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Abstract - Underwater Wireless Sensor Networks (UWSNs) play a vital role in aquatic monitoring and marine exploration, yet 

they face persistent challenges due to limited communication bandwidth, energy constraints, and the complex mobility of 

Autonomous Underwater Vehicles (AUVs). This paper presents a novel hybrid optimization framework that combines an Energy-

Aware K-Means clustering algorithm with a terrain-sensitive A* path planning method. The clustering mechanism groups sensor 

nodes based on both spatial coordinates and remaining energy levels, ensuring balanced data aggregation. Simultaneously, the 

enhanced A* algorithm navigates the AUV through energy-efficient paths, accounting for underwater terrain variations and 

current-induced drift. This integrated strategy enhances localization accuracy, reduces unnecessary AUV movement, and 

significantly extends network lifetime. Simulation results confirm that the proposed approach achieves substantial gains in 

energy efficiency, reducing energy consumption by over 80%, shortening traversal distance by 87.5%, and improving overall 

network sustainability by 91.4%. These outcomes demonstrate the effectiveness of the hybrid model in optimizing data collection 

and node coordination in dynamic, large-scale UWSNs. 
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1. Introduction  
Underwater Wireless Sensor Network (UWSN) 

applications are found in oceanographic measurements, 

marine biodiversity monitoring, and underwater surveillance. 

In contrast to terrestrial wireless systems, acoustic 

communications are used in UWSNs because radio and optical 

communications would be impractical in underwater 

environments. Nevertheless, the acoustic communication is 

limited by the large latency, small bandwidth, and large power 

requirements, which hinder successful data transmission and 

accurate localization of the node. These intrinsic constraints 

have been well understood in new surveys and reviews [1, 2].  

 

The presence of Autonomous Underwater Vehicles 

(AUVs) improves the UWSN functionality since they serve as 

roaming data gatherers and repeaters in the network [3]. 

Although they can cover the network and shorten the 

transmission paths, AUVs have limited energy availability on 

board and difficulty working with underwater 3D terrain [4].  

 

As it is demonstrated in Figure 1, the clustering of sensor 

nodes into groups with specific cluster heads helps to organize 

data aggregation better and enables energy-efficient routing of 

AUVs. Traditional methods of localization (Time-of-Arrival 
(ToA) and trilateration) are, however, characterized by low 

accuracy in the case of multipath propagation and degradation 

of the acoustical signal [5, 6]. Similarly, standard path 

planning algorithms do not usually consider terrain, the effect 

of current-induced drift and power limitation.  

 

The clustering algorithm, such as K-Means and LEACH, 

would also not take into consideration the amount of residual 

energy, resulting in early node depletion many times. In order 

to overcome the above shortcoming, a hybrid optimization 

framework integrating Energy-Aware K-Means clustering 

with terrain-sensitive A* path planning algorithm is proposed 

in the proposed study.  

 

The objective seeks to collaboratively optimize AUV 

navigation as well as node localization whilst prolonging 

network lifetime and guaranteeing communication 

effectiveness in heterogeneous environments pertaining to the 

dynamics of the underwater networking. The most important 

research gap is that no single, energy-conscious framework 

considers both node localization and energy-efficient AUV 

path planning in realistic underwater topologies.  
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Fig. 1 Cluster-based UWSN architecture 

The majority of available works consider each of these 

elements on its own, thus losing the chance to optimize 

everything holistically, and having a much greater impact on 

data gathering trustworthiness, energy costs, and network life 

cycle. The proposed study is aimed at creating the groundwork 

of a holistic solution to the two issues of AUV path planning 

and node localization in UWSNs. The new method will 

replace the old one with an energy-aware mechanism of 

cluster formation using the K-means algorithm, which will 

consider both spatial distribution and remaining energy levels 

of sensor nodes to improve cluster formation efficiency. A 

terrain-adaptive path planning model is constructed on a 

modified A* algorithm, allowing the AUV to navigate the 

complex three-dimensional underwater environment in an 

energy-saving and accurate way [7]. This combination of the 

two components into one continuous hybrid framework allows 

the system to optimize both localization accuracy and energy 

consumption at the same time. Simulation studies are also 

used to verify the effectiveness of the new solution, comparing 

results with other existing methods by the most important 

measures like total energy consumption, path length and 

localization accuracy. Enhancement of network lifetime and 

the overall effectiveness of data collecting in a dynamic, large-

scale underwater network is therefore the eventual aim of the 

model. 

