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Abstract - Image classification is a cornerstone of computer vision, with the applications spanning healthcare, autonomous 

driving and security. The dependence on large labeled datasets for supervised learning poses significant challenges, 

particularly in specialized fields where the labeled data is scarce and expensive to obtain. Self-supervised learning (SSL) has 

emerged as a promising paradigm, enabling models to learn useful representations from unlabelled data by designing pretext 

tasks that generate pseudo-labels. SSL faces limitations in handling complex data distributions and achieving robust 

generalization. This paper explores hybrid self-supervised learning strategies that combine multiple SSL techniques, such as 

contrastive learning, masked image modeling, and clustering, to enhance image classification performance and reduce 

dependence on labeled data. This study proposes a comprehensive framework that integrates data augmentation, feature 

extraction, and hybrid learning mechanisms, evaluated on the CIFAR-100 dataset. The experimental results demonstrate that 

hybrid SSL approaches achieve significant improvements in performance. The combination of SimCLR and masked image 

modeling (MAE) achieves a Top-1 accuracy of 77.8% on the clean test set and 71.4% on the domain-shifted set, and self-

distillation with contrastive learning (DINO) achieves the highest Top-1 accuracy of 78.4% on the clean test set and 72.1% on 

the domain-shifted set. Advanced data augmentation techniques, such as CutMix and RandAugment, additionally enhance 

model robustness, with SwAV (contrastive clustering) achieving 76.5% Top-1 accuracy on the clean test set and 70.1% on the 

domain-shifted set. The findings highlight the effectiveness of hybrid SSL methods in addressing the challenges of limited 

labelled data, offering valuable insights for future research and applications in image classification. 

Keywords - Image classification, Self-Supervised, Hybrid SSL, Computer Vision, Contrastive Clustering, Multi-Modal. 

1. Introduction 
Image classification is important to the application of 

computer vision machines that interpret and classify visual 

data. Its applications range from a very obvious area of 

healthcare and diagnosing disease through images analysed, 

to a more serious issue of autonomous cars, where objects in 

the surrounding environment must be recognized by 

extensive image classification. With increasing demand for 

proper and efficient image classification systems, the need 

for robust models of machine learning will gradually rise, 

and these models should be capable of efficient classification 

of large-scale image datasets. The importance of image 

classification has dramatically grown in the recent past in 

many sectors, such as autonomous driving, entertainment, 

security, and healthcare. Deep learning shows that most 

classification of images into classes has come from large 

labelled datasets. Large amounts of labelled data have not 

been obtained so easily; hence, continue research in other 

paradigms of learning. This paper is going to specifically 

focus on self-supervised learning, one of the most interesting 

paradigms for learning. Traditional Supervised methods have 

performed amazingly well on a wide range of benchmark 

datasets, but it is inherent in their dependence on the usually 

expensive and time-consuming labelled data.  

By developing surrogate tasks, self-supervised learning 

(SSL) has transformed picture classification by enabling 

models to acquire effective representations from unlabeled 

data.  These strategies have worked incredibly well on a 

variety of computer vision benchmarks.  However, most SSL 

work to date has centered around empirical progress, with 

little emphasis on theoretical foundations. This has left a 

variety of questions unanswered:  Why are certain auxiliary 

tasks better than others?  How do neural architectures 

influence the success of SSL?  What is the size of the 

unlabeled data required to learn robust representations?  In 

addition, the lack of systematic solutions to these basic 

problems hinders the broader practical application of SSL. 

[1]. The lack of knowledge of hybrid SSL methods is 

another, and more important, limitation. While numerous 
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studies have been conducted on each SSL method, including 

contrastive learning, masked image modeling, and clustering, 

their combination with hybrid frameworks is still in its early 

stages. Preliminary results suggest that combining SSL 

methods with additive, multiplicative, or concatenation-

based fusion methods can enhance performance, particularly 

in hyperspectral image classification (HSIC). Yet, there has 

been scant study of the theoretical foundations, design best 

practices, and interpretability of such hybrid systems, 

especially under scenarios when domain adaptation and 

resilience are required. 

