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Abstract - Massive collections of multimedia data have been created as a result of the Internet’s recent exponential expansion. 

Effective management of these repositories necessitates matching spoken queries with the audio content of these videos. One 

powerful technique that has emerged to address this issue is QbE-STD. Nevertheless, QbE-STD encounters many difficulties, 

including age sensitivity, dialect differences, and computational complexity. The objective of this study is to address these 

issues. In this area, review publications are scarce and mostly lack an in-depth study of feature representations and matching 

techniques. This paper presents a detailed analysis of different approaches and developments in QbE-STD. It covers feature 

representations, similarity metrics, matching methods, datasets, evaluation measures, and benchmarking platforms. The paper 

delves into the intricacies of various feature representations and scrutinizes similarity metrics. These metrics are analyzed for 

their advantages and disadvantages in computing a matching matrix between a query and an utterance. Furthermore, the 

paper highlights how machine learning and deep learning architectures are increasingly integrated into QbE-STD. Finally, 

the paper discusses a few challenges associated with QbE-STD, which provide an opportunity for future research in this field. 

Keywords - Convolutional Neural Network, Spoken term detection, Query-by-Example Spoken Term Detection, Keyword 

spotting, Audio search. 

1. Introduction  
The availability of high-speed networks at low cost has 

led to a huge increase in the generation of audio data. Audio 

data is generated through various sources: lecture recordings 

from Massive Open Online Courses (MOOCs), YouTube 

videos, news channels, and TV recordings. With vast 

amounts of spoken data available, searching these audio 

databases becomes necessary to locate the required data. 

Searching in large audio databases is a technically 

challenging task. This comprehensive review explores the 

most recent developments, methodologies, datasets, and 

challenges in QbE-STD. By examining the various 

components of QbE-STD, including feature extraction, 

template matching, similarity measures, databases, 

benchmarking platforms, and evaluation metrics, this review 

provides a thorough understanding of the techniques that 

drive the QbE-STD systems. This review provides a 

comprehensive overview of the current landscape and 

identifies challenges and potential avenues for future 

research. 

Audio search refers to searching for a query or a keyword 

in a database of audio utterances. Audio search is very 

challenging as the audio data varies a lot. When the same 

speaker uses the same word in different contexts, the speech 

signal for that word could vary. The search becomes more 

difficult due to variations in age, dialect, and gender, and it is 

also computationally expensive. There are many applications 

for audio search, such as in music retrieval systems, 

information retrieval, consumer search, and indexing audio 

archives [1].  

Depending on the type of query provided, audio search 

is classified into two broad categories: Keyword Spotting 

(KWS) and Spoken Term Detection (STD). In KWS, the 

keywords are predefined, and the search is restricted to those 

predefined keywords only [2]. The keywords and utterances 

are converted to text, and a text-based search is carried out 

[3]. STD refers to searching audio databases for any query, 

so the keywords are not predetermined. 

STD can be categorized into two categories depending 

on how the query is provided and how the search is carried 

out. They are text-based STD [4] and query-by-example STD 

(QbE-STD) [5]. Text-based STD involves converting the 

query to text format and performing a search based on text 
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[6]. Text-based speech recognition (STD) uses text-based 

search techniques with an Automatic Speech Recognition 

(ASR) system after the speech is converted to text. The 

problem with this approach is the need for an effective ASR 

system. Hence, this approach may not be suitable for a 

language with limited resources. In QbE-STD, a query is in 

the form of spoken audio and is matched with the repository 

of audio utterances [7]. QbE-STD does not involve speech-

to-text conversion. It enables us to search in a multilingual 

speech database without using any speech recognition 

system. Figure 1 illustrates the types of audio search.  

 
Fig. 1 Types of audio search 

QbE-STD is regarded as a zero-resource system because 

no language-specific resources are used, and the search in 

QbE-STD is performed solely using the spoken query. It 

allows us to search various speech databases without an 

automatic speech recognition system by specifying a spoken 

query, making it an unsupervised pattern-matching problem. 

Also, the query and the audio utterance may be of different 

lengths. Therefore, the more significant audio signal must be 

broken down into smaller fragments that can be compared 

with the query. 

QbE-STD is searching the audio query in spoken audio 

utterances. Figure 2 illustrates the general architecture of a 

QbE-STD system [5]. Feature representation refers to 

extracting the features from the audio query and utterances 

and suitably representing these features.  

Template matching refers to the approaches used to 

match these feature representations of a query and an 

utterance to decide whether the query appears in the utterance 

or not. Approaches for QbE-STD mainly differ concerning 

feature representation and template matching. Different 

methodologies used for QbE-STD are analyzed in this paper. 

Dynamic time warping (DTW) is the state-of-the-art 

technique used for QbE-STD, but it is computationally 

expensive [5]. Different feature representations, such as 

Gaussian posteriorgrams [9], bottleneck features [22], 

acoustic word embeddings [33], and transformer-based 

representations [35], have been used, but no single 

representation is universally optimal for QbE-STD. 

     

 

 

 

 

Fig. 2 A general architecture of the QbE-STD system 

Further, various matching metrics such as Kullback-

Leibler divergence [45], cosine similarity [5], and histogram 

intersection kernel [43] have been investigated to compute 

the matching matrix necessary for QbE-STD. Various deep 

learning strategies, such as CNN [43], Siamese network, and 

transformer-based architecture [36], have been explored to 

determine the relevance of the query to the reference 

utterance. The use of deep learning strategies has 

significantly improved the performance of the QbE-STD, 

especially in cross-lingual scenarios. Furthermore, 

techniques like parallel computation [82] and feature 

reduction [81] have been explored to improve computational 

efficiency. However, challenges such as scalability, noise 

robustness, and generalization to unseen conditions remain 

critical areas of research.  

The rest of the paper is organized as follows: Section 2 

discusses the applications of QbE-STD, Section 3 describes 

the methodology used for the review, Section 4 discusses the 

feature representations used for QbE-STD, while Section 5 

explains the computation of the matching matrix. Section 6 

discusses the various similarity metrics used for computing 

the matching matrix, and Section 7 discusses the different 

datasets available for QbE-STD, while Section 8 gives details 

of various evaluation metrics used for QbE-STD. In Section 

9, benchmarking platforms are discussed. The challenges and 

future directions are provided in Section 10, a discussion in 

Section 11, and a conclusion of the paper in Section 12. 

2. Applications of QbE-STD 
QbE-STD is used in numerous applications. Some of the 

major applications have been discussed below: 

2.1. Educational Tools  

QbE-STD is applied in educational settings to create 

interactive learning environments. For instance, students can 

use voice queries to retrieve relevant academic content, such 

as lecture recordings, tutorial videos, or supplemental 

materials, in real-time. MIT lecture browser [8] is an example 

of how QbE-STD is used for educational applications. 
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2.2. Audio Search Engines  

QbE-STD enhances audio search engines by allowing 

users to search for specific spoken terms within large audio 

databases using natural language examples. This is very 

useful for researchers, students, and other people searching 

for specific information. 

 

2.3. Voice-Activated Virtual Assistants 

QbE-STD is integral to voice-activated virtual assistants, 

enabling users to interact by providing spoken examples of 

commands or queries. This is widely used in smart home 

systems and automobiles. These devices recognize spoken 

commands from users and execute corresponding actions or 

tasks in real-time. 

 

2.4. Surveillance Systems  

QbE-STD can be integrated into surveillance systems to 

automatically monitor live audio streams for specific 

keywords or phrases of interest. This can help detect security 

threats, identify safety concerns, or alert authorities to 

potential security threats in real time. 

