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Abstract - In metalworking industries dedicated to the manufacture of parts, a large number of welds are required, yet not all 

industries employ advanced technologies for detecting welding defects. As a result, quality control is often performed manually 

by workers, leading to longer processing times and a higher likelihood of misidentification of defects due to human error. This 

introduces additional costs to the manufacturing process. This article presents the implementation of a welding defect detection 

system for metalworking parts using Digital Image Processing (DIP) techniques combined with deep learning. The proposed 

system utilizes Convolutional Neural Networks (CNNs) trained to identify defects in analyzed metal parts, such as porosities, 

holes, cracks, bubbles, among others. Additionally, the system integrates a user interface designed to display detected defects in 

real time and alert supervisors, enabling timely decision-making in production. Finally, this research includes a cost-benefit 

analysis comparing the proposed system to the traditional method, with the aim of facilitating future real-world testing. The 

results demonstrate that this technology reduces production times and costs in metalworking welding plants. 

Keywords - Deep Learning, Digital image processing, Welding defect, Metalworking parts. 

1. Introduction 
According to a 2023 report by the Ministry of Production 

of Peru [1], one of the most economically significant 

industries is metalworking manufacturing. This industry 

accounted for 11.4% of the manufacturing sector's Gross 

Value Added (GVA), amounting to approximately USD 21 

million and 1.5% of the national Gross Domestic Product 

(GDP), amounting to approximately USD 162 million. In 

2021, the metalworking industry had grown by 48.3%, driven 

by the gradual recovery of economic activity following the 

COVID-19 vaccination efforts. In 2022, the growth remained 

positive (+10.6%), bolstered by rising demand from the 

mining and construction sectors [1]. 

Welding is one of the most critical processes in the 

metalworking industry, as the structural integrity of fabricated 

systems depends heavily on its quality [2]. However, despite 

the industry's growth in recent years, many plants still rely on 

manual or semi-automatic weld inspection methods, 

significantly reducing efficiency and production capacity. 

In the metalworking industry, various traditional methods 

are employed to detect welding defects in manufactured parts, 

including visual inspection, liquid penetrant testing, magnetic 

particle inspection, radiography, and ultrasonic testing [3]. 

The selection of methods depends on the part's characteristics 

and the customer's specifications, though visual inspection 

remains a mandatory test. 

The visual inspection is typically conducted by quality 

engineers or trained operators. This process involves 

examining weld joints for surface defects such as cracks, 

porosity, or irregularities in the surface that indicate damage. 

However, manual inspections are susceptible to human error, 

including inspector fatigue, lapses in concentration, or 

overlooked small defects [4]. These shortcomings may lead to 

undetected weld flaws, potentially causing rework, safety 

risks, and financial losses. 

As industries advance toward automation and Industry 

4.0, there is a growing demand for integrated inspection 

systems capable of real-time, high-precision defect detection 

without disrupting production throughput. 

In this context, Artificial Intelligence (AI) has proven 

instrumental in classifying and detecting welding defects 
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through image processing [5]. Currently, multiple AI-based 

strategies have emerged for this purpose, including machine 

learning and deep learning. 

 
Traditional machine learning methods, such as Support 

Vector Machines (SVM), Random Trees (RT), and K-Nearest 

Neighbors (KNN), are widely used in industrial applications. 

These algorithms require a previous extraction stage, where 

relevant characteristics like contours, color histograms, or 

textures are identified from images. While effective in 

controlled laboratory environments, these methods often 

underperform in real-world settings due to challenges like 

variable lighting, noise, and inconsistent camera angles. Such 

limitations render them impractical for real production lines. 

In contrast, deep learning techniques have revolutionized 

image processing. In particular, Convolutional Neural 

Networks (CNNs) demonstrate superior adaptability and 

accuracy in varying scenarios by automatically extracting 

features directly from raw data. Implementing systems that 

integrate this technology is critical for enhancing production 

efficiency in the metalworking industry. 