While SSL holds out the potential to reduce the amount 

of tagged data needed, scalability and efficiency in the data 

are still significant issues.  Labeled as well as high-quality 

unlabeled data are scarce in most domains, including remote 

sensing and medical imaging.  Generating pseudo-labels in 

these cases can lead to noise and degrade performance, 

particularly in the initial stages of training [2]. In addition, 

the sample complexity of hybrid SSL models and domain 

generalization capability remain to be explored. [1].  In 

addition, applying SSL solutions in real-world environments 

is restricted by domain-specific challenges.  Privacy-

preserving and federated SSL frameworks are needed in 

medicine imaging because of issues such as data privacy and 

the lack of annotations.  Just like this, little is understood 

about the applicability of hybrid SSL methods in expert 

domains like satellite images [3, 4].  These limitations 

showcase the need for efficient hybrid SSL solutions that are 

domain-adaptable. Another significant bottleneck is the 

absence of standardized evaluation protocols.   

Cross-domain transferability, robustness to noisy inputs, 

and significant computational efficiency factors for real-

world applications are often disregarded in benchmarking 

protocols [2].  It becomes difficult to compare models or to 

reasonably or exactly replicate experimental outcomes in the 

absence of standardized evaluation criteria. Through an 

exploration of the development, effectiveness, and tuning of 

hybrid SSL methods for image classification, the study 

closes these gaps in this paper. This work is mainly based on 

the objectives to explore whether a combination of numerous 

SSL methods can lead to visual representations that are more 

transferable and generalizable, particularly in low-label or 

privacy-restricted environments. This research 

comprehensively analyze the primary hybrid SSL methods' 

strengths and weaknesses, proposes potential enhancements, 

and determines their efficiency in various fields. 

Through this research, this work aims to enhance 

knowledge and real-world applications of hybrid self-

supervised learning and assist in developing robust, scalable, 

and efficient models to be utilized in a range of electronics 

and communication engineering applications, including 

automated visual inspection systems, satellite imaging, and 

medical diagnostics. 

By systematically combining multiple SSL methods, 

contrastive learning, masked image modeling, and clustering 

into a single hybrid framework, this research presents a 

unique contribution to the area of self-supervised learning.  

As opposed to existing research that focuses on individual 

SSL methods, this research: 

• Provides and evaluates various combinations of hybrids 

for different pretext tasks. 

• Utilizes CIFAR-100 to assess the performance and 

robustness of these models on domain-shifted data. 

• Demonstrates how data augmentation methods such as 

CutMix and RandAugment can enhance hybrid SSL 

performance.  

• Provides a comparative evaluation scheme to investigate 

the pros and cons of each hybrid configuration. In 

addition to empirical benchmarking, these works provide 

a deep comprehension of the hybrid. SSL methods that 

open the door for generalizable learning in data-scarce 

environments. 

 

2. The Comprehensive Theoretical Basis 
Hybrid self-supervised learning (SSL) techniques may 

make use of both supervised and unsupervised learning 

paradigms, and they have become more popular in picture 

categorization. By integrating the advantages of several 

learning approaches, these techniques seek to improve 

feature representations. 

 

Self-supervised learning that is heterogeneous (HSSL): 

HSSL was introduced by the author and requires a base 

model to learn from an auxiliary head that has a different 

design. This method achieves better performance on 

downstream tasks like object detection, semantic 

segmentation, instance segmentation, and picture 

classification by adding new features to the basic model in a 

representation learning fashion without causing structural 

modifications [5] . Contrastive learning has been one of the 

underlying techniques of SSL. BYOL, a technique proposed 

by Grill et al., maximises the similarity of augmented views 

of the same image without negative samples to learn the 

representations. Through the training of visual 

representations using contrastive loss, Simple Siamese 

Networks by Chen and He reached state-of-the-art scores in a 

number of benchmarks in the year 2021 [6, 7]. 

