduling in federated cloud environments.  

Federated Cloud Architecture: where resources are 

pooled from multiple Cloud Service Providers to improve 

scalability and assure SLA satisfaction. The method 

integrates DRL based on a Q-learning framework to 

dynamically assign VMs, optimizing energy consumption, 

latency, and migration cost simultaneously to achieve this. 

The system operates with high assurance under dynamic 

workloads, leveraging knowledge of workload patterns and 

the real-time availability of resources. In the following 

sections, we describe the system architecture, the 

assumptions made, the algorithmic framework, and the 

mathematical model that substantiates the proposed 

solution. 

 

4.1. Assumptions 

The assumptions comprise the scenarios, boundaries, 

operational conditions under which the federated cloud 

environment operates, and the proposed methodology. One 

is that the Cloud Service Providers (CSPs) federation  is 

decentralized but synchronized in its work. Although each 

CSP operates its own Resource Manager (RM) for 

managing resources, the RMs communicate with each 

other efficiently to share resources. This approach 

facilitates scalability and flexible size while allowing CSPs 

to be interoperable. 

 

 

 
Fig. 1 Architecture of the federated cloud system 
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Another assumption underlying this model is that 

every RM maintains an up-to-date and accurate record of 

utilization and other historical elements associated with 

each resource, including availability and workloads. They 

hold the records crucial for making informed decisions 

about scheduling tasks and allocating resources. The 

accuracy of these records directly influences the proposed 

system’s effectiveness, as misinformation and outdated 

information can lead to poor scheduling decisions or even 

SLA violations. It is also assumed that the costs for Virtual 

Machine (VM) migration among Cloud Service Providers 

(CSPs) are determined and have low variability in 

estimation. This guarantees that the reward function, 

applied in the DRL framework, can reliably manage 

migration costs with low uncertainties. Moreover, it is 

assumed that the workloads submitted to the system will 

behave according to patterns observed in a pre-analysis of 

the submitted workloads. Such patterns enable the DRL 

model to identify how workload changes over time, 

allowing it to learn and, ideally, utilize system resources 

effectively. Finally, the system operates under the premise 

that network latency and bandwidth capacities will not 

severely limit inter-CSP communication. Additionally, this 

assumption enables CSPs to share their workload data and 

resource information efficiently, thereby allowing the 

proposed system to operate effectively. Although these 

assumptions are necessary for the proposed methodology 

to be tractable, their appropriateness in realistic settings 

will be validated through a literature review and 

experimental evaluation. 

 

4.2. Proposed Cloud Federation Architecture  

Although many businesses have invested in cloud 

computing technologies, the resources that can be provided 

are still limited. Working together and pooling resources 

would be the most excellent way to overcome this 

restriction. To be migrated across multiple CSPs, the 

applications provided by a CSP must be essentially 

enclosed within a virtual machine (VM). Because the 

processing request is offloaded, the user receives 

uninterrupted service; the associated CSP does not violate 

SLAs or overextend its capacity, and the CSP handling the 

offloaded request can monetize idle computing power. All 

parties benefit from this resource pooling arrangement.  

 

Figure 1 illustrates that there will be several CSPs. In 

this instance, a federation of three CSPs will be our 

collaborating partner. An RM unit hosts the resource 

scaling features and Deep Reinforcement Learning (DRL) 

agents in each Cloud Service Provider (CSP). This unit is 

responsible for hosting the various components of the 

architecture. The Resource Collector (RC) communicates 

with management, gathering and storing the workload 

history for future use. 

 

The RM is an essential component of the architecture. 

The hosts, numbered from m1 to mM, are connected to the 

Resource Manager, as shown in Figure 2. Every host runs 

the apps within distinct Virtual Machines (VMs), identified 

by the letters a1 through aA and segregated from one 

another. CSP users submit requests for processing. Every 

request occupies one Virtual Machine (VM) container, 

which consumes space on a host alongside other virtual 

machines of a similar kind. The RM decides how the VM 

containers are moved inside the CSPs and monitors the 

consumer’s actions, the time it takes to process the request, 

and the power consumption of the VMs. 

 

 
 

Fig. 2 Architecture of the resource manager 
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In federated cloud environments, the Resource 

Manager (RM) is the central component responsible for 

allocating resources and scheduling tasks. Adaptively, it 

tracks real-time system states and utilizes historical 

workload data to make decisions that optimize resource 

utilization while adhering to Service-Level Agreements 

(SLAs). The RM combines reinforcement learning 

methods to leverage the adaptiveness to workload 

variations and resource heterogeneity, improving system 

scalability and performance. The RM anonymously 

contributes to achieving economic operations in 

complicated cloud systems by minimizing energy 

consumption, delivery time, and relocation costs. This is 

important because it enables seamless, adaptive, and 

intelligent resource management over dynamic, federated 

cloud infrastructures. 