 
This article presents the development of a cost-effective 

system for detecting weld defects in metalworking parts using 

Digital Image Processing (DIP) techniques combined with 

deep learning. The proposed system uses CNNs trained to 

identify various defects in the analyzed components, including 

porosities, cracks, bubbles, among others. The system 

incorporates a user interface that displays detected defects in 

real time and alerts supervisors, enabling prompt production 

decisions. Additionally, the research provides a 

comprehensive cost-effectiveness analysis comparing the 

system with traditional methods, with the goal of facilitating 

future real-world implementation. This technology 

demonstrates significant potential for optimizing production 

efficiency in industrial manufacturing environments.  

 
This article is organized as follows: Section 2 reviews 

relevant literature and related work. Section 3 details the 

complete methodology of the proposed system. Section 4 

describes the system's hardware and software design, along 

with its implementation in an industrial environment. Section 

5 presents and analyzes the results. Section 6 discusses these 

findings. Finally, Section 7 presents concluding remarks. 

 

2. Related Work 
In [6], Cheng et al. propose a deep learning model for 

welding defect detection using CNNs for image feature 

recognition. The authors emphasize that steel quality depends 

on rigorous inspection at three stages: material reception, 

assembly process, and final finishing. Their results 

demonstrate that this model accurately identifies production 

defects (such as impurities, material damage, pores, weld 

undercuts, etc.) while eliminating the complicated manual 

feature extraction, achieving 92.54% recognition accuracy. 

 In [7], Yang et al. apply the state-of-the-art single-stage 

object detection algorithm YOLO v5 to steel pipe weld defect 

detection and compare its performance with the two-stage 

Faster R-CNN algorithm. Their method processes X-ray 

images because this industrial non-destructive testing method 

can effectively detect internal defects. Experimental results 

show a significant improvement in accuracy (up to 97.8% on 

average) for weld defect detection. This method also 

completes the multi-classification tasks and meets real-time 

detection requirements. Additionally, this approach 

successfully accomplishes the multi-classification task and 

meets real-time detection requirements. 

In [8], Huang and Kovacevic propose a laser vision 

system model for non-destructive testing of welding quality. 

The system employs a laser vision sensor based on the 

principle of laser triangulation, which comprises a structured 

pattern generator, a laser generator, a focusing lens, an image 

sensor, and an optical filter. Through image processing and 

visual analysis of 3D profiles, this setup captures the 

geometric characteristics of welds. The system accurately 

identifies the position and classifies the size (from small to 

medium) of welding defects. Unlike conventional 3D range 

sensors, it utilizes efficient yet simple algorithms, including a 

graphical programming language, data operation modules, 

image processing, motion control, and user interface design, 

making it more suitable for industrial applications. The 

authors conclude that visual analysis of 3D profiles enables 

precise detection of defect presence, location, and dimensions, 

facilitating reliable non-destructive weld quality inspection. 

In [9], Ebrahimi et al. focused on gas and oil pipelines and 

relied on a different method for detecting weld defects: image 

segmentation, an area growing method, correct image 

resolution, such as radiographic ones, and less subject 

diversity. This model divided a portion of the image to 

determine a pixel as the starting point and expanded the area 

outside this point due to the similarities between these pixels. 

Based on the histograms, the authors automatically evaluated 

the start and end of the image of the weld bead. Afterwards, 

they applied a mix of several standard algorithms to determine 

defects in the figure. The result of this article covers the 

shortcomings of previous models; however, the article 

suggests that each defect should be separated from the 

surrounding area and processed as image enhancement 

algorithms contribute significantly to the defect results. 

In [10], Niederwanger et al. investigated the advantages 

of incorporating 3D laser-scanned weld geometries into elastic 

strain analysis for fatigue life prediction. Additionally, the 

authors quantified the capability to analyze experimental 

disintegration across various fatigue parameters. The authors 

further recommended assessing the implementation of non-

local parameters in the fatigue life model, noting that 3D-

scanned weld geometry data may yield reduced reliability for 

the samples examined in this work. 
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In [11], Raveen Kumar et al. highlight the challenges in 

weld defect detection, noting that some defects may escape 

detection during final supervisor inspections. Then the authors 

implemented image processing software and hardware 

through the application of computer vision and machine 

learning. In the document, a camera and an artificial 

intelligence system were implemented to make the detection 

and location of defects more precise, reaching an accuracy of 

97.2%. With the MATLAB language and Machine Learning, 

proving to be effective with the functions of higher-order 

quadratic, cubic, etc. algorithms. 