 

A two-stage training procedure based on a variant of 

Few-Shot Image Classification (FSIC) using a self-

supervised learning (SSL) paradigm in conjunction with the 

possibility of exploiting the unsupervised data. To that 

extent, FSIC works towards image classifier development 

through little labelled training data, which further allows for 

a possible combination of TSSL at the pre-training stage 

supplemented by episodic contrastive loss (CL) as a sort of 

auxiliary supervision during meta-training. On two 

significant FSIC benchmark datasets, the proposed FSIC-
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SSL method outperforms existing methods [8].  The author 

proposed a model, SwAV, a method combining clustering 

and contrastive learning. It assigns augmented views of an 

image to the same cluster without requiring negative pairs, 

demonstrating robust performance on several benchmarks 

[9]. Later, the authors extended their work by incorporating 

Vision Transformers (ViTs) into self-supervised learning. 

Their findings showed that ViTs could achieve state-of-the-

art results with fewer inductive biases [10]. This paper 

introduces SimCLR, a simple framework that does not 

require specialized architectures or memory banks for 

learning visual representations via contrastive learning. 

Three critical components in representation learning emerge: 

(1) well-crafted data augmentations significantly boost the 

performance on the predictive task, (2) adding a learnable 

nonlinear transformation between representation and 

contrastive loss improves representation quality, and (3) 

longer training times and larger batch sizes benefit the 

process of contrastive learning. With a linear classifier on 

ImageNet, SimCLR achieves 76.5% top-1 accuracy, which is 

7% better than earlier self-supervised techniques and 

comparable to the performance of supervised ResNet-50. 

SimCLR beats AlexNet with 100 times fewer labels and 

reaches 85.8% top-5 accuracy with only 1% labeled data 

[11]. This paper introduces a novel generative self-

supervised learning method for the categorization of medical 

images based on the StyleGAN generator. The system blends 

the pre-trained style generator with large volumes of 

unlabelled data to enable efficient capturing of style features 

that capture crucial semantic information from input images 

through image reconstruction.  

 

This style feature is extracted as an auxiliary 

regularization term for adding to the training of the 

classification network, leveraging knowledge acquired from 

unlabelled data for improvement in model performance. For 

integration of the style generator with the classification 

framework, a self-attention module that dynamically focuses 

on significant feature elements associated with the 

performance of the classification is designed to allow for 

effective feature fusion [12]. For HSI classification, this 

research proposed a novel hybrid self-supervised learning 

framework (HSL) that matches the properties of 

hyperspectral data. The HSL enhances performance by 

combining both instance contrastive learning and masked 

picture reconstruction, thereby seizing the efficacies from 

both contrastive learning and masked picture modeling. 

Specifically, a two-branch asymmetric encoder-decoder 

structure is applied to the HSL. To extract spatial spectrum 

information effectively, the structure applies the Vision 

Transformer as the backbone network. Testing on two 

popular HSI datasets shows that this pre-training assignment 

yields higher performance and enhances the modeling of 

feature interactions between shallow and deep layers [13]. 

The paper discusses the performance of ensemble-based 

methods for picture classification.  The Kather dataset was 

developed using machine learning methods, including K-

Xception models' deep learning algorithms and Nearest 

Neighbour algorithms [14]. 
 

3. Methodology 
This section describes the suggested approach in an 

attempt to depict a better image classification using hybrid 

self-supervised learning techniques. The approach intends to 

take full advantage of the benefits found in different self-

supervised learning strategies such as masked image 

modelling, contrastive learning, and clustering. This 

approach will be applied extensively to CIFAR-100 or 

ImageNet picture databases in an attempt to detail how well 

the proposed framework learns representations and 

strengthens the accuracy of the picture classification. The 

proposed hybrid SSL framework consists of the following 

key components: 

• Data Pre-processing and Augmentation:  Preparing the 

input data to improve the model's learning capabilities 

through different augmentations is known as data pre-

processing and augmentation. 

• Feature Extraction: The backbone of a neural network is 

applied to extract pertinent features from the input 

images. 

• Hybrid Learning Mechanism: The combination of many 

SSL approaches to produce an all-inclusive learning 

procedure. 

• Testing and Fine-tuning: tests whether the model is able 

to work well on labelled datasets for classification tasks. 
 

3.1. Algorithm for the Proposed Model 

Step 1: Data Pre-processing & Augmentation 

• Load dataset X_train , X_(val ), X_(test ) 

• Pre-process images (resize, normalize, grayscale) 

o For each image X in the dataset: 

o Resize X to the target input size. 

o normalize the pixel values to the range [0, 

1] or zero-centred by subtracting the mean 

and dividing by the standard deviation. 

o Convert to grayscale. 