2. Related Works 
Proper localization of sensor nodes is core to developing 

reliable data distribution and retrieval in UWSNs [8]. 

Traditional range-based localization methods, like 

trilateration and Time-of-Arrival (ToA), can provide poor 

solutions because of difficulties in underwater localization, 

like attenuation of an acoustic signal, multipath signal 

propagation, and environmental randomness [9]. To contain 

such drawbacks, researchers have developed alternative 

approaches such as anchor-free localization techniques and 

learning-based models, which can accommodate the dynamics 

of the underwater environment. 

The abundant literature review of UWSNs localization 

techniques emphasizes the existing improvements in acoustic 

modeling, optimal distributed sensor node deployment and 

drift correction schemes that are applicable to augment the 

positioning capability in hostile aquatic environments [10]. 

The AUVs have also proved useful in facilitating the node 

localization and data gathering functions. Nevertheless, 

although they have their uses, AUVs have some problems, like 

navigational mistakes, slow updating of localization, and high 

energy requirements, especially in three-dimensional aquatic 

regions with varying currents. 

The study of path planning of AUVs has gained the most 

attention from researchers since it directly affects energy 

efficiency and data collection performance. Different 

metaheuristic optimization approaches, such as Particle 

Swarm Optimization (PSO) [11], Ant Colony Optimization 

(ACO) [12], and Artificial Bee Colony (ABC) [13], have been 

used to create energy-effective routes in uncertain underwater 

circumstances. The method of reinforcement learning is also 

becoming popular because of its ability to learn and adjust to 

changes in the surroundings in real time. Some of the 

deterministic methods that have been used and are well 

acknowledged are geometric search algorithms like A*, hailed 

by their simple decision-making structure and tractability 

[14]. Nevertheless, the classical versions of A* do not usually 

take into account the underwater peculiarities of energy and 

terrain conditions. In order to mitigate these problems, there 

has been an upgrade of the evolutionary algorithms, such as 

energy-aware genetic algorithms that have been used in 

routing situations where multi-hops are involved and have 

demonstrated better results in energy optimization and 

efficiency in routing [15]. 

Nevertheless, few efforts on such integration have been 

found in current literature, and many approaches consider 

each problem separately. The current study can cover this gap 

by suggesting a coherent paradigm where clustering-based 

localization is matched with the terrain-aware AUV path 

planning. They also emphasize the usefulness of a scalable 

deployment model and effective adaptation capabilities to 

adapt to the erratic and unfavorable environment that is more 

typical of an underwater sensor network [16]. Although major 

progress has been achieved regarding node localization and 

AUV path planning in UWSNs, these important issues are 

considered in isolation rather than in their entirety. The vast 

majority of localization systems, both range-based and 

anchor-free ones, find it difficult to work in an underwater 

environment, hindered by issues like signal attenuation, 

multipath propagation and node drifting [17, 18]. Despite 
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being proposed to enhance smart estimation to increase the 

accuracy of outcomes, some learning-based models have 

ignored the mobility and dynamism of energy involved in 

AUVs, which are extremely critical when it comes to 

gathering data and coordinating a network. At the same time, 

several studies have been conducted, either on metaheuristic 

or geometric methods of AUV navigation optimization. 

Algorithms such as PSO, ACO and A * have proven useful in 

energy-aware routing, but tend not to integrate with real-time 

localization information or tend not to factor in terrain and 

non-stationary variability within cost functions [19]. 

Moreover, most known models fail to use the residual energy 

of sensor nodes in clustering, thereby resulting in premature 

node failures and energy imbalance. 