In [12], Dong et al. integrated several tools for weld 

defect analysis. First, they create a database containing all 

imperfection characteristics from weld digital images, which 

include edge detection, threshold segmentation, detection 

channels, and multiple parameters such as gray scales, 

equivalent area, and correlation. Then, they develop a 

prototype system using Support Vector Machine (SVM) 

classifiers to categorize and identify defects in pipe weld 

images. The in-situ nature of their model enabled better 

automatic defect identification than other image processing 

algorithms.  

In [13], Deng et al. identify limitations in conventional 

non-destructive testing methods (acoustic and manual 

detection) for wind turbine blade inspection, particularly 

regarding defect detection accuracy. To address this, they 

developed a digital image processing system employing log-

Gabor filters. However, the system demonstrated two key 

limitations: the inability to detect small or thin defects and the 

limited or insufficient processing time, which is critical for 

operational optimization. Despite these constraints, the 

approach achieved a 92% detection accuracy rate. 

In [14], Szőlősi et al. investigate the optimization of weld 

bead defect detection using deep learning techniques, 

demonstrating their significant potential for industrial image 

processing applications. The study employs the You Only 

Look Once (YOLO) algorithm, a real-time object detection 

system that simultaneously identifies and classifies objects in 

images. The researchers compiled a comprehensive image 

database using manual welding samples and conducted 

comparative performance analyses of YOLO versions v5 

through v8. Their two-phase training process revealed YOLO 

v7's superior performance, establishing it as the preferred tool 

for automated defective weld detection. However, the study 

identifies a key limitation: defect detection is only effective if 

the precise defect location is provided; this takes us to the 

segmentation problem. 

In [15], Naddaf-Sh et al. conducted an experimental 

evaluation of deep learning approaches for automated weld 

defect detection, comparing transformer-based models with 

RetinaNet performance. While they achieved promising 

results using YOLO v8 with an optimized confidence 

threshold, the study highlights the need for further 

investigation into additional parameter optimizations to 

enhance detection accuracy. The researchers emphasize that 

exploring these parameter effects could lead to more robust 

performance in industrial welding inspection applications. 

In [16], Yang et al. evaluated the harmfulness of defects 

to different objects. The authors propose a fast, automatic 

method that locates welding defects using the U-Net network. 

This language expands a dataset to facilitate network training, 

achieving good performance to improve the system process, 

from the integration of digital X-ray images to achieving high 

accuracy in locating welding defects. 

In [17], Chen et al. present a pyramid network of features 

referenced in Faster R-CNN, incorporating a novel visual 

attention mechanism. Their deep-learning-based approach 

implements a Squeeze and Position Attention Mechanism 

(SPAM) to detect defects of varying shapes and locations. The 

methodology employs geometrically transformed data 

augmentation to enhance training, demonstrating particular 

effectiveness in identifying low-contrast small targets against 

complex backgrounds. While the model achieves robust 

detection accuracy, the study does not address the practical 

implementation costs for industrial applications. 

In [18], Yun et al. consult several companies to take the 

idea of implementing Deep Learning to achieve the highest 

accuracy in automatically detecting welding defects in 

radiographic inspection images. They developed a method to 

integrate defect characteristics by preprocessing images with 

the CLAHE language (Contrast-Limited Adaptive Histogram 

Equalization), which showed an improvement in the 

performance of weld bead background detection and optimal 

revelation of defect characteristics with the help of 

preprocessing and the average of the mean accuracy for 

training data. 

In [19], Deng et al. developed a deep-learning-based 

model for weld defect detection and image recognition. The 

study analyzed asymmetric laser welding images from asian 

industrial sources using a combined approach of industrial 

image processing algorithms and deep learning techniques. 