• Apply random augmentations (rotation, flip, zoom, 

noise) 

Step 2: Feature Extraction 

• Load pre-trained backbone model (e.g., ResNet) 

• Freeze initial layers and add custom layers 

• Extract features from the backbone 

Step 3: Hybrid Learning Mechanism 

• Pre-train with self-supervised learning (e.g., 

SimCLR, MAE) 

• For multi-task learning: Add additional tasks 

• Fine-tune on the labeled dataset X_train with 

both SSL and supervised loss 

Step 4: Testing and Fine-tuning 

• Evaluate the model on the validation dataset 

X_train 

• Fine-tune hyperparameters (learning rate, batch 

size) 
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• Apply regularization (dropout, L2 regularization) 

• Test the final model on X_train and report metrics 

 

3.2. Process 

The detailed model of the process is explained below 

and shown in Figure 1. 

 
Fig. 1 Process model for hybrid self-supervised learning strategies 

 

3.2.1. Data Preprocessing and Augmentation 

The following preprocessing operations and 

augmentations are applied to the input images for reliable 

model learning from data. 

 

Standard Preprocessing: Normalize images. Normalizing 

pixel values so that they fall within a particular range, which 

can uniformly scale all input data, is very common and 

ranges from [0, 1] to a standardized value of mean as 0 and 

standard deviation as 1. 

 

3.2.2. Data Augmentation Techniques 

 Random cropping: Introduce randomness and emphasize 

other parts of the image by letting the images be 

randomly cropped. 

 Flipping: To introduce diversity in the training data, use 

horizontal and vertical flips. 

 Colour jittering: To try different lighting conditions, the 

hue, saturation, contrast, and brightness of the photos can 

be shifted. 

 CutMix: Creates new training examples by blurring and 

pasting portions of one image onto another by cutting and 

pasting. 

 RandAugment: Improve the ability of the model to 

generalise by applying a predetermined series of 

augmentations at random intensities. 

 

 

3.2.3. Feature Extraction 

• A deep CNN, usually based on an architecture like 

ResNet or EfficientNet, will serve as the foundation for 

the feature extraction component. High-dimensional 

feature representations will be created by the backbone 

network using input-side-augmented pictures.  

• Output Representation: A projection head will be applied 

to the backbone's output in order to get lower-

dimensional embeddings for the SSL tasks. 

 

3.2.4. Hybrid Learning Mechanism 

The hybrid learning mechanism will combine multiple 

self-supervised learning techniques   to maximize the 

effectiveness of the model: 

 To improve the model's effectiveness, multiple self-

supervised learning techniques will be included in the 

hybrid learning mechanism. 

 Contrastive Learning: Use methods like SimCLR or 

BYOL to train using augmented views that come in 

pairs. In this method, it will learn to pull positive pairs, 

which are various augmentations of the same image 

closer together in the feature space and push negative 

pairs that are augmented views of different images 

farther apart through a contrastive loss function. The 

contrastive loss can be expressed as follows: 

 

  𝑙𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =  − log (  
exp(

𝑠𝑖𝑚(𝑧1,𝑧2)

𝑟
)

∑ 2𝑁
𝑖=1

 1 [𝑖≠𝑗] exp(
𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)

𝑟
)
)           (1) 

 

 Sim (zi,zj) is the cosine similarity between the 

embeddings zi and zj. 

 τ is the temperature parameter, which controls the 

smoothness of the softmax distribution. 

 N is the number of samples or pairs of data in the batch. 

 The term  1 [i≠j] It is an indicator function, which 

ensures that the comparison in the denominator 

excludes the positive pair, i.e., it only sums over all 

negative pairs [2]. 

 

Clustering-Based Learning: Use approaches such as 

SwAV to group the augmented views of the same image in 

the same cluster. The swapped assignment loss will be used 

to optimize clustering assignments. 