 

2.5. Content Monitoring and Compliance  

Different organizations can check the online audio data 

for violations of certain policies. By automatically checking 

for predefined keywords or phrases, they can detect content 

violating the regulations. 

 

2.6. Search in E-commerce Applications  

QbE-STD can enhance search functionalities in e-

commerce platforms, allowing users to find products or 

information by providing natural language examples of the 

items they are looking for. 

 

2.7. Command and Control Systems  

In military or industrial settings, QbE-STD can be used 

for command and control applications, allowing operators to 

provide spoken examples of commands or instructions for 

controlling systems. 

 

2.8. Healthcare Applications 

In healthcare settings, QbE-STD can assist medical 

professionals in accessing patient information, medical 

records, or clinical guidelines through voice-based queries. 

This facilitates hands-free interaction with electronic health 

records systems, improving efficiency and workflow in 

clinical environments. 

 
2.9. Multimedia Retrieval  

QbE-STD is used in multimedia retrieval systems 

to enable users to search for specific spoken content 

within large audio or video databases. This is valuable 

in various domains, including journalism, 

entertainment, and market research, for quickly locating 

relevant media assets based on spoken queries. 

2.10. Call Center Analytics 

In an environment like a call center, QbE-STD can be 

used to check customer and employee interactions. It will 

enable managers to check employee performance and 

identify trends. 

 

There are numerous such real-time applications of QbE-

STD. The effectiveness of QbE-STD makes it applicable in 

diverse contexts where rapid and accurate spoken content 

retrieval is essential. 

3. Methodology 
 This study is based on a systematic review methodology. 

The method first examines and then assesses the existing 

research on QbE-STD. The research has been carried out in 

three stages: i) review preparation, ii) review execution, and 

iii) writing the summary of the review. Feature representation 

is a crucial step in QbE-STD, as it determines how speech 

signals are processed and compared. The goal of feature 

representation is to extract relevant information from raw 

audio waveforms while preserving phonetic and acoustic 

properties that distinguish spoken terms. Effective feature 

extraction improves system robustness against variations in 

speaker identity, background noise, and speaking styles. 

 

4. Feature Representation Techniques 
 Feature representation is a crucial step in QbE-STD, as 

it determines how speech signals are processed and 

compared. The goal of feature representation is to extract 

relevant information from raw audio waveforms while 

preserving phonetic and acoustic properties that distinguish 

spoken terms. Effective feature extraction improves system 

robustness. 

 

Traditional feature extraction methods rely on spectral 

analysis techniques, such as MFCCs and Perceptual Linear 

Prediction (PLP), which capture key acoustic characteristics 

of speech. These features have been widely used due to their 

simplicity and efficiency. More advanced methods leverage 

phonetic and subword-based representations, such as phone 

posteriorgrams and articulatory features, which provide a 

higher-level abstraction of speech content. Recent 

advancements in deep learning have led to the development 

of data-driven feature representations derived from Deep 

Neural Networks (DNNs). 

 

4.1. Basic Feature Extraction Methods  
 Spectral features are basic speech features and are 

extracted from the speech utterances. 

 

 MFCC is one of the most widely used spectral features 

in speech processing. Speech utterance is first divided into 

smaller segments or frames (typically of size 20-25 ms) with 

an overlap of 10 ms to obtain the MFCC coefficients. First, 

compute the 13 MFCC coefficients for each frame, then 
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obtain the delta and double delta coefficients. These delta 

coefficients provide information corresponding to the speech 

rate and acceleration of speech. Concatenate the 13 MFCC 

coefficients with delta and double delta coefficients to obtain 

a 39-dimensional feature vector for each frame [1]. 

  

 In Linear Prediction (LP) analysis, an all-pole technique 

approximates the vocal tract spectral envelope. The weighted 

sum of the past samples can be used to predict the speech 

sample, and the weighted coefficients are called LP 

coefficients [1].  LPCC is a valuable parameter set that can 

be obtained from LP. LPCCs capture the vocal tract 

characteristics of the speaker. In PLP, the power spectrum is 

modified before applying the linear prediction all-pole 

model. PLP uses cubic compression of the spectrum. The all-

pole model is also used by FDLP to describe the frequency 

components’ temporal dynamics. It is observed that under 

noisy conditions, FDLP performs better than PLP [5]. To 

obtain the frequency domain representation in FBCC, the 

Fourier-Bessel transform is used instead of the Fourier 

transform. A damped sinusoid serves as the basis function for 

the FBCC and is more suited for spoken speech signals [10].  

    Similarity matches between the fundamental acoustic 

features may suffer from environmental noise mismatches; 

hence, rather than directly using these basic acoustic features, 

feature representations like phonetic or subword-based 

representations are used [11], which are explored in the next 

section. 

 

4.2. Phonetic and Subword-Based Representations  

 Phonetic and subword-based representations aim to 

capture higher-level linguistic information from speech, 

moving beyond purely acoustic features like MFCCs or 

spectrograms. These representations help improve QbE-STD 

by enhancing robustness to speaker variability and 

background noise. The phonetic and subword-based 

representations are discussed in this section. 

 

4.2.1. Phonetic Posteriorgrams  

Phone Posteriorgrams (PPGs) are widely used phonetic 

representations that provide soft phonetic alignments for 

speech. They represent the probability distribution over 

phonetic units at each time frame. A phonetic posteriorgram 

involves plotting the posterior probabilities of phonetic 

classes versus time [12].  A neural network can be used to 

generate a phonetic posteriorgram. A neural network is 

trained to produce phone posteriorgrams using basic features, 

such as MFCC, extracted from the speech signal. [13]. A 

phonetic classifier is required to obtain a phonetic 

posteriorgram [14]. Building a phonetic classifier requires 

labeled data, so obtaining a posteriorgram is supervised and 

language-dependent [15]. It may be challenging to build a 

phonetic classifier for low-resource languages. One solution 

to this issue is to build phonetic classifiers using high-

resource languages and use these to obtain phonetic 

posteriorgrams for low-resource languages [14]. However, 

phonetic posteriorgrams perform poorly when the test 

language is different from the language on which they are 

trained, as they cannot effectively capture the acoustic 

features of the target language [16]. 

 

4.2.2. Gaussian Posteriorgrams  

Gaussian Posteriorgram representation is obtained using 

the Gaussian Mixture Model (GMM) [17].  MFCCs or 

FDLPs are grouped using GMM-based soft clustering. The 

number of components in the GMM should roughly equal the 

number of phonemes in the underlying language. The output 

of such a GMM is the posterior probabilities of its 

components corresponding to each speech frame and is called 

a Gaussian Posteriorgram (GP). Since this approach does not 

require labeled data, obtaining a posteriorgram representation 

is an unsupervised learning-based approach. GPs were first 

used in [9, 17]. GP is found to be an effective feature 

representation that suppresses speaker characteristics and 

allows multilingual search [5, 17, 18]. Instead of MFCC, 

FBCC has also been used to obtain GPs [10]. Instead of using 

a single GMM, the posteriorgram obtained from the mixture 

of GMMs is found to be a better representation as it captures 

the broad phonetic structure [19]. 

 
4.2.3. GAN-Based  Posteriorgrams  

The posteriorgrams obtained from the deep neural 

network, or GMM, use maximum-likelihood-based 

estimation and may affect the optimization of the network. 