An obvious research gap in the existing literature is the 

lack of a unified approach that can handle energy-efficient 

localization and intelligent AUV path planning in a realistic 

underwater scenario, where both sources of energy and 

dimensional restrictions must be considered. The urgent 

requirement of hybrid models that not only optimize AUV 

path but also provide balanced clustering considering the 

spatial distribution of the sensor nodes and energy availability 

of sensor nodes is still a reality to be fulfilled. Filling this gap 

would greatly enhance the data collection efficiencies, 

lengthen the life of a network, and increase the flexibility of 

the UWSNs in multifaceted and large-scale applications. 

3. Methodology 
A simulation environment was built to mimic real-world 

underwater operational scenarios to assess the efficiency of 

the proposed hybrid algorithm. The simulated area is 

1000x1000 meters with a depth of 10-100 meters, which 

contains a three-dimensional space suitable for detecting the 

layers of the environment underwater. This volume is 

randomly deployed with 100 sensor nodes, which enables the 

observation of spraying to be done at varying levels of depth. 

The nodes communicate on the basis of acoustic signalling, 

and these signals perform better in an underwater environment 

than the use of radio frequency. All the nodes are set to have 

a transmission limit of 100 meters. The node’s data is 

aggregated at eight known cluster heads and later transmitted 

by the cluster heads to four surface sinks. These surface sinks 

act as a link and relay the information to permanently fixed 

base stations, which are above the surface of the water. AUV 

has the responsibility of, through the centroid, navigating 

through clusters to gather information, thus enhancing 

reliability on communication and lessening the energy load of 

the individual nodes. The simulation assumes a data 

transmission rate of 1000 bits per second for each sensor node. 

Energy consumption is modeled with a rate of 50×10⁹ joules 

per bit for both transmission and reception. Additionally, 

AUV movement is associated with an energy cost of 10 joules 

per meter. Environmental factors such as seabed roughness 

and underwater currents are also considered, introducing 

respective energy penalties of 1.5× and 2× to reflect realistic 

underwater traversal challenges. This simulation framework 

enables testing the proposed clustering and path planning 

mechanisms under dynamic and energy-constrained 

conditions. A visual representation of the complete workflow, 

illustrating the integration of energy-aware clustering and 

terrain-informed AUV path optimization, is provided in 

Figure 2. 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Workflow of the proposed hybrid algorithm 

Table 1. Simulation parameters 
Parameter Value 

Deployment Area Dimensions 

(x,y) 

[1000, 1000] meters 

Depth Levels of Sensor Nodes [10, 20, 30, 40, 50, 60, 

70, 80, 90, 100] meters 

Communication Range of 

Sensor Nodes 

100 meters 

Number of Surface Sinks 4 

Number of Base Stations 4 

Number of Cluster Heads 8 

Number of Sensor Nodes 100 

Data Rate per Sensor Node 1000 bits/s 

Energy Consumption for 

Transmitting 1 bit 

50e-9 J/bit 

Energy Consumption for 

Receiving 1 bit 

50e-9 J/bit 

Base Energy Consumption for 

Moving 1 meter 

10 J/m 

Additional Energy Factor for 

Moving Over Terrain 

1.5 

Additional Energy Factor for 

Moving Against Currents 

2 

 

Create Network 
 

Draw AUV Path and Calculate Energy 

Consumption, Path Length, Network Lifetime 
 

Perform Energy Aware K-means Clustering 
 

Draw AUV Path and Measure Path Length 
 

Perform A* Algorithm for Precise AUV 

Navigation for Clustered Sensor Node 
 

AUV Path and Calculate Energy Consumption, 

Path Length, Network Lifetime 
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The simulation parameters outlined in Table 1 define the 

operational framework used to evaluate the performance of the 

proposed UWSN model. The deployment area spans a two-

dimensional space of 1000×1000 meters with sensor nodes 

distributed across ten discrete depth levels ranging from 10 to 

100 meters, enabling a multilayered sensing environment. 

Each sensor node communicates acoustically within a 100-

meter range, and the network infrastructure includes four 

surface sinks, four base stations, and eight cluster heads to 

manage data aggregation from 100 sensor nodes. The nodes 

transmit data at a rate of 1000 bits per second, consuming 

50×10⁹ joules for both transmission and reception of each bit. 