The implemented solution features a deep convolutional 

neural network with an enhanced adaptive clustering method, 

supplemented by Transfer Learning (TL) to improve defect 

detection and image classification accuracy. While the model 

demonstrates significant reliability, the research highlights the 

need to address sample appearance inconsistencies introduced 

by the TL approach. 

Some years ago, technology was not as advanced as it is 

today. Manual Non-Destructive Testing (NDT) was subject to 

human error, which companies had to tolerate. Currently, few 

companies automate these tests due to a lack of trained 

workers, time, and cost. The studies mentioned above utilize 
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various deep learning techniques. Many of these 

investigations yielded positive results, but with certain 

limitations regarding processing time, image resolution, and 

the inability to detect small defects in the images. The authors 

did not include in their research a cost/benefit analysis of the 

proposed system, optimal production times for releasing 

elements, or the programming for identifying defect sizes 

according to American Welding Society (AWS) and 

American Society of Mechanical Engineers (ASME) 

standards. AWS focuses on welding and structural 

manufacturing, while ASME emphasizes design and model-

based manufacturing. All of this is based on tolerances to 

determine whether the structures are acceptable or not. 

3. Methodology 
This article presents the development of a cost-effective 

system for detecting weld defects in metalwork parts using 

Digital Image Processing (DIP) techniques combined with 

deep learning. Figure 1 illustrates the block diagram of the 

complete proposed system. The proposed methodology 

consists of five stages: image acquisition, preprocessing, 

feature extraction, user interface, and analysis and evaluation. 

In the final stage (analysis and evaluation), necessary 

measures are implemented to assess and verify the accuracy 

of the proposed system, ensuring its readiness for testing in a 

real-world environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the proposed system 

3.1. Image Acquisition 

The proposed system uses a high-resolution depth camera 

mounted atop the structure to capture images of parts passing 

through the system. Figure 2 illustrates the inspection 

system’s model and the camera’s positioning. This design was 

selected for compatibility with most metalworking production 

lines. By positioning the camera at a 90° angle, the system 

avoids poor-quality captures, and the depth camera’s 

capabilities simplify distance estimation [20].  

The depth cameras enable 3D reconstruction of the part 

and its weld, facilitating easy identification of imperfections. 

Additionally, they measure the distance from the camera to the 

part, allowing accurate estimation of defect size and depth. 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 2 Inspection system design 

3.2. Preprocessing 

The preprocessing stage is essential to improve the clarity 

and focus of the images captured by the camera because, in an 

industrial and metalworking part manufacturing environment, 

noise and lighting variations are present, among other visual 

defects. This preprocessing begins with sending the images to 

the microprocessor to introduce a Gaussian filter, which is 

responsible for preserving the edges and minimizing high-

frequency noise caused by dust and small particles.  

In addition, a histogram equalization is applied to 

improve the contrast of the captured image, allowing the 

system to better see fine details despite the lighting variations. 

Finally, the preprocessing also detects the region of interest of 

the part, in this case, the weld, as seen in Figure 3. This is 

useful for reducing the computational load because it allows 

the relevant section of the image to be isolated and the rest to 

be discarded for subsequent analysis. 
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Fig. 3 Region of interest detection in the image frame 

3.3. Feature Extraction 

The system extracts key features from preprocessed 

images of the surface of metal parts using three types of 

analysis: texture, shape, contour, and welding defects. The 

weld defect detection model utilizes these extracted features 

as inputs, which were specifically selected for their ability to 

identify cracks, pores, bubbles, and other defect types. 

3.3.1. Texture Analysis 

The system captures the part's surface texture by 

calculating texture features using local binary pattern metrics 

and gray-level co-occurrence matrix analysis. These features 

enable the detection of defect patterns on the surface that result 

from poor welding practices. 

 

3.3.2. Shape and Contour Analysis 

The system employs edge detection algorithms, such as the 

Canny edge detector, to highlight weld defect contours. 

Additionally, shape descriptors (such as aspect ratio, defect 

perimeter, and circularity) are calculated to identify 

irregularities, including porosity, bubbles, and cracks [21]. 

This method enables rapid defect detection, automatically 

alerting operators to remove defective parts for rework. 