Hence, a Generative Adversarial Network (GAN) generates 

the posteriors. GAN-based posteriorgrams represent an 

advanced phonetic feature extraction approach that improves 

upon traditional posteriorgrams by leveraging adversarial 

training. They have strong potential in low-resource, noisy, 

and cross-lingual spoken term detection tasks, making them 

valuable for QbE-STD applications. Initially, a GMM is 

trained with 39-d MFCC, and the GP is used as a target label 

for the GAN system. The input side is fed with contextual 

features, while the output side is provided with a labeled 

central frame posteriorgram. This considerably improves 

performance over posteriorgrams obtained from DNN [20]. 

 

4.2.4. Bottleneck Features 

 The bottleneck in a neural network is a layer with fewer 

neurons than the layers below or above. So, this layer consists 

of the compressed feature representations with the best fit in 

the available space. Bottleneck features represent a low-

dimensional representation of data obtained from a neural 

network’s bottleneck layer, which consists of the smallest 

number of hidden units [21]. Bottleneck features perform 

well for QbE-STD tasks [22-25]. Multilingual bottleneck 

features are used to implement multilingual STD [15, 26]. 

These are language-independent bottleneck features [21]. 

Specific approaches [27, 28] use the bottleneck features 

obtained from a high-resource language (cross-lingual 

bottleneck features) for search in a low-resource language. 

The bottleneck features are found to work well for QbE-STD. 
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CNN-based bottleneck features perform well even in noisy 

environments [29]. 

 

4.2.5. Articulatory Features 

 Phone classes are not the same for all languages, and 

hence, a more general representation, such as articulatory 

class information, is required. Articulatory classes allow 

cross-lingual speech recognition as they represent language-

independent representations of speech sounds [30, 31]. They 

can be trained using relatively less data. The categorization 

of speech sounds into vowels and consonants, along with the 

articulators that are employed to characterize them, is known 

as the articulatory classes. It is found that Low 

Dimensionality Articulatory Motivated (LDAM) 

posteriorgrams have a representation that is unique for 

phonemes of various languages. However, when they are 

trained on a single language, they may only correctly 

represent some phonemes [32]. Hence, different approaches 

to joint training of multiple languages are explored in [30]. 

 

4.3. Deep-Learning-Based Representations 

 Deep learning has revolutionized speech processing by 

enabling the extraction of highly discriminative and context-

aware representations from raw audio signals, unlike 

traditional handcrafted features such as MFCCs or PPGs, 

deep learning-based representations leverage neural 

networks to learn data-driven features that capture both 

acoustic and linguistic properties. This section discusses 

Acoustic Word Embeddings (AWEs) and transformer-based 

representations. 

 

4.3.1. Acoustic Word Embeddings 

 AWEs are fixed-dimensional vector representations of 

spoken words, learned directly from speech signals. Unlike 

phonetic representations, which rely on explicit phoneme-

level transcription, AWEs encode word-level acoustic 

similarities and can be trained in an unsupervised or 

supervised way. AWEs translate the speech segments into a 

fixed-dimensional vector space. In this representation, the 

distance between identical speech vectors is less, and 

between non-identical speech vectors is more. Preceding and 

successive words, when used as temporal context along with 

AWE, have been found to improve the performance of QbE-

STD [33], and it also reduces runtime computation as 

dynamic-programming-based approaches like dynamic time 

warping (DTW) are not required. However, it requires a 

sufficient number of speech segment pairs. Deep 

convolutional neural network-based AWE is used for code-

switching QbE-STD [33]. Instead of data from one language, 

it uses data from multiple languages for training. 

        

 Variable-length speech segments are mapped into fixed-

length vectors using a Siamese Recurrent Autoencoder 

(RAE). The audio utterances are segmented into variable-

length audio segments based on word boundaries. These 

segments are then fed into the Siamese RAE to obtain fixed-

length vectors. The Siamese RAE receives word pairs with 

varied or identical word content in different instances. The 

Siamese RAE encoder’s last hidden state vector output, a 

feature vector for QbE-STD with related semantic content, is 

used as the output. Since the feature vectors are fixed-

dimensional, matching becomes easier. This approach works 

well and reduces the detection time [34]. It adds the context 

frames of the desired spoken words to word pairings to 

produce fixed-length speech segment pairs. Multilingual 

bottleneck features are used to represent the word pairs. The 

speech segment pairings are then used to train a deep 

Bidirectional Long-Short-Term Memory (BLSTM) network 

with a triplet loss. The BLSTM backwards and forward 

outputs are concatenated to produce recurrent neural AWEs. 

During the searching step, the speech utterance and the query 

are converted into recurrent neural AWEs [27]. 

 

4.3.2. Transformer-based Representations 

 Transformers have emerged as a powerful deep-learning 

architecture for speech representation learning, offering self-

attention mechanisms that capture long-range dependencies 

in audio. Transformer-based QbE-STD systems have shown 

significant advancements in recent research. [35-37] These 

systems use encoder-encoder structures with BERT-like 

encoders and modifications like convolutional layers, 

attention masking, and shared parameters to project 

recognized hypotheses and searched terms into a shared 

embedding space for scoring using calibrated dot products. 

Additionally, incorporating End-To-End (E2E) ASR systems 

can enhance performance by reducing Out-Of-Vocabulary 

(OOV) issues and improving search accuracy. Furthermore, 

deep convolutional neural network-based acoustic word 

embedding systems have been proposed for code-switching 

STD, combining audio data from multiple languages and 

applying variability-invariant loss for improved performance 

[33]. Attention-based pooling networks [38] are used for end-

to-end QbE-STD systems. Audio utterances are initially 

segmented on word boundaries, and then an encoder with 

shared Recurrent Neural Networks (RNNs) is used to project 

audio utterances into hidden state sequences. This can be 

done offline. During the search process, similarity between 

the query and the reference utterance is determined using 

cosine distance, after extracting suitable features from both. 

End-to-end systems are also developed using attention-based 

multihop networks [37]. 

 

 Speech from different people has different acoustic 

properties, and hence, in addition to using feature 

representations, additional techniques have been used to 

improve the effectiveness of QbE-STD. Speaker 

normalization is a technique used to eliminate speaker-

specific details. Voice Tract Length Normalization (VTLN) 

is a widely used technique that nullifies variations resulting 

from the vocal tract length. VTLN [39] performs speaker 

normalization, and then these normalized features are used to 

obtain Gaussian posteriorgrams. VTLN normalized features 
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improve the performance of the QbE-STD task. Posterior 

features can also be obtained from Deep Boltzmann 

Machines (DBMs). Semi-supervised and unsupervised 

techniques can be used to train a DBM. In the unsupervised 

technique, DBM is trained using labels generated from 

GMM. In contrast, in the semi-supervised approach, the 

unlabeled data is used to train DBM initially, and a small 

amount of labeled data is used to fine-tune it [40]. 

 

 Feature representations using self-organizing maps 

(SOM) are used in [41]. The Affinity-kernel propagation 

approach is used to find the matching between the query and 

the reference utterance feature representations. [42] uses 

Wav2vec2.0 to learn representations, which are subsequently 

encoded as token sequences. For each token in this order, the 

Term Frequency-Inverse Document Frequency (TF-IDF) 

score is then calculated. Cosine similarity is used to compare 

the TF-IDF vector of the query and the TF-IDF matrix of the 

reference utterances. 

 

 In recent years, deep learning has emerged as a powerful 

approach for obtaining feature representations for QbE-STD. 

Deep learning techniques, such as CNNs, DNNs, and RNNs, 

are used to obtain more robust features from speech. Deep 

learning techniques enable the extraction of discriminative 

and contextually rich features directly from raw audio 

signals.  

 

 One of the key advantages of deep learning-based feature 

representations is their ability to automatically learn 

hierarchical and abstract representations of data, capturing 

intricate patterns and structures that may be difficult to 

extract using handcrafted features. These features are then 

used to measure the similarity between the query and audio 

utterances.  