 

𝐿𝑆𝑤𝐴𝑉 = − ∑ 1𝑖≠𝑗  𝑠𝑖𝑚 (𝑞𝑖 , 𝑞𝑗)𝑖,𝑗                                (2) 

 

The SwAV loss function, or L SwAV, aims to map 

similar views, or augmented versions, of the same image to 

the same prototype within the latent space. The anticipated 

assignments of the representations of two different views of 

an image to the prototypes in the feature space are denoted 

by q i and q j. Specifically, after passing through a neural 

network, each qi and qj may represent the vector (4). 

 

 

Data Preprocessing

Data Augmentation Techniques

Feature Extraction

• Contrastive Learning

• Clustering-Based Learning

• Masked Image Modeling

Hybrid Learning Mechanism:

Evaluation and Fine-Tuning
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Masked Image Modeling 

To allow the model to learn global and local 

characteristics, use MAE to mask a large portion of the input 

images and have the model learn to fill in the missing parts. 

The definition of the reconstruction loss is 

 𝐿𝑀𝐴𝐸 =  ǁ𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑎𝑡𝑐ℎ𝑒𝑠ǁ .2
2                                          

(3) 

1. 𝐿𝑀𝐴𝐸Refers to the loss function that can be used to 

measure the error. 

2. ǁ𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑎𝑡𝑐ℎ𝑒𝑠ǁ .2
2  : 

Refers to the squared 𝐿2-norm (or Euclidean norm) 

computes the sum of squared differences between the 

corresponding elements of the reconstructed and original 

patches. 

3. Reconstructed patches and original patches are the 

predicted outputs and ground truth inputs, respectively. 

This approach allows the model to capture intricate details 

within the images (5). 

 

3.2.5. Evaluation and Fine-Tuning 

The following evaluation and adjustment procedures are 

scheduled after the model has been trained with the hybrid 

SSL framework: 

 Performance Evaluation: Use metrics such as Top-1 

accuracy and Top-5 accuracy to determine the 

performance of the model on typical benchmark datasets 

like CIFAR-100 or ImageNet. To assess the robustness 

of learnt representations, determine generalisation 

abilities by testing the model using domain-shifted 

datasets. 

 Fine-Tuning: For improved performance on specific 

classification tasks, attach a classification head to the 

model and fine-tune it on a labeled subset of the data. 

For supervised training in the fine-tuning procedure, 

standard cross-entropy loss will be used: 

 

           𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑦𝑖 log(�̂�𝑖)𝑖                      (4) 

 

Where 𝑦𝑖The ground truth is a label and (�̂�𝑖) is the 

predicted probability (6). 

 

4. Comparative Study of Hybrid Approaches 
A few hybrid approaches that combine several methods 

to enhance performance in SSL for image classification are 

listed here: 

 

Table 1. Comparison of hybrid approaches 

Hybrid 

Approach 
Description Key Contribution Example 

Contrastive 

Clustering 

This is a technique that integrates clustering 

methods with contrastive learning. SwAV 

optimizes and learns the representation of the 

model without the need for negative samples 

through cluster assignments, as it assigns 

multiple views of the same image to the same 

cluster. 

This enhances model 

efficiency and stability by 

reducing dependency on 

negative pairs (6). 

 

SwAV 

Contrastive 

Learning of 

Masked Image 

Modelling 

Uses the strengths of both methods as it 

combines masked image modeling techniques 

like MAE with contrastive learning techniques 

similar to SimCLR. The model predicts missing 

patches in images and learns to bring pairs 

closer together that are positive. 

Enhances feature 

representation by combining 

global context learning from 

masked images with local 

feature distinction through 

contrastive loss. 

 

SimCLR + MAE 

 

Dual-Task 

Learning 

Combines clustering 

techniques and BYOL. This method has enhan

ced representation with the use of a clustering 

mechanism; two networks are used for self-

supervised learning-

one is the target, and the other is the online. 

This technique 

reduces the number of need

ed negative samples 

and helps the 

model generate unique 

representations with the aid 

of clustering (8) 

BYOL + Clustering 

Self-

Distillation 

using 

Contrastive 

Learning 

Contrastive learning combines self-distillation. 

With the utilization of a contrastive objective 

that boosts the process of learning, DINO 

adopts the student-teacher architecture. In this 

method, the student learns from the teacher's 

output. 

