
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 7, 238-245, July 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I7P119 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Efficient and Scalable Mutual Symmetric Key

Establishment and Management for IoT Devices

Ahmed S. Alfakeeh

Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia.

Corresponding Author : asalfakeeh@kau.edu.sa

Received: 10 May 2025 Revised: 11 June 2025 Accepted: 12 July 2025 Published: 31 July 2025

Abstract - Recently, the Internet of Things (IoT) has attracted the attention of many researchers due to its popularity in various

applications. Connecting different capability devices in the Internet of Things architecture makes security a big challenge.

Datagram Transport Layer Security Protocol is considered a standard for securing communication among Internet of Things

devices by establishing a secret key. However, the default method, X.509, requires certificates and public key infrastructure that

are more resource-consuming and not suitable for resource-constrained devices. On the other hand, datagram transport layer

security supports the pre-shared key approach and raw pubic keys, which are lightweight but not scalable for such large

networks. Hence, a scalable and lightweight mutual key establishment and management protocol is proposed for such a large

number of resource-constrained IoT devices. The implementation of the proposed scheme in Contiki OS and on a real IoT

platform shows its performance evaluation in terms of feasibility and scalability.

Keywords - Internet of Things, Authentication, Key establishment, Security, Secret key.

1. Introduction
Transport Layer Security (TLS) protocol is one of the

most famous and widely used security protocols in today’s

Internet [1, 2]. It is used in parallel with the Transmission

Control Protocol (TCP) for reliable and secure

communication. However, TLS cannot be used in the Internet

of Things, as it usually uses the TCP approach, but many IoT

applications use the User Datagram Protocol (UDP) for

communication.

Keeping in view these limitations, IETF (Internet

Engineering Task Force) developed Datagram Transport

Layer Security (DTLS), which is a UDP-based on TLS and

easily applicable in IoT applications [3, 4].

To establish a secure session using DTLS and TLS, client

and server usually do a handshaking that is based on X.509

certificates and a corresponding verification infrastructure.

However, this architecture is not suitable for a large number

of resource-constrained IoT devices.

X. 509 certification is based on a central certification

authority mechanism and also based on RSA (traditional PKI

approach), which is not suitable for resource-constrained

devices because of the high computational cost (multiplication

and power operations). Also, a single point of failure is

possible. Usually, sensor nodes use a preshared key approach

to establish a secure session.

However, using the preshared key approach alone is not

feasible and scalable for a large IoT network, especially in

cases where two devices have no prior direct relationship with

each other and belong to different servers. This is because the

Internet of Things consists of billions of devices and requires

a memory equal to the key size * billions of devices. So

constrained devices do not have such a large memory [5, 6].

Also, disclosing the server's symmetric key to an unknown

device is not a good approach, and using Public Key

Infrastructure (PKI) is unsuitable. Hence, key establishment

and management are important issues in IoTs. However,

Kerberos-like protocols have been used for a long time to

solve such issues that use Key Distribution Center (KDC) and

Trusted Third Party (TTP) to establish a key between the two

clients without revealing the secret shared keys of their servers

to each other. In many Internet applications, TTP is used as an

authorization server to grant access to the trusted clients to

reach a server.

A similar Approach with some additional requirements is

needed for IoT applications (for example, smart metering,

building automation, personal health monitoring, and

industrial control systems) where resource-constrained

devices can get help from those authorization servers to

generate a key and establish a session. But the size of

messages and number of messages exchanged during the key

establishment and session creation phase put an extra burden

on resource-constrained devices and need to be optimized to

http://creativecommons.org/licenses/by-nc-nd/4.0/

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

239

reduce this burden and improve the network performance and

lifetime. Hence, introducing a Kerberos-like protocol for IoT

applications is also not suitable.

This paper proposes an efficient and scalable mutual

symmetric key establishment and management protocol

between two IoT devices that have no direct relationship with

each other. In this scenario, two IoT devices will contact their

network managers for help in establishing a secret key

between them.

This is because the key in the proposed scheme depends

on both device parameters/share and network

parameters/share to avoid any node replication attacks, sybil

attacks, etc. First, the authentication phase is performed

between the IoT device and the network manager, followed by

key material generation. After successfully generating the key

materials, an IoT device will be able to authenticate other IoT

devices and establish a mutual symmetric key with them for

secure communication.