 

 Additionally, architectures such as Siamese networks or 

triplet networks are utilized to learn similarity-preserving 

embeddings directly from pairs or triplets of audio segments, 

facilitating efficient comparison and retrieval of spoken 

terms.  

 

 Table 1 shows the comparative analysis of various 

feature representations used for QbE-STD.

 
Table 1. Comparative study of various feature representations used for QbE-STD 

Feature 

representations 
Advantages Disadvantages Used in 

Phonetic 

Posteriorgram 

Used to capture fine-grained phonetic 

information in speech. It represents posterior 

probabilities of phonetic units (e.g., phones) 

Requires labeled data and alignment 

with phonetic transcriptions, and may 

not perform well when the target 

language is different from the trained 

language 

[13, 14] 

Gaussian 

Posteriorgram 

Suitable for capturing fine-grained acoustic 

information, represents posterior probabilities 

of acoustic units (e.g., phonemes), does not 

require labeled data, and captures detailed 

acoustic information for sequence modeling 

tasks 

Complexity in the feature extraction 

process requires alignment with text 

transcriptions. 
[17, 43, 45] 

GAN-based 

Posteriorgram 

Used for generating synthetic speech 

representations, provides flexible and 

customizable feature representations that can 

capture diverse and realistic speech 

variations. 

Complexity in training GAN models 

and the quality and fidelity of generated 

features may vary. [20] 

Bottleneck 

Features 

Extracting from intermediate layers of neural 

networks, capturing discriminative 

information learned by neural networks, is 

effective for speech recognition tasks and 

works well even in noisy environments. 

Complexity in training neural networks 

for feature extraction may require 

careful tuning of network architecture 

and training parameters. 

[15,21,22, 

25, 29] 

Articulatory 

Features  

Represent movements of speech articulators, 

allow cross-lingual speech recognition, can be 

trained using relatively less data, and capture 

detailed articulatory information. 

 

Need to be trained on multiple 

languages to identify different 

phonemes correctly, limited 

availability of articulatory data, and 

complexity in data collection and 

feature extraction 

[30,31] 
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Acoustic Word 

Embeddings  

Embed words into a continuous vector space 

based on acoustic representations, and capture 

the semantic and contextual information of 

words in speech. 

Complexity in training embedding 

models requires sufficient labeled data 
[33, 46] 

Transformer-

based 

representations

  

Utilize self-attention mechanisms for 

capturing long-range dependencies, capturing 

global context and dependencies in speech.  

Complexity in model architecture and 

parameter tuning, and large memory 

and computational requirements 
[35-37] 

 
Table 2. Similarity metrics used for computing a matching matrix between the query and reference utterance 

Similarity Metric Description/Advantages/Disadvantages Used in 

Cosine Similarity    Computed as the cosine of the angle between the two vectors.  

 Efficient to compute, but less sensitive to subtle distribution differences  

[5, 34, 47] 

Kullback-Leibler 

Divergence (KLD) 

 Similarity measure between probability distributions 

 Captures differences but is not symmetric and sensitive to noise 
[45, 48] 

Symmetric KLD   Symmetric version of KLD 

 Removes directional bias but is computationally expensive 

[19, 30, 39] 

Histogram 

Intersection Kernel    

 Computed as the sum of the minimum value between the features 

 Robust to noise but assumes normalized input 
[43] 

Log Similarity   Log of the dot product 

 Highlights strong matches but needs normalization 

[13, 15] 

 

5. Matching Matrix Computation  
A matrix is computed between the feature 

representations of the query and each reference utterance in 

the audio repository. Each value in the matrix represents a 

matching score. The query and the reference utterance are 

more comparable when the matching score is higher. A 

matching metric is employed to calculate these matching 

scores. The performance of QbE-STD depends on how 

effectively the metric captures the similarities between the 

feature vectors of the audio utterances. Various similarity 

metrics, such as cosine similarity and the symmetric 

Kullback-Leibler divergence (SKLD), have been explored in 

the literature.  

Table 2 summarizes the various metrics used to compute 

the matching matrix. Cosine similarity is a simple, scale-

invariant measure and gives good results for QbE-STD [5]. 

KLD and SKLD are suitable when GPs are used for QbE-

STD, and KLD is not symmetric. They are sensitive to 

outliers and are computationally expensive measures. 

Kernel-based measures like HIK are computationally 

inexpensive and are suited for QbE-STD [43]. The choice of 

the similarity measure depends on the nature of the data and 

the characteristics of the feature representations. To choose 

an appropriate feature representation, it is necessary to 

consider factors such as robustness to noise, performance, 

and computational efficiency. 

6. Similarity Detection Techniques  
     After the matching matrix is computed, a suitable 

similarity detection technique is employed to assess the 

relevance of the query to the reference utterance. This step is 

crucial in determining whether the spoken query appears in 

the reference audio. Various approaches have been explored 

in the literature to effectively perform this alignment and 

similarity scoring. 

 

 Most existing techniques use the DTW algorithm over 

the computed matching matrix, and the DTW score is used to 

determine the relevance of the query to the reference 

utterance. It calculates the DTW matrix based on the 

previously computed matching matrix and determines 

whether the query is relevant to the utterance using a 

predefined threshold. DTW [18]  is used to find the optimal 

alignment between two sequences satisfying some 

conditions. Warping constraints based on starting and 

endpoints, locality, slope weightage, and monotonicity are 

applied in DTW [44]. The standard DTW technique may not 

be efficient for searching large datasets [27]. Various changes 

have been proposed to increase the speed of computations. 

 

 Variations can depend on local weights, global 

constraints, and step size. Step size conditions will restrict the 

slope of the warping paths. Local weights will favor some 

directional alignments, like diagonal, vertical, and horizontal. 

Various adjustments to the DTW algorithm have been 

suggested based on these variations. 

 

 Segmental DTW (S-DTW)[17] involves dividing the 

speech utterance into smaller fragments and performing 

DTW on each segment. S-DTW uses global constraints to 

restrict the alignment of the spoken audio segments, which 

may be computationally expensive. Non-Segmental DTW 

(NS-DTW) [5] uses local rather than global constraints. [49] 

proposed a fast and memory-efficient DTW (MES-DTW) 

algorithm that suggested modifications to the subsequence 
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DTW. It uses the query’s fixed start and end points and then 

searches for matching subsequences. Fast NS-DTW (FNS-

DTW) [5] uses reduced GPs for QbE-STD. Slope-

constrained DTW [17] enforces restrictions on the slope of 

the warping path. Subspace-regularized DTW  [15, 50] 

regularizes the matching matrix using the test utterance and 

the query’s subspace structure. It uses sparsity and DTW to 

develop an effective system. 

 

Convolutional Neural Network (CNN) is widely used in 

image classification. The success of CNN in image 

classification tasks motivated its use for QbE-STD. CNN is a 

deep-learning algorithm that is very useful in pattern 

discovery. CNN does not need handcrafted features but can 

learn features on its own. It consists of a cascade of 

convolution and pooling layers, followed by fully connected 

layers. The CNN is used to categorize images into two 

classes—positive and negative—after converting the 

matching matrix that was created in QbE-STD into an image. 

Whereas the negative class denotes that the query is absent 

from the utterance, the positive class shows that the query is 

present in the reference utterance [43]. The methods may use 

different feature representations and metrics to compute the 

matching matrix. All these methods convert the matching 

matrix to an image and use CNN for QbE-STD. 