Improves representation 

quality by utilizing the 

benefits of contrastive 

learning and self-

distillation.(7) 

DINO 

Generative-

Contrastive 

It combines the contrastive learning frameworks 

with the generative models, such as GANs or 

Improves generalisation by 

strengthening the model's 
GANs or VAEs 
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Hybrid Traini

ng 

VAEs. The hybrid technique will allow the 

model to learn how to differentiate between 

generated and actual data while creating new 

data points. 

understanding of feature 

correlations and data 

distributions. 

Hybrid Multi-

Modal 

Training 

 

Combines self-supervised learning techniques 

with multiple modalities (text and images, etc.). 

This approach leverages rich complementary 

information from a multitude of data sources to 

enhance the learning process. 

boosts performance in cross-

modal knowledge-based 

tasks through improved 

robustness and 

understanding of complex 

inter-linkages in multi-

modal datasets (9) 

Gemini(images and 

text). 

Joint Learning 

of Features 

and 

Representatio

ns 

It allows the model to learn a variety of features 

all at once by combining multiple self-

supervised tasks, like rotation prediction and 

image inpainting, into one training framework. 

Improves generalisation 

abilities through learning 

several facets of the input 

simultaneously, thereby 

creating a richer 

representation. 

Predicting rotations, 

the image in the 

painting 

Contrastive 

Learning with 

Temporal 

Dynamics 

This applies contrastive learning combined with 

the techniques that fuse the temporal 

information. The latter is useful, especially for 

video data. With contrastive loss enabling it to 

learn spatial features, the model hereby 

gradually learns the inter-frame relationships as 

well. 

It captures both temporal 

and spatial dynamics, which 

allows it to be used in action 

detection and video 

classification applications. 

Video data 

 

These results show that hybrid models like DINO 

outperform SwAV both in clean and domain-shifted 

environments, despite the fact that SwAV [9] improves 

training stability and eliminates the need for negative pairs. 

As such, MAE-based models [13] work better in conjunction 

with SimCLR to identify global and local features, even 

though they excel at reconstructing the masked images. 

 

This approach provides a clearer understanding of SSL 

performance as it studies multiple fusion methods within one 

joint experiment environment, unlike earlier literature that 

only considers a single SSL paradigm at a time [5, 6, 8]. 

5. Results and Discussions 

This section describes experimental findings from 

evaluating the proposed hybrid self-supervised learning 

(SSL) methods for image classification. The research focuses 

on hybrid methods with masked image modeling, contrastive 

learning, clustering, and more. The experiment was 

conducted using the CIFAR-100 dataset, which aims to find 

how well these hybrid models perform in terms of accuracy 

and generalization.  

 

This section demonstrates the experimental results for 

assessing the proposed hybrid Self-Supervised Learning 

(SSL) approaches for image classification. The focus is 

primarily on hybrid approaches that involve masked image 

modeling, contrastive learning, clustering, and other 

techniques. The experimental evaluation has been conducted 

using the CIFAR-100 dataset and aims to determine how 

well hybrid models perform in terms of accuracy, loss, and 

generalization. 
 

5.1. Experimental Setup 

Dataset: The CIFAR-100 dataset was used with 10,000 

test images and 50,000 training images spread over 100 

classes. 

 Domain-Shifted Test Set: A domain-shifted version of 

the test set was created by introducing Gaussian noise 

and other perturbations to assess generalisation. 

 Training Setup:  

 Backbone Network: ResNet-50 was used as the 

feature extraction backbone. 

 Batch Size: Each training batch processed 512 

pictures. 

 Learning Rate: Cosine decay was used with a learning 

rate of 0.3. 

 SGD optimizer with weight decay of 1e-4 and 

momentum of 0.9. 

 Training Epochs: Each model was trained for 800 epochs. 
 

5.2. Performance of Each Hybrid Approach 

5.2.1. Contrastive Clustering (SwAV) 

SwAV showed strong performance in Figure 2 on the 

clean test set, demonstrating its ability to assign different 

augmented views to the same cluster without negative 

samples. On the domain-shifted dataset, SwAV retained 

effective generalisation capabilities, showing its robustness 

against data variations. (SimCLR + MAE). 
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Fig. 2 Performance metrics of contrastive clustering (SwAV) 

 

5.2.2. Contrastive Learning with Masked Image 

Modeling.(SimCLR + MAE) 

SimCLR and MAE combined to produce improved 

feature representations, with MAE's masked modelling 

offering extra context for contrastive learning. The hybrid 

model was shown to be accurate and robust in both domain-

shifted and clean situations, as shown in the Figure 3. 