The rest of this paper is organized as follows. The

literature survey is presented in Section 2, while Section 3

presents the proposed algorithm for mutual key establishment

and management protocol. Section 4 gives the complete

details of the experimental testbed, while the results are

discussed in Section 5, and finally, the paper is concluded in

Section 6.

2. Related Work
Internet of Things (IoT) networks include a wide range of

devices with limited processing, memory, and energy

capabilities. Due to these constraints, traditional security

protocols like TLS are not suitable for IoT environments.

Instead, Datagram Transport Layer Security (DTLS) [5] is

commonly used as it supports UDP-based communication.

However, DTLS still requires a secure session setup through

certificate-based handshaking, which is not practical for

resource-constrained devices. To overcome these limitations,

researchers have proposed several alternative approaches for

authentication and key management in IoT.

Several works have enhanced authentication frameworks

using cryptographic algorithms optimized for low-power

environments. For example, Wang and Li [7] presented an

improved IoT authentication protocol by integrating the

Diameter framework with elliptic curve-based key agreement

and lightweight encryption (AES/RC4). They also proposed a

key management scheme based on multivariate quadratic

polynomials, which improved scalability and security while

reducing overhead. Similarly, Ju and Park [10] proposed a

lightweight mutual authentication and key agreement protocol

using elliptic curve cryptography and hash functions for

cloud-based IoT, offering resistance against insider and

impersonation attacks with low computational costs.

Another important aspect of IoT security is group key

management. Abdmeziem et al. [8] proposed a blockchain-

based group key management system that supports

asynchronous IoT environments where device unavailability

is common. Their protocol uses smart contracts and a

reputation-based mechanism to ensure trust and secure

consensus among distributed devices. Security features like

Perfect Forward Secrecy (PFS) and Post-Compromise

Security (PCS) were included with minimal overhead, making

it suitable for real-world deployments.

To further resist physical attacks and support cross-

domain communication, Mahmood et al. [9] introduced a

blockchain and Physically Unclonable Function (PUF)-based

key establishment protocol. Their method used an on-chain

accumulator and cross-domain trust model, enabling devices

from different domains to derive secure keys without

revealing identities or requiring heavy computation. Similarly,

Yang et al. [6] presented SAKMS, a key management protocol

for 6TiSCH industrial wireless networks, using an improved

elliptic curve algorithm. The scheme achieved faster key

computation, implicit certificates, and dynamic key updates to

minimize the risk of key leakage while maintaining

compatibility with low-power devices.

Rana et al. [11] proposed an innovative key management

system for cluster-based IoT networks using lightweight block

cyphers. Their method used pre-distributed partial keys that

are later combined into full encryption keys, reducing storage

needs and allowing frequent key updates without transmitting

the keys over the network. This approach provided scalability

and reduced vulnerability to key exposure. While these

approaches enhance authentication and key establishment in

different IoT scenarios, most of them either rely on pre-shared

keys, certificate-based mechanisms, or blockchain

infrastructures, which may introduce added complexity,

communication overhead, or dependency on external servers.

In contrast, the approach proposed in this paper focuses on a

scalable and lightweight mutual symmetric key establishment

and management scheme without prior trust between devices.

By engaging network managers and using both device-

specific and network-specific parameters, the protocol

improves security and resilience against attacks such as Sybil

and node replication while ensuring minimal overhead and

making it ideal for large-scale and heterogeneous IoT

deployments.

3. Proposed Algorithm
Cryptography and key management are considered one of

the main building blocks of security. However, it becomes

more challenging if the network consists of resource-

constrained devices (for example, sensors, smart objects in the

Internet of Things). In the traditional security approach over

the Internet, clients authenticate servers using their digital

signatures while servers authenticate clients using their

username and password. However, these approaches are not

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

240

suitable for resource-constrained devices used in IoT due to

the lack of a keyboard and screen. Public Key Infrastructure

(PKI) is computationally very expensive and unsuitable for

use in constrained devices. Some efficient procedure to

authenticate such constrained devices using lightweight

certificates (e.g. based on ECC) is needed. However, the most

favorable approach is to use a symmetric key Approach.