The energy cost associated with AUV movement is set at 10 

joules per meter, with additional energy penalties applied to 

account for traversal over uneven terrain (1.5×) and resistance 

from underwater currents (2×). These parameters collectively 

provide a realistic underwater simulation environment for 

analyzing the efficiency of the proposed hybrid clustering and 

path planning algorithm. 

The standard K-Means clustering algorithm [20] has been 

modified to suit the energy constraints that underwater sensor 

networks have. The modified implementation differs from its 

traditional counterparts in that the modified implementation 

considers residual energy levels of sensor nodes as an 

important parameter in cluster formation, as opposed to its 

traditional counterparts, which only require spatial proximity 

in cluster formation. Starting the clustering process involves 

initializing the nodes randomly regarding their coordinates as 

the centroids. During each iteration, the total energy used to 

send data to all centroids will be determined by the nodes. 

However, not only the energy used in the communication will 

be considered, but also the environmental conditions, like 

terrain roughness and resistance caused by a current. The 

nodes are then paired off to the cluster that offers the least total 

cost of energy. After this reassignment, new centroids are 

calculated according to the new cluster memberships. The 

operation is repeated till the convergence point is reached by 

the cluster structures. The algorithm estimates a more 

balanced energy consumption on nodes by taking energy 

awareness into the clustering logic, which reduces intra-

cluster transmission expenses and enables the sensor lifetime 

to extend further without leading to premature depletion of the 

individual sensors. 

To successfully overcome the peculiarities of the 

undersea scenarios, the classic A* algorithm is modified to a 

three-dimensional, terrain-sensitive algorithm. Under the 

water, this space is discretized in this adaptation into a three-

dimensional grid so that the AUV can consider the alternative 

choices in the directions of movement in the depth dimension, 

their horizontal location, and environmental conditions. The 

algorithm uses a reformed cost that combines the base 

movement energy with some extra costs incurred due to 

obstacles present in the environment, like irregular sea floor 

and crossflow in the water. The search heuristic uses a 

Euclidean distance, which is subsequently narrowed down by 

resistance factors representing terrain elevation and flow 

intensity variables to ensure that energy-efficient paths are 

selected. The algorithm keeps lists of open and closed nodes 

during search, and transitions are chosen based on their 

minimization of total energy consumption and not their 

distance per se. After arrival at the destination node, the 

optimal path is recovered by backtracking on parent nodes. 

Environment-sensitive enhancement in this mode can 

dynamically adjust the trajectory of the AUV according to 

environmental changes, which greatly saves energy costs and 

achieves good navigational performance in general. 

4. Results and Discussion 
4.1. UWSN Simulation Environment  

A realistic UWSN network was simulated by building a 

simulation environment. This will consist of 100 sensor nodes 

randomly placed over an area of 1000 x 1000 meters, enabled 

by the four surface sinks and four base stations that will ease 

data relay. One of the AUVs was to follow a randomly 

generated path to retrieve data from the network, constituting 

an unoptimized baseline condition. Figure 3 demonstrates the 

initial topology of the network before implementing the 

optimization of the strategies. The base level of performance 

was identified to determine a reference for future assessment. 

They entail a total amount of energy expenditure of 

160,806.98 joules, a total amount of traversal time in 24 

118.02 seconds, and the cumulative path length of 48,236.05 

meters. Also, the approximate initial network lifetime was 

94,996.10 seconds. These numbers provide an accentuation on 

the inefficiencies of non-optimized AUV motion as well as 

unorganized communication between nodes. The original 

network architecture employed during the baseline assessment 

is shown in Figure 4. 