 

4.3. Implementation of Q Learning Algorithm 
The optimal migration problem is solved by our DQL 

method, which learns the optimal policy of workload 

prediction and then schedules the Virtual Machine (VM) 

accordingly. It employs a model in which an agent 

repeatedly interacts with and samples the environment’s 

state. Due to energy usage parameters and workload points 

of interest, the agent locates the Digital Machines (VMs). 

Once we input an action the agent takes, we award or 

penalize the past action based on its effect on energy usage 

and SLA compliance. The DRL model is trained using 

deep neural networks through Deep Reinforcement 

Learning (DRL) methods. The deep Q-learning method is 

used to obtain the Q-values of a state-action pair, thereby 

finding the optimal policy by approximating a function 

using a deep neural network. 

The learning agents discover the best choices by utilizing a 

“trial-and-error” methodology in their interactions with the 

surroundings. According to this rule, the DRL agents trade 

off between discovering new decisions and using old ones 

to choose the best action. As seen in Figure 3, our 

architecture is dependent upon:  

 S: The potential states of the environment are 

represented by the finite set S. A variety of 

parameters, including the current workload, resource 

usage, and energy consumption, have been extracted 

from the gathered data and incorporated into the state 

space.  

 A: The collection of actions accessible in state s is 

denoted by the finite set S(s). The collection of 

feasible activities that can be performed, such as 

moving Virtual Machines (VMs) across data centers 

and allocating resources differently, is referred to as 

the action space.  

 π: π (s, a) represents the likelihood of acting in state s 

for the policy that maps from S to action A.  

 R: The agent’s quality of action is assessed using the 

reward function.  

 

In our scenario, the reward function is made to use the 

least amount of energy possible while still maintaining 

SLA compliance. The reward function may be the total 

weights assigned to delay, power consumption, and 

migration cost. The weights are established according to 

the relative relevance of each target. Response time is the 

primary criterion used to calculate the Service Level 

Agreement (SLA). Response times for migrations are 

arranged in ascending order. The method then computes 

the value at the 95th percentile to establish the minimum 

response time required for 95% of requests to be fulfilled. 

                    
Fig. 3 Architecture of the deep Q-learning algorithm 
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The training challenge is addressed using a two-

pronged approach. As shown in Figure 4, there are two 

Neural Networks (NNs) for training and prediction. There 

are five hidden layers, each with two to five hundred nodes 

per layer, between the input and output layers. The agent 

may create complex representations by introducing 

nonlinearity through the application of the ReLU activation 

function. ReLU is preferred over other functions like 

Sigmoid since the latter does not stimulate neurons 

simultaneously. As a result, it converges more quickly than 

other activation functions. This is used in conjunction with 

the DQL method to facilitate speedy decision-making, as 

workloads are known to fluctuate and judgments must be 

made promptly.  

 

Power use, migration costs, and the time it takes to 

resolve virtual machines affect the system’s status. As in 

Equation (2), the location of the ith host at a specific 

moment and the resource needs of the ith virtual machine 

at the same time are connected to the delay.  

 

𝑆(∅) =  [

𝑆1,1(∅) ⋯ 𝑆1,𝑦(∅)

⋮ ⋱ ⋮
𝑆𝑥,1(∅) ⋯ 𝑆𝑥,𝑦(∅)

]                                   (2) 

 

S(φ) represents the delay state of the system at the φth 

time slice in Equation (1). The ith node and (ith VM 

container) delay state are represented by 𝑆𝑥,𝑦(φ), where φ 

is the serial number of the φth time slice. A slice T∅ is 

enumerated as (φ = 0,..., k). The main metrics are 

represented by 𝑥𝑡𝑜𝑡𝑎𝑙 , which indicates the total delay, 

𝑦𝑡𝑜𝑡𝑎𝑙  for the total power consumption, and 𝑧𝑡𝑜𝑡𝑎𝑙   For the 

total computational cost of migration by aggregating the 

individual delay, power consumption, and migration cost 

values during a unit of time (slice)—φ as in Equation (3).  

 

𝑥𝑡𝑜𝑡𝑎𝑙 =  ∑ (∑ 𝑥𝑛𝑒𝑡𝑖
(∅) + 𝑘𝑐𝑜𝑚𝑝

𝑙
𝑖=1  𝑋 ∑ 𝑥𝑐𝑜𝑚𝑖

(∅)𝑛
𝑖=1 )𝑘

∅=0  

(3) 

 
Fig. 4 Structure of the Q-learning neural network 

 

The term represents the network latency between the 

user and the pertinent nodes assigned during a specific 

time slice. 𝑥𝑛𝑒𝑡   In Equation (4), the computation of 

application tasks is represented by the variable. 𝑥𝑐𝑜𝑚𝑝. 