  

 In [15], bottleneck features are used, and modified cosine 

similarity is used to construct the matching matrix. This 

matching matrix is then converted to an image. If the query 

appears in the utterance, the diagonal entries in the similarity 

matrix will be similar, resulting in a quasi-diagonal pattern. 

So, the presence of the query in the test utterance is depicted 

by a quasi-diagonal pattern representing a positive class. The 

absence of a diagonal pattern represents the negative class. 

CNN takes the entire image (or the matching matrix) together 

to locate the pattern, compared to the DTW algorithm, which 

makes local decisions. Hence, an end-to-end system [21] 

using CNN is better than one using DTW.  

 

While [15] uses modified cosine similarity to compute 

the similarity matrix, [43] uses kernel-based matching for 

computing the similarity matrix. HIK is used to compute the 

similarity score and is a faster method. DTW with CNN is 

used for QbE-STD in [45], and this approach uses a modified 

DTW and visualizes the warping matrix as a grayscale image. 

The matching score between features was calculated using 

KLD, and a CNN was then trained on these images to classify 

keywords using the texture of the warping matrix image. In 

[51], the matching matrix is computed using symmetric KL 

divergence. Then, image processing methods like area 

filtering, edge detection, edge filling, and line dilation are 

applied to the similarity matrix to identify the probably 

matched regions, followed by the angle histogram technique 

to obtain the matched regions. Finally, the frame histogram 

technique is applied to divide the images further into positive 

and negative class images, which are used to train a CNN. 

The matched region images obtained from the image 

processing methods are given to the CNN. The study 

referenced in [36] utilized transformer architecture to analyze 

Spoken Term Detection (STD). The encoder component of 

the transformer extracts context-dependent vector 

representations of the input. Both the reference utterance and 

the input query are transformed into a shared embedding 

space. The sigmoid-calibrated dot product is used to compute 

the similarity between these two vectors. In contrast, the 

approach detailed in [52] employs a Fully Connected 

Convolutional Neural Network (FC-CNN) to determine 

whether the speech stream contains the query. In this method, 

the reference utterance is input into a CNN with an attention 

mechanism after the query is appended to it.  

 

DTW is the state-of-the-art technique used for matching. 

Different variants of DTW are used to increase the 

effectiveness of QbE-STD. DTW effectively captures 

patterns and temporal variations within sequences, but it is 

computationally expensive and can be sensitive to outliers. 

Recent techniques have focused on the use of deep learning 

techniques. The techniques visualize the matching matrix as 

an image and then use CNN as a classifier. The metric and 

technique used to obtain the matching matrix are different. 

Some approaches use image processing techniques before 

classification to lower the number of false alarms and missed 

detections. Other approaches use RNNs, RAEs, and 

transformer-based architectures to convert the features of the 

query and the utterance to a fixed dimension. The fixed-

dimensional feature vectors of the query and the utterance are 

matched using a suitable matching metric. QbE-STD using 

CNN performs well and depends on the similarity measure 

used to calculate the matching matrix. The choice of a 

matching technique depends on the nature of the data and the 

availability of computational resources. If the dataset is large, 

then CNN may be a good choice for automatic feature 

learning. Next, the various datasets used for QbE-STD are 

discussed. 

 

7. Datasets used for QbE-STD 
Different datasets are available and used for QbE-STD. 

Some datasets are developed explicitly for QbE-STD due to 

benchmarking initiatives, while others are for various speech-

related activities. In this section, a brief discussion of every 

dataset is presented. 

 

7.1. TIMIT Dataset 

The TIMIT acoustic-phonetic continuous speech corpus 

[53] provides spoken data for developing and evaluating ASR 

systems. It consists of recordings of 630 speakers. These 

speakers speak eight distinct American English dialects. Each 

speaker reads ten sentences that are rich in phonetics. It is a 

phonetically balanced dataset that provides word-level and 

phoneme-level speech transcriptions. TIMIT is not explicitly 

designed for QbE-STD. Queries can be extracted from the 
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given sentences using the metadata provided along with the 

sentences. The data is then divided into train and test datasets. 

This dataset is used for QbE-STD in [17, 39, 44, 45]. 

 

7.2. MediaEval 2011 SWS Dataset  

MediaEval 2011 (SWS) [54] is a dataset developed by 

the Spoken Web center at IBM Research, India, for the 

MediaEval 2011 Spoken Web Search (SWS) task. The audio 

content is a spontaneous speech from low-literate users 

collected from mobile phone communications. It contains 

audio recordings from four Indian languages: Gujarati, 

English, Telugu, and Hindi [55]. MediaEval datasets are a 

part of the MediaEval benchmarking initiative for spoken 

web search tasks. 

 

7.3. MediaEval 2012 SWS Dataset  

MediaEval 2012 (SWS)  [56] was made available as a 

part of the MediaEval benchmarking initiative for 

multimedia evaluation 2012. It contains two datasets: one is 

an Indian dataset from four different Indian languages, 

namely English, Gujarati, Hindi, and Telugu. The other is the 

African dataset, which consists of audio content in 11 South 

African languages [5, 10, 57]. 

 

7.4. MediaEval 2013 SWS Dataset  

MediaEval 2013 (SWS) dataset [58] consists of audio 

files from different languages and acoustic conditions. It 

contains data from nine languages. These nine languages 

cover the European and African language families. It consists 

of 20 hours of audio recordings divided into development and 

evaluation sets of queries [13, 39, 47, 48, 59]. This dataset 

was developed explicitly for STD tasks. 

 

7.5. MediaEval 2014 QUESST Dataset  

MediaEval 2014 Query by EXAMPLE Search on 

Speech (QUESST) database [60] consists of audio files from 

various languages under different acoustic conditions. It 

consists of 23 hours of audio recordings. It considers 

approximate matching along with exact matching. There are 

three types of matching: Type 1 (exact), Type 2 (variant), and 

Type 3 (reordering or filler). Type 1 means an exact match; 

type 2 means it is not an exact match, but there could be slight 

variations either at the beginning or end of a query; and type 

3 again is not an exact match, but it requires all the words in 

a query but the order of words may be different [13, 15, 48]. 

 

7.6. MediaEval 2015 QUESST Dataset  

MediaEval 2015 (QUESST) dataset [61] consists of 

audio files from a large set of languages. The speech corpus 

contains audio with heavy accents recorded in challenging 

acoustic conditions. This dataset comprises around 18 hours 

of speech (11662 files) in the following 7 languages: Slovak, 

Albanian, English, Czech, Mandarin, Portuguese, and 

Romanian. The QUESST 2015 dataset consists of 447 

evaluation and 445 development queries. The number of 

queries per language is uniform. Like the MediaEval 2014 

database, it consists of three types of queries [62, 63]. This 

dataset was developed explicitly for STD tasks. 

 

7.7. Globalphone CORPUS  

Karlsruhe Institute of Technology (KIT) has built a 

database called GlobalPhone corpus [64, 65]. It contains 

multilingual data, i.e., data from 20 different languages. The 

critical property of this corpus is that it is designed to be 

balanced in terms of audio or text data per language, audio 

data quality, the collection scenario, and transcription 

conventions [21, 50]. This dataset is not explicitly designed 

for QbE-STD. 

 
7.8. AMI Meeting Corpus  

The Augmented Multi-Party Interaction (AMI) meeting 

corpus [66, 67] consists of approximately 100 hours of 

meeting recordings and supports multidisciplinary research. 

Both real-time and scenario-driven meeting recordings are 

present in this corpus. English language recordings of the 

meetings are made in various acoustic settings [50]. The AMI 

meeting corpus is designed explicitly for the AMI project and 

for developing meeting browsers, but is used for various 

research purposes. It is used for the QbE-STD task in [50]. 