 
Fig. 3 Initial UWSN topology with randomly deployed sensor nodes and 

surface sinks 

4.2. Performance of Clustered Network Architecture  
To demonstrate the merits of a clustering algorithm to 

arrange the distribution of sensor nodes into energy-efficient 

subsets, taking both the spatial and left-over energies of the 

nodes, a proposed algorithm of Energy-Aware K-Means was 
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used. In each cluster, a node whose energy-based properties 

were optimized was deemed the cluster head, whose 

responsibility would be to gather data from member nodes and 

transmit the same to the AUV. In the algorithm, it was able to 

create clear clusters, each headed by a selected node as 

presented in Figure 4. This ordered clustering greatly 

alleviated the communication load levels of individual sensors 

by encouraging close distance, intra-cluster communication, 

and cutting down on the redundant forwarding of data. After 

the clustering, the network energy consumption was reduced 

to 30,962.38 joules, which was 80.75 percent of the energy 

consumption in the baseline scenario. Such a remarkable 

reduction proves the effectiveness of the clustering strategy in 

saving energy costs and improving the sustainability and 

durability of the UWSN as a whole. 

 
Fig. 4 Reorganized UWSN layout after applying energy-aware K-means 

clustering 

4.3. Effectiveness of AUV Path Optimization  
After the clustering stage, the AUV route was optimized 

by using a terrain-aware A* algorithm to start calculations 

from the current AUV location using the cluster centroids. 

This optimization step-up path planning mechanism was 

considering environmental conditions, including seabed 

topography and effects of underwater currents, where a more 

energy-efficient 3D trajectory could be produced.  
 

The resultant optimized path shown in Figures 5 and 6 

reveals a tremendous decrease in the complexity of traversing. 

Due to the optimization in the program, the cumulative time 

spent on data collection was reduced significantly from 

24,118.02 seconds to 3,015 seconds, improving it by about 

87.5%.  
 

Likewise, the travel range of the AUV diminished by 

92.88 percent, reducing to only 6,030 meters, as compared to 

the previous 48,236.05 meters. In contrast, the average 

network lifetime improved remarkably to 8,132 seconds, 

which is 91.44 percent more than that calculated in the 

previous case. These improvements highlight the efficiency of 

the terrain-informed paths planning strategy, which ensured 

reduced redundant movement and energy consumption and 

enabled the AUV to complete its data collection tasks with 

greater operational efficiency. 

 
Fig. 5 Comparative visualization of AUV traversal paths: random path 

before optimization  

 
Fig. 6 Comparative visualization of AUV Traversal paths: optimized 

AUV route using terrain-informed A* algorithm 

4.4. Comparative Performance Analysis  
The visual presentation of the performance metrics in 

Table 2 shows a very high degree of influence of the proposed 

hybrid optimization framework in terms of the efficiency and 

sustainability of the UWSNs. The largest change showing 

substantial progress is energy consumption, which went down 

by 80.75% (160,806.98 joules to 30,962.38 joules). This is a 

significant saving due to the fact that the energy-aware 

clustering mechanism lowers the distance transmissions of the 

data as aggregation of the information is carried out at a local 

level by the cluster heads. It has also been seen that the optimal 

path planning has saved 24,118.02 seconds of the total time 

required by the AUV to traverse a set of goals and has brought 

the time down to 3,015 seconds, or 87.5 percent improvement. 

This means that the AUV managed to undertake its data 

collection much faster and efficiently. The distance travelled 

was also reduced significantly to an equivalent of 6,030 meters 

against the previous distance of 48,236.05 meters, showing 

that the IAA algorithm was useful in reducing unwanted 
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movements of the stairs. Finally, there was a significant 

increase in network lifetime, which was 8,132 seconds, an 

improvement of 91.44% in contrast to 94,996.10 seconds. 

Despite the fact that the absolute measure of the network 

lifetime seems to be smaller after the optimization process has 

occurred, that are the result of dynamic cluster behavior and 

an active use of AUVs, the realized optimized framework 

results in substantially higher productivity per energy unit 

consumed. Together, these enhancements justify the viability 

of the clustering and path planning approach combined in 

improving the performance of UWSN operations within the 

bounds of real-life limitations. 