 

3.3.3. Welding Defects Detection 

The system employs color thresholding and the Hough 

transform to detect defects in the weld area. The Hough 

transform identifies circular shapes characteristic of bubbles 

or porosity, while color thresholding detects darker regions or 

areas with color variations that indicate cracks or weld 

protrusions [22]. 

 

3.4. User Interface 

Once a welding defect is detected in the image, it must be 

revealed to the operators. To facilitate this process, the system 

incorporates a visual user interface. This interface displays the 

analyzed source image and the corresponding defect 

information identified by the detection system. 

3.5. Analysis and Evaluation 

This study uses four indices to analyse the performance of 

this method. The precision index is calculated as 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

Where True Positive (TP) is the number of correctly 

identified welding defects, and False Positive (FP) is the 

number of good welding incorrectly identified as defects. The 

recall index measures the proportion of correctly identified 

welding defects on metalworking parts relative to the total 

number of welding defects on the workpiece in the dataset. 

The recall index is calculated as 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

Where False Negative (FN) is the number of undetected 

welding defects, and in this study, it represents the background 

error of misidentification. The F1 score index is calculated as 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

and it is an indicator for high Precision and recall. The 

Average Precision (AP) represents the global performance of 

the proposed system, and it is introduced to solve the problem 

of single-point value limitation of Precision, recall and F1 

score. The average Precision is calculated as 

𝐴𝑃 =  ∑ max
�̂�≥𝑘

𝑃(�̂�) ∗ ∆𝑟(𝑘)

𝑁

𝑘=1

 
(4) 

Where max
�̂�≥𝑘

𝑃(�̂�) is the interpolated Precision at point k, 

and ∆𝑟(𝑘) is the increase in the recall value between 

consecutive points. Additionally, this study evaluates the 

economic feasibility of the proposed system, cost, return on 

investment, and savings. The operator's hourly cost is 

𝐶ℎ𝑜𝑢𝑟 =
𝑠𝑎𝑙𝑎𝑟𝑦 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ

ℎ𝑜𝑢𝑟 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ
 (5) 

Where 𝑠𝑎𝑙𝑎𝑟𝑦 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ is the monthly salary of the 

operator and ℎ𝑜𝑢𝑟 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ are the hours worked per 

month. The total cost of manual inspection of the parts is 

𝐶𝑚𝑎𝑛𝑢𝑎𝑙 = 𝑇𝑡𝑜𝑡𝑎𝑙  𝑥 𝐶ℎ𝑜𝑢𝑟 𝑥 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 (6) 

Where 𝑇𝑡𝑜𝑡𝑎𝑙  is the total time used and 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠 is the 

number of inspectors involved. With this data, the monthly 

savings from using the proposed system are calculated as 

START 
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𝑆𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 𝐶𝑚𝑎𝑛𝑢𝑎𝑙 − 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 (7) 

Where 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 is the monthly operating cost of the 

system. The Return On Investment (ROI) is calculated as 

𝑅𝑂𝐼 =  
𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑆𝑚𝑜𝑛𝑡ℎ𝑙𝑦

 (8) 

Where 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the system implementation cost. Finally, 

the accumulated savings in month 𝑛 are calculated as 

𝑆𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑛) =   𝑛 𝑥 𝑆𝑚𝑜𝑛𝑡ℎ𝑙𝑦. (9) 

4. Experimental Development  
4.1. Welding Defect Analysis    

Welding defects are flaws that occur during the welding 

process. Some defects may be superficial, while others may be 

internal. These defects are caused by various factors, such as 

improper amperage, incorrect techniques, or poor-quality 

materials.  

 

To apply digital image processing and deep learning 

models, it is necessary to evaluate and identify various 

welding joint defects, such as slag inclusion, lack of fusion, 

reinforcement excess, misalignment, pores, and undercut, as 

shown in Figure 4. All of these defects have a tolerance level 

according to the American Welding Society (AWS) standards, 

which are shown in Table 1.  

 
Table 1. Defect tolerances according to AWS standards 

Welding 

Defects 
Tolerances 

Slag Inclusion 
Not allowed in trapped or surface 

slag; if visible, it is totally rejected. 