𝑦𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑦𝑡𝑜𝑡𝑎𝑙𝑖
(∅)𝑚

𝑖=1
𝑘
∅=0                             (4) 

 

The node’s projected power consumption for time 

slice φ is represented by 𝑦𝑡𝑜𝑡𝑎𝑙𝑖
 (φ) in Equation (4).  
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𝑧𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑧𝑡𝑜𝑡𝑎𝑙𝑖
(∅)𝑛

𝑖=1
𝑘
∅=0                 (5) 

 

Equation (5) shows that the cost of moving the ith VM 

container during time slice φ is represented by  𝑧𝑡𝑜𝑡𝑎𝑙𝑖
 (φ). 

Since our goal is to minimize the overall cost across time, 

the reward for a given time slice is defined as follows in 

Equation (6).  

 

𝑅∅ = − (𝑤1𝑥𝑡𝑜𝑡𝑎𝑙(∅) + 𝑤2𝑦𝑡𝑜𝑡𝑎𝑙(∅) + 𝑤3𝑧𝑡𝑜𝑡𝑎𝑙(∅))    (6) 

 

The agent’s reward for the φth time slice is denoted by 

𝑅∅  in Equation (6). The whole delay’s weight, 𝜔1It is 

determined by weighing its influence on the overall cost. 

The weight given to the amount of power consumed 

relative to the overall cost is represented by 𝜔2. It is 

included in the migration cost weight. 𝜔3. 

 

4.4. Details of Implementation 

We implement the proposed DRL-based task 

scheduling framework in Python. A federated cloud 

environment is simulated by modeling several Cloud 

Service Providers (CSPs) working together via a 

decentralized architecture. Every CSP runs a Resource 

Manager (RM) to monitor resource availability and 

workload and perform Virtual Machine (VM) migration. 

Regarding software architecture, the RMs are implemented 

using Python-based communication frameworks, such as 

REST APIs or gRPC, which support interaction among 

CSPs. Objects exist in VMs representing Virtual Machines 

with characteristics such as CPU, memory, and Bandwidth, 

and the actual execution of the task is simulated by 

Python’s threading or multiprocessing modules outside of 

these VMs. 

 

The DRL framework utilizes the latest and most 

popular machine learning frameworks, such as TensorFlow 

or PyTorch. The state space of the environment is defined 

using critical characteristics such as workload, energy, and 

utilization as numerical arrays. The action space for DRL 

includes the following actions: VM migrations and 

resource reallocation strategies, which can be devised to 

improve system performance. It then takes actions by 

observing its environment, considering energy-saving, 

SLA, and VM migration costs, and yields a reward 

function by previously combining these factors to 

maximize or minimize them in terms of the agent, which 

steadily ensures that the agent adequately encourages 

reducing expenses while maintaining both performance 

and the quality of service. The DRL model utilizes a neural 

network with multiple layers to obtain Q-values, which is 

particularly beneficial in environments with many 

dimensions, facilitating informed decision-making. 

 

To train the agent, we run it through several episodes 

with synthetic or real workload traces. During an episode, 

the agent takes actions in the simulated environment and 

receives rewards depending on the actions taken. These 

stored interactions are all saved in the replay buffer, 

allowing the agent to update its policy in a gradient-based 

manner using past experiences. Important 

hyperparameters, including the learning rate, discount 

factor, and batch size, are adjusted to allow convergence 

and stability during training. Our experiments simulate 

federated CSPs with different resource capacities and 

workload patterns. The framework is evaluated based on 

response time, energy consumption, and SLA compliance 

metrics. The agent’s efficiency is validated against static 

scheduling or heuristic optimization methods, which serve 

as baseline models. The results are visualized using 

Matplotlib and the tested metrics, including energy savings 

and SLA compliance. Out of the box, the DRL framework 

is converted into a service by creating a Python service for 

deployment. Message queues (RabbitMQ, etc.) are used 

for communication between RMs, providing real-time 

updates about the state and interaction actions within a 

federation. This end-to-end strategy enables flexible and 

ingenious job placement within federated cloud 

perspectives, addressing primary challenges such as 

workload fluctuations and energy consumption. 

 

4.5. Evaluation Methodology 

Evaluation methodology: The proposed DRL-based 

task scheduling performance for federated cloud 

environments is evaluated. This evaluation aims to validate 

the system’s capability in handling dynamic workload, 

achieving energy efficiency, and ensuring SLA validity. 

We will evaluate our proposed scheme in simulated 

scenarios to emulate realistic conditions within a federated 

cloud. Such scenarios encompass the intensity of demand 

workload, the lack of homogeneity among CSPs, and 

variable resource availability. We will utilize synthetic 

workload traces, which are generated based on specific 

patterns, and traces from various real-world scenarios as 

benchmark datasets to thoroughly test our system’s 

strength and flexibility. 

 

The evaluation will also assess several key 

performance metrics. The system’s total energy 

consumption will be calculated and compared with 

baseline task scheduling methods to validate the 

framework in terms of energy efficiency. This comparison 

will assess the energy consumed during task execution, 

validating the framework’s ability to reduce energy usage 

while maintaining performance. It will focus on SLA 

compliance to verify whether the system is responsive 

enough. It needs to keep track of tasks within SLA 

boundaries, such as response times. We will measure 

response times, such as VM migration delays, to confirm 

that the system can effectively handle dynamic workloads. 