 

7.9. LWAZI Corpus  

LWAZI speech corpus [68, 69] contains telephone 

speech. The data consists of a speech from eleven official 

languages of South Africa and includes approximately 200 

speakers per language [31]. The languages available are 

Xitsonga, Afrikaans, isiNdebele, English, isiZulu, isiXhosa, 

siSwati, Sepedi, Tshivenda, Sesotho, and Setswana. This 

dataset was not explicitly developed for QbE-STD but has 

been used in [31] for the QbE-STD task.. 

 

7.10. SHRUTI Corpus  

SHRUTI is also a read-speech corpus in Bengali 

designed for ASR systems. It consists of approximately 7383 

unique sentences spoken by 34 native speakers. The 

sentences cover most of the frequently spoken words in the 

Bengali language [30]. This corpus was designed to develop 

and evaluate ASR systems but is also used for QbE-STD 

tasks [30]. 

 

7.11. MIT Lecture Corpus  

The MIT Lecture corpus [8, 70] contains approximately 

300 hours of audio data. This data is recorded from lectures 

on eight subjects and various seminars. Most data is recorded 

in a classroom and may contain non-speech artifacts. This 

dataset was not explicitly designed for QbE-STD but was 

used in [17] for QbE-STD. 

 

7.12. English Switchboard Corpus  

The English Switchboard Corpus contains 

approximately 260 hours of speech [71]. The data consists of 

approximately 2400 telephone conversations among 543 
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speakers from various regions of the United States. This 

corpus is available for free download. A computer-driven 

robot operator system was used to collect the data. This 

dataset was designed for ASR systems but is used for the 

QbE-STD task in [26, 27, 46]. 

 

Our study explored different datasets for QbE-STD. 

These datasets include Medieval datasets that are designed 

explicitly for QbE-STD. Mediaeval datasets provide separate 

sets of development, evaluation, utterances, keywords and 

scripts to perform performance evaluations. It is always 

advisable to use these datasets since they are simple and are 

part of the Medieval benchmarking system. 

 

8. Metrics Used for Evaluation 
 Various metrics are employed to assess the QbE-STD 

system. Some QbE-STD systems output the time location of 

the query within the speech utterance, while the other systems 

identify whether the query is present in the utterance. Some 

detection is associated with a score and detection threshold 

ϴ.  

If the score is greater than the detection threshold ϴ, it is 

considered a hit; otherwise, it is a miss. Let TP stand for the 

number of true positives, or examples correctly identified as 

belonging to a positive class, and TN for the number of true 

negatives, or occurrences correctly classed as belonging to a 

negative class. Let us say that False Positive (FP) represents 

the number of false positives, or cases mistakenly classified 

as positive, and False Negative (FN) represents the number 

of instances mistakenly classified as negative. The various 

evaluation metrics are discussed in detail below. 

 

8.1. Accuracy and Error Rate 

 The ratio of properly categorized examples to all 

occurrences is known as accuracy [1]. Ideally, the accuracy 

should be 100%,  and the error rate must be 0%. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (1) 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (2) 

Equations (1) and (2) show the formula for accuracy and 

Error rate using the true and false positives and negatives. 

 

8.2. Miss Rate and False Alarm Rate 

 The miss rate is the ratio of the number of missed 

positive instances to the total number of positive instances. It 

measures missed detections [1]. It is defined as  

 

𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 =
𝐹𝑁

(𝑇𝑃+𝐹𝑁)
                                  (3) 

 The false alarm rate is the number of missed negatives 

among all negative instances and is defined as 

𝐹𝐴𝑅 =
𝐹𝑃

(𝑇𝑁+𝐹𝑃)
                                      (4) 

 Equations (3) and (4) show the formula for miss rate and 

False Alarm Rate (FAR). 
 

8.3. Recall and Precision 

 The precision is the ratio of correct positive predictions, 

i.e., true positives, to all the items predicted to be positive. It 

gives a confidence measure concerning positive predictions 

of the system. 
 

 All predictions are taken into account by precision, but 

occasionally, only the top N results of the system are 

considered; this is known as P at N (P@N) [1, 14, 17, 46]. 

The ratio of correctly predicted positive classes to all of the 

actual positive items is known as the recall. 

 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                    (5) 

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
                                   (6) 

 Equations (5) and (6) show the formulas for precision 

and recall, respectively. 

 
8.4. Mean Average Precision (MAP) 

 The ratio of accurately predicted positive classes is 

known as precision. The Mean Average Precision (MAP) is 

the average precision for each query. The mean of the 

precision values for the top k papers is used to get the average 

precision [1, 46]. 

 
8.5. DET Curve and Equal Error Rate (EER) 

 The performance of detection tasks involving a tradeoff 

between miss and false alarm rates is represented by the 

Detection Error Tradeoff (DET) curve [72]. For every query, 

the average missed detection and false alarm rates are 

determined. A DET curve is then created by plotting these 

errors against one another for various threshold settings [13]. 

The point on the DET curve where the false acceptance rate 

and the false rejection rate are identical is known as the Equal 

Error Rate (EER) [17]. 

 

8.6. Term Weighted Value (TWV) 

 Let q be the query. Let Nact(q) be the actual occurrences 

of the query q in the speech utterance. Let NH(q,𝜃) be the 

number of hits of the query for a threshold 𝜃. Let NNO(q) be 

the number of non-occurrences of a query q and is defined as 

NNO(q)=ntps Х Taudio -Nact(q), where Taudio is the total duration 

of the speech utterances in seconds and ntps is the number of 

trials per second. This metric is typically used for QbE-STD 

systems, which output the time location of the query. 

Typically, ntps =1. Let NF(q,𝜃) be the number of false alarms 

of a query q for a threshold𝜃. The weighted combination of 
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the miss rate and the false alarm is then averaged over a set 

of all queries, and is the Term Weighted Value (TWV) [12]. 

 

    𝑇𝑊𝑉(𝜃) = 1 −
1

(|𝑄|)
∑ [𝑃𝑀(𝑞, 𝜃) + 𝛽𝑃𝐹𝐴(𝑞, 𝜃)]∀𝑞∈𝑄   (7)   

 Where PM(q, 𝜃) is the miss probability of a query q for a 

given detection threshold 𝜃and is obtained as 

𝑃𝑀(𝑞, 𝜃) = 1 −
𝑁𝐻(𝑞,𝜃)

𝑁𝑎𝑐𝑡(𝑞)
                                   (8) 

And PFA(q,𝜃) is the false alarm probability of a query q 

and is given by 

 

𝑃𝐹𝐴(𝑞, 𝜃) =
𝑁𝐹(𝑞,𝜃)

𝑁𝑁𝑂(𝑞)
                                      (9) 

and β is the weight factor, greater than zero and is defined 

as 

 

𝛽 =
𝐶𝐹𝐴(1−𝑃𝑡 𝑎𝑟𝑔 𝑒𝑡)

𝐶𝑀(𝑞)×𝑃𝑡 𝑎𝑟𝑔 𝑒𝑡
                                    (10) 

 Where CFA > 0 and CM >0   are the costs of false alarms 

and miss errors, respectively [12]. Ptarget is the prior 

probability of a query q  and can be computed as 

 

𝑃𝑇 𝑎𝑟𝑔 𝑒 𝑡 =
𝑁𝑎𝑐𝑡(𝑞)

𝑇𝑎𝑢𝑑𝑖𝑜
  (11) 

 

 The largest value that can be obtained for TWV is 1, 

representing a perfect system output[1]. 