Lack of Fusion 

Not allowed, lack of fusion between 

base metal and weld metal, lack of 

fusion between passes and incomplete 

fusion in visible roots of butt welds, if 

they are visible, they are totally 

rejected. 

Excess 

Reinforcement 

≤ 3mm 

Misalignment 

(Hi-Lo) 

≤ 3mm 

Pores 
Individual pores: < 2.4 mm. 

Grouped porosity is not permitted. 

Undercut 

Less than 0.8mm is permitted with no 

length restrictions. 

Nothing greater than 1.6mm is 

permitted in any length; it will be 

rejected. 

      
(a) (b) 

 

    
                                    (c)                                                     (d) 

 

 
(e) 

 

  
(f) 

Fig. 4 Welding defects analyzed: (a) Slag inclusion, (b) Lack of fusion, 

(c) Excess reinforcement, (d) Misalignment (Hi-Lo), (e) Pores, and                     

(f) Undercut. 

4.2. Hardware Development 

The welding defect detection system for metalworking 

parts involves the development of hardware required for 

proper operation. The first stage of this process includes a 

high-resolution depth camera (Intel RealSense D435) used to 

capture images of components passing through the production 

line. This camera is mounted on a fixed, elevated structure, 
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positioned perpendicular to the components for optimal 

coverage and image capture. The system also incorporates a 

fixed LED flashlight to minimize lighting variations and a 

polarizing filter to reduce glare and shadows, both critical for 

homogenizing captured images. 

 

The captured images are transmitted to a local processing 

unit equipped with a Raspberry Pi 4 Model B+ (8GB RAM), 

which handles real-time image processing and welding defect 

detection. The system architecture prioritizes low latency to 

facilitate rapid decision-making in the workplace. Finally, the 

Raspberry Pi 4 displays the processed images on a screen via 

a custom user interface, which presents all relevant processing 

data and alerts operators about potential welding defects in the 

inspected components.  

 

Table 2 outlines the costs of the hardware components for 

this system. After calculating expenses, the total hardware cost 

for implementing this inspection system was USD 730.40, 

with an additional monthly maintenance cost of USD 50.00. 

 
Table 2. Cost of system components 

Description Cost (USD) 

Raspberry Pi 4B with 8GB RAM 170.0 

Intel RealSense D435 400.0 

LED Flashlight 39.9 

Display 90.0 

Support Structure 30.5 

TOTAL 730.4 

 

4.3. Software Development 

The developed system utilizes a deep learning algorithm, 

specifically a Convolutional Neural Network (CNNs) model, 

to detect welding defects in metalworking parts. The process 

begins with image acquisition using a high-precision depth 

camera that captures the surface of metal parts under 

controlled conditions to minimize optical distortions.  

 

The acquired images pass through preprocessing, 

including conversion to grayscale to enhance data quality. 

Next, the region of interest is segmented to isolate the weld 

area for precise analysis. 

 

During the feature extraction stage, key parameters such 

as edges, textures, and contours are identified using 

morphological analysis and edge detection methods. Due to 

the relatively small dataset size, it is divided into training and 

validation sets in an 8:2 ratio. When a weld defect is detected, 

the system saves the relevant data for analysis and displays it 

on the user interface. This functionality enables rapid fault 

detection and allows operators to take immediate action. 

 

Figure 5 shows the complete flowchart of the developed 

algorithm. After multiple training iterations with the CNNs, 

both the training set and validation set produced a model 

containing optimized weighting and bias parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Flowchart of the developed algorithm 

4.4. Test Environment 

The proposed system was tested in a controlled real-world 

environment, directly in the quality control stage of a 

metalworking industry, over a period of 26 days. Only small 

parts were considered for testing because the developed 

system's structure is compact (100 × 80 × 80 cm), and larger 

parts cannot pass through. The dataset consisted of images 
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captured using an Intel RealSense D435 camera, positioned at 

a fixed distance of 80 cm from the weld bead under constant 

lighting conditions. A total of 1,133 metalworking parts of 

varying sizes and shapes, exhibiting different welding defects 

identified during inspections, were evaluated during this 

period. Additionally, the inspection time and accuracy of the 

traditional method used by the industry were assessed for 

comparison in the results section. Figure 6 shows two images 

taken during the tests conducted in the metalworking industry.  