Migration costs, which quantify the computational 

overhead of migrating Virtual Machines (VMs) from one 

Cloud Service Provider (CSP) to another, will be modeled 

and compared against traditional scheduling strategies. The 

system’s scalability will be tested by running performance 

evaluations with varying numbers of CSPs and workloads 

to assess the solution’s adaptability in heterogeneous 

environments. 

 

We will compare the proposed approach with baseline 

models, including static scheduling approaches such as 



M. Chandra Sekhar et al. / IJECE, 12(7), 74-89, 2025 

83 

First Come, First Serve, Round Robin, and Heuristic-based 

optimization approaches. These comparisons will reinforce 

the advantages of using DRL-based task scheduling by 

showing increased efficiency, adaptability, and cost-

effectiveness. Results will be reported as graphs and tables 

that highlight trends and comparisons between scenario-to-

scenario performance metrics. Analysis of these results 

will demonstrate the extent to which the proposed system 

has contributed to federated cloud computing, confirming 

its significance and value as a solution to significant 

problems. 

 

5. Experimental Results 
FeedTaskRL is a framework proposed for addressing 

task scheduling problems in a federated cloud-edge 

environment, which has proven effective in our 

experiments. The experiments used synthetic workload 

traces created to simulate real-world federated systems. 

The existing models, such as DRL-TSS [41], DOTS [42], 

A3C Scheduler [43], and OD-SARSA [44], are used for 

benchmarking. However, learning three functions 

simultaneously is challenging because the learned policies 

may interact with one another, thereby inhibiting their 

mutual learning. We also evaluated against other baselines 

([10]). The experiments are conducted on a system 

equipped with an Intel Core i7 processor, an NVIDIA RTX 

3060 GPU, and TensorFlow-based implementations. They 

evaluated performance using parameters such as energy, 

SLA violations, response time, and migration cost. 

 

5.1. Experimental Setup 
We then introduce the experimental setup details that 

serve as the basis for evaluating the DRL-based task 

scheduling framework in federated cloud environments. A 

cloud federation simulator was implemented using Python 

and libraries for machine learning and simulation, where 

the experiments described were performed. The federated 

environment featured various CSPs with specific resource 

and workload configurations to closely approximate 

reality. The simulations were conducted on a machine 

equipped with an Intel Core i7 CPU, 16 GB RAM, and an 

NVIDIA RTX 3060 GPU to train the DRL model. We 

performed the experiments using Ubuntu 20.04, with 

Python 3.9, TensorFlow, and PyTorch used to build and 

train the DRL framework, respectively. Other libraries 

include NumPy and Pandas for preprocessing and analysis, 

and Matplotlib was used for visualization. 

 

The federated cloud environment consisted of three 

Cloud Service Providers (CSPs) with varying resource 

capacities, specifically in terms of CPU cores, memory, 

and Bandwidth. We used synthetic traces based upon 

classic workload patterns, creating variability and 

complexity to challenge the system as it would encounter 

in the real world. These Virtual Machines (VMs) were 

powered with CPU, memory, and Bandwidth to resemble 

real-world applications. The DRL model used the 

following hyperparameters: learning rate = 0.001, gammas 

= 0.99, and batch size = 64. The neural network, with three 

fully connected layers and ReLU activation functions, was 

empirically selected to approximate the Q-value. The 

nodes in each layer were selected based on the 

dimensionality of the state and action spaces. 

 

The model efficiency was verified under real-world 

constraints by distributing workloads on the CSPs 

according to predefined patterns such as peak-load 

scenarios and random variations. The corresponding 

evaluation metrics, including energy consumption, SLA 

compliance, total response time, and migration costs, were 

measured for each simulation run. All performance metrics 

report the average of several repetitions of each experiment 

to guarantee reproducibility. This configuration enables us 

to create a well-defined and controlled environment for 

experimenting with the proposed framework for managing 

task scheduling and resource utilization in federated cloud 

systems. 

 

5.2. Performance Comparison with Baselines 
In this section, we first compare the performance of 

the proposed FedTaskRL framework with baseline models, 

including First Come First Serve (FCFS), Round Robin 

(RR), and Genetic Algorithm (GA). FedTaskRL is 

comparatively evaluated against state-of-the-art methods in 

terms of energy consumption, SLA violation, average 

response time, migration cost, scalability, and adaptability, 

and shows promising results in optimizing the task-

scheduling problem in federated cloud environments.