 

 The average term weighted value TWV obtained by a 

QbE-STD system for a given threshold. The maximum term 

weighted value is the maximized TWV and does not depend 

on the threshold 𝜃of the search system. MTWV is thus the 

preferred metric [13,73]. The TWV on the DET curve, where 

a value yields the maximum TWV, is known as the MTWV. 

The NIST has defined three evaluation measures for STD 

assessment: TWV, ATWV, and MTWV  [74]. 

 
8.7. Normalized Cross Entropy 

 Normalized cross entropy Cnxe is another metric used for 

the evaluation of the QbE-STD system. Cross-entropy 

represents the expected value of information. Cnxe=0 for an 

ideal system. Cnxe=1 for a system with no informative value, 

whereas Cnxe > 1 would indicate an error in the log-likelihood 

ratio scores [13]. 

 

9. Benchmarking Platforms 
Many techniques for searching audio have been 

developed by researchers utilizing different evaluation 

measures and databases. Comparing the performance of these 

systems is complex, and hence, many benchmarking systems 

are created. These benchmarking platforms include 

assessment metrics in addition to development and test 

datasets [1]. Some of the benchmarking platforms are 

discussed in this section.  
 

9.1. NIST 

Open KWS was launched by the National Institute of 

Standards and Technology (NIST) to promote research in 

STD. The goal of this program is to create high-performing 

KWS systems on a new language quickly [1, 72].  
  

The OpenKWS project is a follow-up to the 2006 STD 

evaluation, which uses broadcast news recordings in English, 

Mandarin, and Arabic, conversational telephone speech 

(CTS), and conference meeting data to test KWS algorithms. 

Every year, participants will receive resources for testing, 

training, and development in CTS; nevertheless, they will 

only have a short time window to construct their systems. The 

results of the evaluation are then discussed at the evaluation 

workshop [75]. 
 

9.2. MediaEval 

MediaEval aims to assess novel algorithms for retrieving 

and accessing multimedia. Participants who are interested in 

multimodal approaches to multimedia are drawn to 

MediaEval. MediaEval, a community-driven standard, is 

managed by the MediaEval organizing committee. It is made 

up of the organizers of each assignment for that year. 

 

9.3. Spoken Web Search (SWS) 

In 2011, 2012, and 2013, MediaEval conducted Spoken 

Web Search (SWS) tasks [54]. The SWS task is to search for 

an audio query in another audio file, making it challenging 

for the researchers. The task is to build a language-

independent system to find the audio file containing the query 

and the query location in the audio file. The evaluation 

process was conducted per the STD evaluation guidelines 

provided by NIST. 
 

9.4. Query by Example Search on Speech Task (QUESST) 

In 2014, “Query By Example Search On Speech Task 

(QUESST)” replaced the term “Spoken Web Search” (SWS) 

[60]. The suggested queries in QUESST were what made it 

novel. QUESST challenge, in addition to standard single and 

multiword searches, also includes complex single and 

multiword queries. Three different kinds of queries were 

defined, depending on the complexity. Type 1 (T1) 

comprised questions that could start or end slightly 

differently. “Researcher” matching “research” in the audio 

utterance is an example of a type 1 query [60]. Type 2 (T2) 

questions are those in which the order in which words in the 

query appear in the search utterance varies. Similar to type 2 

searches, Type 3 (T3) queries permit filler text to be placed 

between the multiple matched terms in the reference 

utterance. An example of a T3 query is that the query “black 

cat” must match the utterances “My cat is black” and “I have 

a black and cute cat.” 



Manisha Naik Gaonkar et al. / IJECE, 12(7), 119-136, 2025 

 

130 

 

9.5. Albayzin Evaluation 

The Special Interest Group on Iberian Languages of the 

International Speech Communication Association (ISCA) 

and the Spanish Network of Speech Technologies jointly 

support the Albayzin evaluation [76]. It provides a 

mechanism to promote research on speech tasks [77]. There 

are two tasks defined in this evaluation: STD and QbE-STD. 

Three different speech databases on different domains were 

used in the Albayzin 2020 evaluation [78]. The first database, 

the MAVIR database, comprises the talks from the 

workshops; the second database, the RTVE database, 

comprises the news broadcast programs; and the third 

database, the SPARL20 database, includes the Spanish 

parliament sessions. In-depth post-evaluation assessments 

based on particular query properties (in- and out-of-

vocabulary, single- and multiword, native and foreign) are 

also included in the Albayzin 2020 evaluation. The data 

augmentation method for the STD task and an end-to-end 

system for the QbE STD were the innovative features of the 

submitted systems.  

 

A detailed list of these benchmarking platforms is 

summarized in Table 3. 

 
Table 3. List of audio search benchmarking platforms 

Benchmarking platform Evaluation year 

NIST STD 2006 

NIST (Openkws) 2013, 2014, 2015, 2016 

MediaEval (SWS) 2010, 2011, 2012, 2013 

MediaEval (QUESST) 2014, 2015, 2016 

Albayzin Evaluation 

2006, 2008, 2010, 2012, 

2014, 2016, 2018, 2020, 

2022, 2024 

 

10. Challenges and Future Directions 
 QbE-STD cover various aspects of the technology, 

including scalability, accuracy, robustness, and usability. As 

with any evolving field, QbE-STD also faces persistent 

challenges. Some challenges faced are variability in 

pronunciation, presence of noise in the utterances, providing 

real-time response, and developing QbE-STD for low-

resource languages. Audio data is highly variable, and hence, 

there is a need for a reliable feature representation that can 

effectively capture the spoken term irrespective of gender, 

dialect, and age variations. The audio database has utterances 

recorded in a good environment, but the query provided by 

the user may be in a noisy environment. The matching 

methods may not work well in the presence of noise. Hence, 

the feature representations and the matching methods need to 

handle the noise in the data. As audio datasets grow, QbE-

STD systems must efficiently scale to handle large volumes 

of data without compromising performance. Efficient 

indexing and retrieval techniques may be used to address 

scalability. The non-availability of labeled data for low-

resource languages may make developing an efficient QbE-

STD system challenging. Transfer learning techniques may 

be explored where models pre-trained on large datasets for 

related tasks are fine-tuned on smaller, domain-specific 

datasets. Active learning strategies can be employed. Real-

time QbE-STD systems are essential for applications such as 

live broadcasting, call center analytics, and voice-controlled 

devices. Future research may explore efficient algorithms and 

hardware accelerations to enable real-time processing of 

audio streams with low latency. Addressing these challenges 

requires a holistic approach, combining machine learning and 

signal processing advancements.  

 

11. Discussion 
 In this work, QbE-STD is investigated as it offers a 

dynamic field with a wide range of approaches and changing 

research directions. Enabling effective retrieval of spoken 

terms from massive audio corpora is the core objective of 

QbE-STD, and our review identifies critical perspectives and 

issues in this field. One notable trend observed is the 

increasing use of machine learning techniques in QbE-STD. 

From DTW, the shift is towards using CNN, LSTM, and RAE 

in QbE-STD. Deep learning techniques allow automatic, 

robust feature learning, which extracts discriminative 

features from unprocessed input.  

 

 Feature representations play a crucial role in the 

effectiveness of QbE-STD systems. Different 

representations, ranging from Gaussian, phonetic 

posteriorgrams, BNF, AWEs, and transformer-based 

representations, are analyzed. The choice of the 

representation depends on the nature of the data and 

interpretability. The detailed discussion on these 

representations will allow the researchers to choose a suitable 

representation wisely. 