 
(a) 

 

 
(b) 

Fig. 6 Tests carried out in the metalworking industry: (a) Construction 

process, and (b) Parts analyzed by the system. 

5. Results 
5.1. System Performance 

The proposed system was evaluated for its ability to 

detect weld defects in metalworking parts in accordance with 

AWS standards. The test data was analyzed, and the average 

values for Precision, recall, F1 score and Average Precision 

(AP) are presented in Table 3. After testing, the system 

achieved an overall defect detection accuracy of 91.3%, with 

a recall rate varying from 85% to 94.2% on the type of defect. 

These high recall rates indicate that the system effectively 

identifies defects, significantly reducing the risk of missed 

defects. However, the accuracy rate also indicates the presence 

of some false positives, primarily caused by dirt and irregular 

textures on the metal parts that were mistakenly classified as 

defects. 

Table 3. Performance metrics obtained during testing 

Type of 

Defect 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AP 

(%) 

Slag 

inclusion 
91.3 87.6 89.4 88.9 

Lack of 

fusion 
93.1 90.2 91.6 91.0 

Excessive 

reinforcement 
88.5 85.0 86.7 86.3 

Misalignment 

(Hi-Lo) 
90.8 92.5 91.6 90.7 

Pores 95.0 94.2 94.6 94.1 

Undercut 89.0 86.8 87.9 87.3 

Average 91.3 89.4 90.3 89.7 

 

5.2. Time Comparison between Traditional Inspection and 

the Proposed System 

Table 4 compares the traditional human visual inspection 

method performed by two operators and the proposed 

automated system based on digital image processing with 

deep learning. The evaluation spanned 26 days, during which 

a total of 1,133 metalwork pieces were inspected. 

 

The proposed system was directly compared to traditional 

visual inspection methods performed by quality assurance 

operators, commonly used in the metalworking industry. 

Visual assessments conducted by operators are often biased, 

prone to errors, and slow down production due to the time 

required to inspect each part.  

 

In contrast, the automated system achieved higher 

accuracy with an average time reduction of over 82.5%. This 

improvement stems from the system’s ability to operate 

continuously without interruptions due to fatigue or 

distractions. The optimized detection algorithm enables 

around-the-clock performance, unlike traditional methods. 

 
Table 4. Comparison between traditional inspection time and the 

proposed system 

Aspect 
Traditional Inspection 

(2 Operators) 

Proposed 

System 

Total parts 

inspected 
1133 

Total inspection 

time (h) 
26.28 4.61 

Average 

inspection time 

per part (s) 

83.50 14.65 

Error risk due to 

fatigue 
Medium-High Low 

Real-time defect 

feedback 
No Yes 

Detection 

consistency 

Variable (operator 

dependent) 
High 
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5.3. Cost and Return on Investment 

The proposed system is analyzed by comparing the 

traditional manual weld inspection method with the 

implementation of an automated system based on computer 

vision and deep learning. This comparison aims to evaluate 

the financial viability of the proposed system in the 

hypothetical case of its installation on a metalworking 

production line. 

To conduct the analysis, a total of 1,133 metalworking 

parts were inspected by two inspectors working standard 

hours. The total time spent by both operators on the inspection 

process was approximately 26.28 hours. Considering their 

monthly salaries of USD 440.72 each, the total cost of manual 

inspection for the batch was estimated using Equations (5)-

(9), which establish a baseline for comparison. Assuming they 

worked 26 days per month at 8 hours per day, the hourly cost 

rate was 𝐶ℎ𝑜𝑢𝑟  = USD 2.12. The total manual inspection cost 

for both workers 𝐶𝑚𝑎𝑛𝑢𝑎𝑙  = USD 111.43. Taking into account 

the monthly operational cost of the proposed system 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 

= USD 50, the savings yielded by using the automated defect 

detection system are 𝑆𝑚𝑜𝑛𝑡ℎ𝑙𝑦  = USD 61.43 per month. 