  
Table 1. Performance comparison of FedTaskRL with baseline models 

Metric FedTaskRL 
First Come First Serve 

(FCFS) 

Round Robin 

(RR) 

Genetic Algorithm 

(GA) 

Energy Consumption (kWh) 28 60 48 42 

SLA Compliance (%) 97.5 78 85 91 

Response Time (ms) 145 310 260 195 

Migration Cost ($) 4.8 19.2 14.5 9.6 

Scalability Excellent Poor Moderate Good 

Adaptability Excellent Poor Poor Good 

 

In Table 1, we provide an exhaustive comparison of 

the proposed FedTaskRL framework with three baselines: 

First Come, First Serve (FCFS), Round Robin (RR), and 

Genetic Algorithm (GA). For the evaluation, the 

framework was deployed to handle multiple critical 

performance metrics. A practical framework should 

address the key challenges in federated cloud 

environments, including energy consumption, SLA 

violations, response times, migration costs, scalability, and 

adaptability.  
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FedTaskRL reduces energy usage by 28 kWh 

compared to 60 kWh by FCFS, 48 kWh by RR, and 42 

kWh by GA. This shows that the DRL framework can 

dynamically allocate resources and reduce idle energy 

waste. Additionally, the proposed framework demonstrates 

high SLA compliance, completing 97.5% of tasks while 

adhering to defined SLA constraints. This indicates a 

significant increase compared to the static strategies 

implemented by FCFS and RR, which provided 78% and 

85% compliance, respectively;  it is even higher than 

GA’s 91% compliance. 

 

FedTaskRL takes into consideration access time, 

which is one of the critical metrics in the case of real-time 

cloud services, and it has been found to minimize the 

average response time to 145 ms,  compared to 310 ms 

with use of FCFS, 260 ms with the use of RR, and 195 ms 

with the use of GA. Due to its ability to predict workload 

patterns and dynamically allocate resources, FedTaskRL 

processes tasks efficiently. In addition, the migration costs 

per migration in FedTaskRL are only $ 4.80, which is 

significantly lower than those in the FCFS system ($ 

19.20), RR system ($ 14.50), and GA system ($ 9.60). 

These decreases are due to less cost-efficient assignments 

of VMs learned by the DRL agent. Its most significant 

strength is its scalability and adaptability, as FedTaskRL 

excels even as the number of CSPs increases from two to 

five to handle multiple workloads. FCFS and RR 

demonstrate inadequate scalability and flexibility, whereas 

GA scores decently. It indicates that FedTaskRL 

outperforms state-of-the-art schemes in managing resource 

heterogeneity and workload variability for federated task 

management in cloud environments. The metrics employed 

for evaluation implement the core attributes of Federated 

cloud task scheduling: Efficiency, Quality of Service, and 

System Resilience. These experiments also reinforce the 

practicality of FedTaskRL as an energy impact 

optimization application widely used in real-world 

situations to reduce costs while guaranteeing the Service 

Level Agreement. 

 

5.3. Ablation Study 

We conduct an ablation study to assess the 

contribution of each component in the FedTaskRL 

framework to its overall performance. The study 

methodically ablates or alters various features, including 

the tuning of the reward function, the continuously updated 

state-space, and the incorporation of neural networks, to 

evaluate the effect of these features on key metrics such as 

energy consumption, SLA satisfaction, response time, and 

relocation cost. This process emphasizes the importance of 

each component in enabling high performance and 

pinpoints where the framework might be overly dependent 

on specific aspects of design. Ablation studies help in 

understanding how robust and effective a model is, thereby 

ensuring the model is efficient and scalable as well.

  
Table 2. Ablation study of FedTaskRL components 

Component 
Energy Consumption 

(kWh) 

SLA Compliance 

(%) 

Response Time 

(ms) 

Migration 

Cost ($) 

Full FedTaskRL Model 28 97.5 145 4.8 

Without Reward Function 

Tuning 
35 88 190 6.7 

Without Dynamic State-Space 

Updates 
42 82 220 9.4 

Without Neural Network 

(Baseline Q-Learning) 
48 75 260 14.5 

 

In Table 2, we conduct an ablation study to analyze 

the contribution of each component to the FedTaskRL 

framework. It identifies critical elements of reward tuning 

for functions, dynamic state space, and neural networks. It 

benchmarks their contributions to essential performance 

measurements, including energy, SLA, response time, and 

migration cost. The full FedTaskRL model achieves the 

best performance across all metrics: 28 kWh of energy 

consumption, 97.5% SLA compliance, an average response 

time of 145 ms, and a migration cost of $4.80. This 

demonstrates the ability of the integrated design to 

optimize tasks and scheduling adaptively. 

 

Performance degrades if the reward function is not 

tuned to balance energy efficiency, SLA compliance, and 

migration cost. The increase in energy consumption to 35 

kWh, the SLA compliance of only 88%, and the response 

time of 190 ms demonstrate the deleterious effects of a 

poorly crafted reward function and underscore the need for 

a calibrated reward function to guide learning. Depriving 

dynamic state-space updates,  which log workload and 

resource variations in real time, leads to further 

deterioration. The energy consumption increases to 42 

kWh, the SLA compliance decreases to 82%, and the 

response time rises to 220 ms, indicating that real-time 

state-space adaptation is a vital function, as it enables the 

DRL agent to adapt to an ever-changing environment. 