 

 
Fig. 3 Performance metrics of contrastive learning with masked image modeling 

 

5.2.3. Dual-Task Learning (BYOL + Clustering) 

 
Fig. 4 Performance metrics of dual-task learning (BYOL + clustering) 
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The performance on the clean test set was excellent, as 

shown in Figure 4. However, there was a noticeable drop in 

performance on the domain-shifted dataset, which suggests 

that further refinements may improve generalization. The 

dual-task learning approach successfully reduced the 

requirement for negative samples while improving 

representation quality through clustering. 

5.2.4. Self-Distillation with Contrastive Learning (DINO)  

DINO showed the effectiveness of its student-teacher 

architecture by using self-distillation to achieve the highest 

Top-1 accuracy among the hybrid methods in Figure 5. The 

model performed well in many test scenarios and had robust 

resistance to domain shifts. 

 

 
Fig. 5 Performance metrics of self-distillation with contrastive learning (DINO) 

 

5.2.5. Hybrid Generative-Contrastive Learning 

It combines contrastive learning with generative models, 

which further improves the understanding of the model with 

respect to various data distributions, as shown in the Figure 

6. The shift in domain results in moderate performance; this 

suggests that the resilience of the model has to be improved. 

 

 
Fig. 6 Performance metrics of hybrid generative-contrastive learning 

 

5.2.6. Multi-Modal Hybrid Learning 

Observations: 

• This technique enhances model robustness and comprehension of intricate interactions through various modalities of data 

usage, as shown in Figure 7. 

• However, the model cannot extrapolate unknown data. 
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Fig. 7 Performance metrics of multi-modal hybrid learning 

 

5.2.7. Joint Learning of Features and Representations 

By learning various characteristics at once, this method 

produced a rich representation, which improved the 

performance of the clean dataset as shown in Figure 8. The 

issues of the model with domain generalization highlighted 

the requirements of good training techniques. 

Compared to the other hybrid models, the standard 

image classification task was performed with a lower ability. 

However, it enhanced the performance of the addition of 

temporal dynamics in capturing the linkage between frames. 

More optimization might be required to boost its 

performance and robustness over multiple datasets. 

 
Fig. 8 Performance metrics of joint learning of features and representations 

 

5.2.8. Contrastive Learning with Temporal Dynamics 

As the experimental results indicate, hybrid self-

supervised learning techniques dramatically enhance image 

classification performance even with a small amount of 

labelled data. Although the advanced data augmentation 

techniques positively influence performance for all models, 

models such as DINO and MAE perform very well and 

consistently have good accuracy and generalisation. 

Knowing each hybrid approach's pros and cons will provide 

significant information for upcoming studies and advances in 

self-supervised learning techniques. 
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Fig. 9 Performance metrics of contrastive learning with temporal dynamics 

 

5.3. Comparison of Hybrid Approaches in Self-Supervised 

Learning 
This section compares the different hybrid SSL 

strategies evaluated in the preceding part. The comparisons ' 

main topics include key performance indicators, advantages, 

disadvantages, and overall efficacy in improving picture 

classification performance. 

 

5.3.1. Performance Summary 

 

 
Fig. 10 represents the comparative performance 

 

 5.3.2. Analysis of Key Strengths and Weaknesses 

 SwAV, or Contrastive Clustering: 

 Strengths: SwAV is excellent in clustering augmented 

perspectives of the same image, which reduces the need 

for negative samples and improves training stability. 

 Weaknesses: SwAV shows sensitivity to large domain 

changes, which results in reduced performance on 

perturbed datasets, even though it performs well on 

clean data. 
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Masked Image Modelling with Contrastive Learning 

(SimCLR + MAE) 

 Strengths: The combination of SimCLR's contrastive 

learning with MAE's masked modelling achieves strong 

performance metrics on both clean and domain-shifted 

datasets, allowing for the efficient capture of both global 

and local characteristics. 