 

This analysis shows that the system can operate 

autonomously with a moderate initial investment and low 

recurring costs. The USD 61.43 in monthly savings allows the 

initial investment to be recovered in approximately 12 months, 

even in a conservative scenario where the number of inspected 

items remains constant. Once the financial break-even point is 

reached, each additional month represents direct savings for 

the welding company. 

Figure 7 illustrates the projected accumulated savings 

over a 12-month period compared to the operating costs of the 

automated system. The savings curve shows that after the 

return on investment is achieved, the system substantially 

improves the profitability of the industrial inspection process. 

 
Fig. 7 Tests carried out in the metalworking industry 

6. Discussion 
The system's high accuracy demonstrates the benefits of 

optimizing inspection time in industrial processes. By fully 

automating inspection, the proposed system eliminates human 

inspection, which is often susceptible to fatigue or visual 

limitations. The deep learning model was also trained to 

recognize complex defect patterns that might be missed in 

traditional inspections, significantly improving detection 

accuracy, consistency, and process repeatability. 

Unlike manual inspections performed by operators, the 

system provides real-time images of metalworking parts with 

weld defects, enabling immediate corrective action. This 

prevents defective products from being sold, avoiding costly 

rework and reducing production expenses. From an economic 

standpoint, the system's initial investment pays for itself 

within a year, generating continuous savings by replacing 

labor previously dedicated to inspection. Another key 

advantage is the improvement in final product quality, which 

enhances reliability while preventing field failures and 

reprocessing. 

The system demonstrated superior performance in 

identifying weld flaws compared to conventional detection 

methods. This confirms that the dedicated CNNs classification 

model is effective at detecting defects with high contrast, 

though identifying smaller defects or those with atypical 

characteristics may require additional refinement. 

During field testing, several challenges emerged. The 

system generated false alerts primarily due to two factors: mud 

accumulation on the tires and variable natural lighting 

conditions in the testing environment. Additionally, while the 

system's profitability begins after 12 months of operation, this 

timeline reflects the small production volume of the company. 

In larger industrial settings with continuous welding 

operations, the return on investment would be achieved 

significantly faster. 

Future research could address these limitations by 

implementing deep-learning-based noise reduction 

techniques, employing advanced image preprocessing 

methods, or incorporating an automated camera lens cleaning 

system to maintain optimal imaging conditions. 

 

7. Conclusion 
This study presents the development of an automated 

welding defect detection system for metalworking parts, 

combining digital image processing with deep learning 

techniques, specifically using a convolutional neural network. 

The system successfully detects various welding defects, 

including slag inclusions, lack of fusion, excessive 

reinforcement, misalignment (Hi-Lo), porosity, and undercut. 

A user interface was integrated to provide real-time analysis 

feedback to production line operators. 

 

Experimental results demonstrate the system's detection 

capability with an average precision of 91.3% and an average 
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recall rate of 89.4%. In efficiency comparisons with traditional 

visual inspection methods, the system achieved an 82.5% 

reduction in inspection time per part, enabling rapid, 

uninterrupted analysis of large quantities of metalworking 

components. 

 

The economic analysis evaluates the system's 

implementation viability for metalworking production lines. 

Comparing the system's construction cost and monthly 

operational expenses against the hourly wages of two 

dedicated visual inspection technicians revealed monthly 

savings of USD 61.42, with a 12-month return on investment 

period. While this ROI period may appear lengthy, it reflects 

the company's small production volume. In larger industrial 

settings with continuous 24/7 welding operations, the payback 

period would be significantly shorter. 

 

Future work will focus on advancing the system's 

maturity level to enable deployment in real-world industrial 

environments without requiring researcher supervision. Key 

improvements will include enhancing the system's robustness 

against environmental challenges typical in metalworking 

facilities, such as airborne dust and image noise. Additionally, 

the detection algorithm is being optimized to achieve faster 

processing times while expanding its capability to analyze 

larger and more complex parts. 
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