 

Lastly, replacing the neural network with a Q-learning 

model is an explicit limitation as it loses the capacity to 

generalize within high-dimensional state spaces. The 

results are somewhat worse: energy consumption increases 

to 48 kWh, SLA capacity drops to 75%, response time 

rises to 260 ms, and migration costs skyrocket, 

highlighting that classical Q-learning is inadequate to cope 

with the complexity of the federated cloud system. An 

ablation study visually represents how each component 

contributes to the overall performance of FedTaskRL. It 

confirms the design rationale behind the framework, 

highlighting how reward function tuning, dynamic state-

space updates, and deep neural networks eliminate the 
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need for task scheduling and target resources, making the 

system efficient and robust. 

 

5.4. Scalability Testing 

Scalability testing was conducted to assess whether 

FedTaskRL can continue to perform well with the 

increasing number of Cloud Service Providers (CSPs) and 

the increased workload intensity. In this section, we 

evaluate metrics of energy consumption, SLA compliance, 

response time, and migration costs for different system 

scalabilities, demonstrating that the framework is robust 

and adaptive in a dynamically changing, large-scale, and 

wide-scale federated cloud environment. 

 

Table 3. Scalability testing results 

Number of 

CSPs 

Workload 

Intensity 

Energy Consumption 

(kWh) 

SLA Compliance 

(%) 

Response Time 

(ms) 

Migration 

Cost ($) 

3 Low 28 97.5 145 4.8 

5 Medium 32 94.0 160 6.2 

10 High 38 89.0 190 9.4 

 

The results of the scalability testing of the FedTaskRL 

framework, in terms of different system scales defined by 

the number of CSPs and workload intensity, are 

summarized in Table 3. These results demonstrate that 

FedTaskRL can respond to increasing complexity 

effortlessly without compromising competitive 

performance metrics. The optimal performance condition, 

characterized by an energy consumption of 28 kWh, SLA 

compliance of 97.5%, a response time of 145 ms, and a 

migration cost of $4.80, is achieved for three CSPs with 

low workload intensity. This validates that the framework 

is efficient in smaller environments with less resource 

contention. 

 

When the system scales to five CSPs but with medium 

workload intensity, the energy consumption reaches 32 

kWh, the SLA compliance drops slightly to 94%, the 

response time rises to 160 ms, and the migration costs 

increase to $6.2. This is expected since the changes occur 

due to the need for more resource allocation and task 

scheduling decisions in a more complex environment. At 

high workload intensity with ten CSPs, energy 

consumption is 38 kWh, SLA compliance is 89%, and 

response time is 190 ms, while migration costs are $ 9.40 

due to the increased computational overhead for managing 

a data-intensive federated system. This framework 

demonstrates its scalability, as the performance levels 

remain acceptable despite these increases. Scalability 

testing demonstrates that FedTaskRL handles varying 

scales of operation with competitive performance metrics. 

This makes it a potential candidate with high adaptability 

to growing system complexity since it provides a highly 

effective and robust solution for dynamic and large-scale 

federated cloud environments. 

 

5.5. Robustness Testing 

Robustness testing assesses how well FedTaskRL can 

handle unexpected scenarios, including sudden workload 

increases, resource failures, or environmental fluctuations. 

This section demonstrates the framework’s ability to 

support SLA compliance and load-balanced energy control 

and resource usage by analyzing performance metrics 

during these extreme scenarios. 

 

Table 4. Robustness testing results 

Scenario 
Energy Consumption 

(kWh) 

SLA Compliance 

(%) 

Response Time 

(ms) 

Migration Cost 

($) 

Normal Conditions 28 97.5 145 4.8 

Workload Spike (+50%) 35 91.0 190 7.2 

Resource Failure (-30% CPU) 40 87.0 220 9.5 
 

 

FedTaskRL is resilient to customary conditions, and 

the two challenging scenarios simulated are a 50% 

workload increase (increasing worker load from 1 to 3) and 

a 30% capacity shrink (resulting in 50% more CPU 

consumed), as shown in Table 4. These results highlight 

the framework’s robustness in adjusting to and maintaining 

acceptable performance levels under unhealthy conditions. 

FedTaskRL demonstrates superior performance, achieving 

an energy consumption of 28 kWh, a Service-Level 

Agreement (SLA) of 97.5%, a response time of 145 ms, 

and migration costs of $4.80 when tested under normal 

operating conditions. This sets a standard for testing 

performance against more challenging situations.For an 

all-scenario workload spike where the task volume 

increases by 50%, the energy consumption is 35 kWh, 

SLA compliance is 91.0%, the FS response time is 190 ms, 

and migration costs rise to $ 7.20 due to resource 

contention. Even under these changes, FedTaskRL is 

robust enough to reallocate resources for increased tasks 

within the new environment while keeping its performance 

indicators at reasonable levels. In the case of a simulated 

resource failure that causes a 30% decrease in CPU 

capacity, the energy consumption rises further to 40 kWh, 

SLA compliance decreases to 87.0%, and the response 

time increases to 220 ms; additionally, migration costs are 

equal to $9.5, as the system attempts to migrate tasks to 

achieve the provided performance using the limited 

resources available.  
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Nevertheless, FedTaskRL dampens the impact in this 

extreme scenario and provides business continuity with 

considerable SLA compliance.  