 Weaknesses: To get the best results from this hybrid 

model, data augmentation techniques may need to be 

carefully adjusted. 

 

Dual-Task Learning (Clustering + BYOL) 

 Strengths: Because BYOL never uses negative samples 

and now uses a clustering technique, the overall 

accuracy of the model and its ability to learn distinct 

representations improve. 

 Weaknesses: When domain changes are included, the 

model has significant performance degradations, 

indicating that it does not generalize as well to unseen 

data distributions. 

Self-Distillation with Contrastive Learning (DINO) 

 Strengths: Among the techniques evaluated, DINO's 

student-teacher framework is resilient in domain 

adaptability and achieves the highest Top-1 accuracy 

due to its efficient use of self-distillation. 

 Weaknesses: This approach requires careful design of 

the distillation process for it to be implemented 

effectively. 
 

Generative-Contrastive Hybrid Learning 

 Advantages: This method combines generative models 

and contrastive learning to improve the model's ability to 

capture various data distributions, making it possible for 

it to learn more robust features. 

 Weaknesses: Domain changes impact its performance 

slightly, meaning robustness needs to be strengthened a 

little. 

Multi-Modal Hybrid Learning 

 Strengths: Robustness and capability to understand 

complex relationships can be significantly enhanced by 

the use of many data modalities. So, it can be highly 

useful for multi-modal tasks. 

 Weaknesses: Since data distribution discrepancies may 

degrade the effectiveness of multi-modal learning, the 

model has difficulty generalizing to unseen data. 

Joint Learning of Features and Representations 

 Strengths: This is an improvement that enables 

generalisation through many self-supervised tasks, so 

that it enables rich representations of the model to learn 

about the different sides of the data. 

 Weaknesses: The only demerit that needs improvement 

in this method is the restriction in effectiveness due to 

domain-shifted datasets. 

Contrastive Learning by Temporal Dynamics 

 Strengths: Since this hybrid method captures both spatial 

and temporal dynamics, it is particularly well-suited for 

video data and performs better in tasks involving 

temporal understanding. 

 Weaknesses: The method is weaker than previous hybrid 

algorithms for static picture classification applications. 

 

Comparison analysis results indicate that hybrid self-

supervised learning techniques greatly enhance the 

performance of picture classification, especially in the 

presence of a shortage of labelled data. The more advanced 

data augmentation approaches are seen to affect performance 

for all models positively. The DINO and MAE models 

exhibit consistently high accuracy and good generalization 

capabilities. Information regarding the strengths and 

weaknesses of each hybrid approach can be invaluable for 

future studies and progressions of self-supervised learning 

techniques. 

 

6. Conclusion 
This paper extensively evaluates hybrid Self-Supervised 

Learning (SSL) methods that aim to improve picture 

classification performance, particularly when limited labeled 

data are available. They proposed and explored a hybrid 

approach that has the ability to learn strong, portable visual 

representations by combining complementary SSL methods 

such as contrastive learning, masked image modeling, and 

clustering. Hybrid methods such as SimCLR+MAE and 

DINO are more accurate and generalize better than 

independent models based on experimental results on the 

CIFAR-100 dataset, which encompasses domain-shifted test 

conditions. 
 

Although SimCLR+MAE was able to extract both 

global and local features, DINO performed better than other 

approaches, measured in terms of Top-1 accuracy and 

domain shift robustness. These findings affirm how 

effectively hybrid SSL methods perform in addressing 

domain variability, data sparsity, and representation learning 

quality issues. 

 

In addition, the performance and robustness of hybrid 

models were enhanced by advanced data augmentation 

techniques such as CutMix and RandAugment, emphasizing 

the importance of preprocessing pipelines in SSL. 

The results of this work contribute to the growing body 

of evidence that hybrid SSL is a scalable, general-purpose, 

and effective framework for real-world picture classification 

tasks.  To further enhance hybrid SSL performance, future 

research will focus on extending the proposed framework to 

privacy-constrained and multi-modal domains (e.g., medical 

imaging), and developing automated architectural selection 

mechanisms and adaptive fusion methods. 
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