Table 2. Comparative analysis of performance metrics 

Metric Pre-Optimization Post-Optimization Improvement (%) 

Total Energy Consumption (J) 160,806.98 30,962.38 80.75% 

Total Elapsed Time (s) 24,118.02 3,015 87.50% 

Total Path Length (metres) 48,236.05 6,030 87.50% 

Network Lifetime (s) 94,996.10 8,132 91.44% 
 

Table 3. Comparative analysis of performance metrics 

Approach 
Localization 

Method 
Path Planning 

Energy 

Efficiency 

Improvement 

Path Length 

Reduction 

[11] Static PSO ~45–55% ~50% 

[12] Static grid-based 
Ant Colony 

Optimization 
~50–60% ~55% 

[13] 
Location-aware 

clustering 
Basic heuristic ~55–65% 

Not explicitly 

mentioned 

[14] Trilateration-based Modified A* (2D) ~60% ~65% 

[15] 
Energy-aware 

routing 
Genetic Algorithm ~65–70% ~70% 

Proposed Hybrid 

Framework 

Energy-aware K-

Means Clustering 

Terrain-informed 

3D A* 
80.75% 87.5% 

In order to illustrate the efficacy of the formulated hybrid 

framework, a critical evaluation (Table 3) of some of the 

eminent approaches in the realm of UWSN localization and 

AUV path planning was carried out. The chosen benchmarks 

contain metaheuristic approaches, like PSO, ACO, and ABC; 

deterministic approaches, like the enhanced A* algorithm; and 

evolutionary approaches, including energy-based GA. The 

results are attributed to the fact that the framework can 

develop balanced clusters that are based on both residual 

energy and spatial proximity and, subsequently, used within 

the AUV to be adaptively able to traverse over complicated 

topographies with energy-efficient routes. 

To complement the simulation results, an analytical 

model was developed to quantitatively assess key 

performance indicators such as energy efficiency, localization 

precision, and path optimization. This model calculates the 

total energy expenditure by considering the cumulative data 

transmission, reception, and AUV mobility costs. 

Specifically, the transmission energy Etx (Transmission 

energy) is computed as the product of the transmission energy 

per bit, the size of the data packet, and the distance between 

the transmitting and receiving nodes. The AUV’s movement 

energy (Emove) includes the base energy required for traversal 

and additional penalties incurred due to terrain roughness and 

water current resistance over the traveled distance. The overall 

energy consumption (Etotal) is the sum of transmission and 

mobility energy. The total path length is derived by summing 

the Euclidean distances between consecutive waypoints in the 

AUV’s route. Network lifetime is estimated by aggregating 

the ratios of residual energy to the energy consumed for data 

transmission at each node. These formulations provide a 

standardized approach to evaluating the energy-performance 

trade-offs of the proposed framework and serve as a 

theoretical foundation for validating its scalability and 

applicability in real-world underwater scenarios. 

5. Conclusion  
This study presents a novel hybrid optimization 

framework that integrates Energy-Aware K-Means clustering 

with a terrain-informed A* path planning algorithm to 

enhance the operational efficiency of UWSNs. By jointly 

addressing the challenges of energy-efficient node 

localization and AUV navigation, the proposed model 

significantly reduces overall energy consumption and 

improves network longevity. The energy-aware clustering 

mechanism ensures balanced data aggregation by considering 

both spatial distribution and residual energy of sensor nodes. 

At the same time, the terrain-adaptive A* algorithm enables 

the AUV to traverse optimized, low-energy routes that 

account for environmental constraints such as seabed 

roughness and underwater currents. Simulation results 

demonstrate the effectiveness of the approach, achieving over 
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80% reduction in energy usage, an 87.5% decrease in path 

length and elapsed traversal time, and a 91.4% improvement 

in network lifetime compared to non-optimized baselines. 

These outcomes underscore the potential of the integrated 

model in addressing scalability, energy limitations, and 

routing complexity in dynamic underwater environments. 

Future research will extend this framework to support multi-

AUV coordination, real-time reconfiguration in response to 

environmental changes, and experimental validation using 

physical testbeds. Such advancements will further strengthen 

the applicability of this model in mission-critical underwater 

applications such as environmental monitoring, 

oceanographic surveying, and subsea infrastructure 

inspection. 
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