 

This robustness testing thus confirms that FedTaskRL 

can dynamically adapt to challenging conditions, 

reinforcing its robustness and potential for deployment in 

real-world federated cloud environments. 

 

5.6. Convergence Analysis 

Convergence analysis examines the learning stability 

and efficiency of FedTaskRL. This section demonstrates 

the DRL agent’s adaptation by optimizing task scheduling 

in the federated cloud environment, as evidenced by the 

analysis of cumulative rewards across episodes. Analysis 

of convergence patterns confirms that the learning process 

is robust and effective. 

 
Table 5. Convergence analysis results 

Training 

Episodes 

Average Cumulative 

Reward 

Energy Consumption 

(kWh) 

SLA Compliance 

(%) 

Response Time 

(ms) 

100 -150 45 82 230 

500 50 35 91 190 

1000 150 28 97.5 145 

 
Table 6. Comparison with state-of-the-art approaches 

Approach 
Energy Consumption 

(kWh) 

SLA Compliance 

(%) 

Response Time 

(ms) 

Migration Cost 

($) 

FedTaskRL 

(Proposed) 
28 97.5 145 4.8 

DRL-TS [41] 36 89.3 200 7.9 

A3C Scheduler [42] 40 87 220 9.6 

DRLIS [43] 33 91.5 170 6.2 

EdgeTimer [44] 31 93 160 5.5 

MA-DRL [45] 29 95 150 5 

 

The convergence analysis of the FedTaskRL 

framework, as shown in Table 5, indicates the evolution of 

various reward metrics as the agent learns over increasing 

training episodes. This analysis demonstrates the agent’s 

ability to improve decision-making through reinforcement 

learning and dynamically optimize resource utilization. 

The DRL agent barely learns, returning an average of -150 

cumulative rewards over 100 training episodes. The 

performance metrics, including energy consumption (45 

kWh), SLA compliance (82%), and response time (230 

ms), are relatively poor, suggesting suboptimal task 

scheduling. The beginning of this phase marks the 

exploration phase, during which the agent explores the 

environment’s dynamics. 

 

Excellent learning is evidenced by a cumulative 

reward of 50 after 500 episodes. Energy consumption: 35 

kWh, SLA compliance: 91%, Response time: 190 ms. 

Conversely, these numbers indicate that the agent quickly 

learns to strike a balance between energy efficiency and 

SLA compliance. The agent reaches a high average 

cumulative reward of 150 after 1000 episodes. Staying at 

that level indicates convergence. Here, the performance 

saturates with optimization of energy (28 kWh), SLA 

compliance (97.5%), and response time (145 ms), which is 

the maximum level of preparation that the agent can 

achieve regarding task scheduling policies, as this stage 

indicates an optimal balance of resource execution and 

system performance. The convergence analysis illustrates 

the convergence and stability of the FedTaskRL training 

process. These results confirm that the framework can 

learn in complex federated cloud backgrounds to perform 

consistent and reliable task scheduling. 

5.7. Comparison with State of the Art 

In this section, the Fed-Bask method is compared with 

state-of-the-art techniques for task scheduling in the 

federated cloud environment, and the proposed FedTaskRL 

framework is evaluated against the best policies in terms of 

the monetary cost of self-organization. The analysis 

considers both SLA compliance and energy-aware metrics, 

highlighting the advantages of FedTaskRL. The study 

indicates that FedTaskRL outperforms the state-of-the-art 

methods in terms of energy consumption, SLA 

compliance, response time, and migration cost. 

 

Table 6 presents a detailed comparison between the 

proposed FedTaskRL framework and five dominant DRL-

based task scheduling algorithms: DRL-TS [41], A3C 

Scheduler [42], DRLIS [43], EdgeTimer [44], and MA-

DRL [45]. The analysis focuses particularly on the key 

performance aspects related to federated clouds, including 

energy, SLA, response time, and  migration. The best 

overall performance is achieved by FedTaskRL, with the 

lowest energy consumption of 28 kWh, indicating an 

efficient utilization of resources. This represents a 22% and 

30% improvement under the DRL-TS (36 kWh) and A3C 

Scheduler (40 kWh). In comparison to the more closely 

performing MA-DRL (29 kWh), FedTaskRL aims to make 

it more energy efficient. 