 

Similarity metrics used to calculate matching matrices 

between query and utterance feature representations are 

discussed. Similarity measures explored are cosine similarity, 

Dynamic Time Warping (DTW), Symmetric Kullback-

Leibler Divergence (SKLD), Kullback-Leibler Divergence 

(KLD), and Histogram Intersection Kernel (HIK). Each 

measure has advantages and disadvantages, highlighting the 

need to choose the appropriate metric based on the nature of 

the data and task requirements. 

 

12. Conclusion 
 QbE-STD consists of feature representation followed by 

template matching. The datasets available for QbE-STD are 

summarized in Table \ref{tab1} for easy reference. Table 

\ref{summary} provides a comparative study of feature 

representations, matching techniques, datasets, and 

evaluation measures used for QbE-STD. 

 

 This work presents a systematic review of techniques 

used for QbE-STD. The major steps in QbE-STD are feature 
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representation and similarity detection. After the features are 

extracted and represented, matching is performed between 

the query and the utterance. The paper first discusses the 

various feature representations, followed by matching 

techniques. Feature representations include basic spectral 

features, posteriorgrams, bottleneck features, AWE, and 

transformer-based representations. After representing the 

features, a matching matrix is computed between the query 

and the utterance using a suitable distance metric. Table 

\ref{tab2} summarizes the different distance metrics used for 

QbE-STD. After the matching matrix is computed, matching 

techniques determine whether the query is present in the 

utterance. Matching techniques include the state-of-the-art 

DTW algorithm and CNN. Numerous enhancements have 

been made to the DTW algorithm to enhance the performance 

of the QbE-STD system. Moreover, end-to-end systems, 

which convert features into fixed-length vectors, are explored 

alongside attention mechanisms. The paper also discusses in 

detail the various databases available for QbE-STD. It also 

covers the different evaluation measures and benchmarking 

platforms used for QbE-STD. 

 

STD has been a research topic in the speech community 

for a long time, and now the emphasis has shifted mainly to 

low-resource languages with less data available. The 

techniques shift towards using deep neural networks for QbE-

STD. Integrating more sophisticated deep learning 

architectures is likely to improve the learning of feature 

representations further, contributing to higher performance of 

QbE-STD systems. End-to-end systems need to be explored 

in detail for improved accuracy. Future research directions 

are required to improve the performance of QbE-STD for 

low-resource languages and in real-time environments. 

Multimodal approaches that require audio and visual 

information fusion may also be explored for video data. 

Combining QbE-STD with video context information may 

increase the system’s performance. Advancements in zero-

shot and few-shot learning techniques will enable QbE-STD 

systems to recognize spoken terms with minimal training 

examples. This approach is helpful for low-resource 

languages with less data available. Also, most of the 

techniques do not address the issues where the length of the 

utterance may be very large as compared to the length of the 

query. Table 4 presents the comparative analysis of different 

matching techniques used for QbE-STD and their 

performances. 

 

      In conclusion, this review consolidates a comprehensive 

understanding of QbE-STD, highlighting the dynamic 

interaction between feature representations, similarity 

measures, and machine learning techniques. As the field 

continues to evolve, it is critical to be aware of new 

developments and address the persistent challenges to 

advance QbE-STD toward better performance, effectiveness, 

and applicability in real-world scenarios. This paper serves as 

a roadmap for researchers and practitioners navigating this 

field of QbE-STD.

 
Table 4. Comparative study of matching techniques and datasets used in various QbE-STD papers 

References 

 
Matching Technique Dataset Performance 

[17] 
Log of the dot product and 

SDTW 

1) TIMIT 

2) MIT Lecture Corpus 

1) P@N=50% and EER=15% 

2)P@N=39.3%  ,  EER=15.8% 

[7] Log of the dot product and DTW NIST 2006 

P@10=66.3%, 

P@N=54.7%,   

EER=9.8% 

[16] NSDTW SWS 2013 
MTWV (dev) =0.2765, MTWV 

(eval)=0.2413 

[47] Log of the Cosine dist. and DTW SWS 2013 MTWV=0.464 

[5] Log of Cosine dist. And NSDTW MediaEval 2012 
MTWV=0.399 (dev), Miss 

Probability=0.426, FAR=0.01136 

[31] Log of cosine dist. And NSDTW MediaEval 2012 
MTWV=0.494 (dev), MTWV=0.492 

(eval) 

[73] Log of Cosine dist. And NSDTW MediaEval 2012 
MTWV=0.489 (dev), MTWV=0.469 

(eval) 

[48] 

 
Symmetric KLD  and DTW  

SWS 2013, QUESST 

2014 

MTWV= 0.386 (dev), MTWV=0.359 

(eval) 

 

[45] KLD, DTW and CNN TIMIT 
FAR=0.0752, FRR=0.0758,  

Overall Error Rate=0.075 
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[13] Log of the dot product and CNN  
SWS 2013, QUESST 

2014 

MTWV(SWS)=0.388, Normalized Cross 

Entropy=0.6028, MTWV 

(QUESST)=0.5853 

[50] Cosine Similarity  
SWS 2013, AMI Meeting 

Corpus 

MTWV=0.3020 (10 ex. per query), and 

MTWV=0.4362 (1 ex. per query) 

[43] HIK and CNN TIMIT 
FAR = 0.038, miss rate = 0.042 (64-

GMM) 

[46] Cosine distance and CNN 
English Switchboard 

Corpus 

 

MAP=0.502, P@5=0.567, P@N=0.462 

[34] Cosine distance 
TIMIT, Real Scene 

Chinese Speech data 
MAP=0.116,0.234 

[19] SKLD and DTW TIMIT and SWS 2013 
MTWV=0.494 (dev), MTWV=0.453 

(eval) 

[51] SKLD and Hierarchical clustering 
IITKGP-SDUC Bengali 

Speech db 

Hindi: Accuracy=48.89, Bengali : 

accuracy=70.64 

[39] SKLD and DTW TIMIT, SWS 2013 MTWV=0.456(dev), MTWV=0.412(eval) 

[30] SKLD and DTW Shruti corpus MAP=61.99, P@N=59.23 

[20] SKLD TIMIT MAP=29.42  

[21] Log of the dot product  and CNN  
SWS 2013, QUESST 

2014 
MTWV=0.6499 

[36] Sigmoid-calibrated dot product USC-SFI 

Monolingual setup: 

ATWV=0.7938(English), 

ATWV=0.9120(Czech), Multilingual 

setup: ATWV=0.7925(English), 

ATWV=0.9062(Czech) 

[41] 
Acoustic feature map and affinity 

kernel propagation   
QUESST 14  

: MTWV=0.3841 (dev), MTWV=0.3796 

(eval) 

[79] Self-Organizing Maps  
Zero-resource speech 

corpus 

For English queries: Type Recall:17.1, 

Token recall=24.7, Boundary Recall=72.7 

[80] 
Cosine Similarity, CNN and 

LSTM 
Librispeech and TIMIT MAP=70.22%, P@5=80.62% 

[37] 
Attention-based multihop 

networks 
Librispeech corpus 

MAP=0.6789 (Test1), MAP=0.6430 

(Test2), MAP=0.5830 (Test3) 

[33] Cosine similarity with Deep CNN 

Librispeech corpus 

(English) and Chinese 

data 

MAP=0.795, P@N=0.464, P@5=0.820 

[42] TF-IDF on Wav2Vec2.0 model 
Hindi and Librispeech 

corpus (English) 

English: MAP=0.55, ATWV=0.55, 

Hindi: MAP=0.69, ATWV=0.62 

[81] HIK and CNN TIMIT, SWS 2013 
TIMIT: Accuracy=98%, 

SWS 2013: Accuracy=75% 

[82] HIK and CNN TIMIT Accuracy=96.97%, 
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