 

In terms of SLA satisfaction, FedTaskRL achieves a 

97.5% satisfaction rate, surpassing that of all other 

methods. The second-best, MA-DRL, obtains 95%, and 

EdgeTimer gets 93%. This demonstrates that FedTaskRL 

is more effective at meeting service-level guarantees under 

dynamic workloads. Another crucial metric is response 
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time, and FedTaskRL tops the chart with 145 ms, followed 

by MA-DRL  (150 ms) and EdgeTimer (160 ms). This can 

demonstrate that FedTaskRL can effectively address 

scheduling latency as required in real-time systems. The 

migration cost, which represents the operational overhead 

of a virtual machine, is lowest for FedTaskRL at $4.8, 

slightly larger than EdgeTimer at $5.5, and somewhat 

smaller than MA-DRL at $5.0. A smaller migration cost is 

unpacked in more optimal allocations of resources over 

space. In summary, FedTaskRL reliably outperforms 

baseline methods across both dimensions, which further 

indicates its robustness, generality, and optimization 

ability. Its holistic design, incorporating dynamic state-

space update rules, multi-objective reward tuning, and 

scalable neural approximators as key components, yields 

powerful capabilities for real-time task scheduling under 

heterogeneous federation. 

 

6. Discussion 
The dynamic and diverse characteristics of federated 

cloud environments demand that task scheduling be 

intelligent and capable of coping with changing conditions 

in real-time, such as workload fluctuations, resource 

availability, and service requests. Another category for 

these workloads is traditional heuristic-based and rule-

driven schedulers, which fail to be sufficiently adaptive 

and scalable for such scenarios. The recent development 

of deep reinforcement learning (DRL) provides feasible 

solutions for task offloading and resource allocation, but 

they are not free of defects. These challenges include poor 

state-space modeling, hard reward, a high migration 

overhead, and poor multi-objective optimization in 

decentralized settings. To this end, in this work, we 

propose FedTaskRL, an innovative federated DRL-based 

task scheduler with a few distinct features. Unlike 

traditional approaches, FedTaskRL features a dynamically 

made richer state space, a neural Q-learning architecture, 

and a composite reward function tailored to optimize 

energy consumption, SLA compliance, response time and 

migration cost jointly. The model can be trained in a 

federated setting where the data is not shared, maintaining 

the data locality and scalability. The experimental results 

evidence the effectiveness of FedTaskRL. From Table 6, 

we can see that it consistently achieves better performance 

than the state-of-the-art methods DRL-TS, A3C Scheduler, 

and MA-DRL in all metrics. The lowering of power usage 

(28 kWh), increase in SLA fulfilment (97.5%) and drop in 

migration cost ($4.8) reflect the efficiency of the proposed 

approach. These results prove the primary intuitive 

assumption that an improved DRL-based scheduler with a 

multi-objective reward and adaptable context awareness 

results in far better scheduling ability. 

By addressing the major limitations in the previous 

models, FedTaskRL pushes forward the frontier of 

intelligent federated task scheduling. There are profound 

implications of the above framework for the emerging real-

time cloud-edge orchestration in our nextgeneration 

distributed systems. Limitations of the study and future 

work are discussed in Section 5.1. 

 

6.1. Limitations of the Study 

Although the FedTaskRL framework is a significant 

step forward in task scheduling in a federated cloud 

environment, some limitations remain. This evaluation first 

utilizes synthetic workload traces, which, although they 

represent real workloads, may still not fully reflect the 

complexity of cloud operations in the wild. Secondly, such 

a study is limited to task scheduling, where other problem 

domains, such as fault tolerance and security, are much 

more critical. Third, the overhead of training the DRL 

model is significant, especially in large-scale 

environments, and needs further improvement for practical 

applications. Section 6.1 discusses these challenges and 

opportunities for extending the framework’s capabilities to 

address them fully. 

 

7. Conclusion and Future Work 
In this paper, we introduced FedTaskRL, to the best of 

our knowledge, the first DRL-based task scheduling 

framework for federated cloud environments. To this end, 

the framework addresses some of the paramount 

challenges (e.g., dynamic workload management, energy 

efficiency, and SLA compliance) through novel aspects 

(e.g., dynamic state-space updates, a well-crafted reward 

function, and a transferable and scalable Q-value 

approximation via neural networks). We experimentally 

demonstrate that FedTaskRL significantly improves energy 

consumption, SLA guarantee, response time, and migration 

cost compared to state-of-the-art approaches, thereby 

showcasing its efficacy and scalability in modern federated 

cloud systems. Several aspects can be further explored in 

future research directions within the FedTaskRL 

framework. We will enhance our framework with real-

world datasets and deploy it in prototypical federated cloud 

environments to validate its practical applicability. In 

future designs, fault tolerance and security mechanisms can 

be incorporated into X-PANDA to enable it to overcome 

these limitations and address more comprehensive 

operational challenges. Moreover, minimizing the 

computational overhead of DRL training will further 

improve its scalability for larger-scale systems. Another 

promising direction is to generalize the framework to 

include multi-objective optimization or optimization in 

terms of multiple competing resources, such as cost, 

energy, and latency variables, to be jointly optimized. 

Finally, the framework can also be applied to other 

dispersed computing paradigms, such as edge computing, 

which could expand its usefulness and relevance. 
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