Symmetric key establishment is done using pre-shared secret

key materials or using a lightweight PKI approach based on

Elliptic Curve Cryptography (ECC).

The main objective of the proposed approach is to

develop a mutual authentication scheme that avoids

impersonation attacks. For each new session establishment, a

new encryption key should be used for security purposes, and

this requires selecting a new additive factor that generates a

fresh random key. Although a password-based method can

simplify this process, it is vulnerable to keylogger attacks. In

ad hoc networks, one-time authentication is usually sufficient;

however, in IoT-based environments, authentication is

required at the start of each new session, similar to how

different accounts are accessed on the Internet using different

devices.

Before explaining the proposed solution in detail, it is

important to provide an overview of the network entities

involved. The proposed network includes: (1) a client that

utilizes the services of a server, (2) a server that provides

services to clients, which may be either resource-constrained

or resource-rich, (3) a Network Manager (NM) for each

network, responsible for its management, (4) a Network

Coordinator (NC) for each type of network (i.e., resource-

constrained and resource-rich), and (5) a Trusted Third Party

(TTP) that establishes trust between the NCs.

The architecture of the proposed network is illustrated in

Figure 1. The authentication of IoT devices and establishing a

secret symmetric communication key between them are the

main security features of the proposed solution. The first

authentication phase starts between the IoT devices, and once

they authenticate each other successfully, they start the

symmetric key establishment phase.

3.1. Key Pre-Distribution Phase

Before the network deployment, each device is assigned

some authentication and key generation materials offline.

More specifically, each node is assigned (1) a special one-time

authentication code, (2) an elliptic curve point generator, (3)

an authentication material generation function and (4) a

symmetric key generation function.

3.2. Authentication

Before going into the details of the authentication

procedure performed by the IoT devices to authenticate each

other, the authentication materials are first generated by the

device and its network manager.

Fig. 1 Proposed network architecture

3.2.1. Authentication Material Generation

Once the network is deployed, the network manager starts

broadcasting Hello messages to learn about the network

devices nearby. Each Hello message also consists of a special

authentication code assigned to the NM before the network

deployment to authenticate itself to its network devices. After

receiving Hello messages from network devices, each device

sends a joining message including its own special

authentication code to authenticate itself to the NM. Upon

receiving a Hello response/joining message from network

devices, NM selects an elliptic curve EP(a,b) and a point eNM

and sends this information to the network device. After

receiving EP(a,b) and eNM, each device randomly chooses an

additive factor dD and a point eD over EP(a,b) and calculates

W as

 W = dDeNM (1)

Each device sends W and eD back to its NM, where the

NM calculates V after selecting an additive factor dNM as

 V = dNMeD (2)

NM sends V to each particular network device from which

it received eD. This W and V help the NM and a network

device to calculate mutual authentication materials generation

(i.e. E1 and E-2). The NM calculates E1 as

 E1 = eNM + V (3)

and the network device calculates E2 and shares it with

NM as

 E2 = dDV + W (4)

Now, NM has EP(a,b), E1 and E2 for each device and

registers this information with its NC. Figure 2 represents all

the necessary steps involved in generating authentication-

related materials.

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

241

Fig. 2 Authentication material generation by a device and its network

manager

3.2.2. Authentication Phase

After successfully generating authentication materials,

the two devices are able to authenticate each other. The

authentication procedure between any two IoT entities is the

same, i.e., the same authentication procedure is followed by

the network managers to authenticate each other, between the

devices belonging to different networks, and between the

network manager and its network coordinator. To better

understand the authentication procedure, two devices that

belong to two different networks are considered. Suppose

device-1 wants to establish a secure session with device-2, it

sends a session establishment request to its NM1. Suppose

NM1 does not have the security credentials of NM2 of device-

2. In that case, NM1 contacts the network coordinator of NM2

to get its security credentials after receiving the NM2

credentials (i.e. EP(a,b), E1 and E2), NM1 becomes able to

authenticate NM2 and sends device-1 credentials to NM2

securely and requests device-2 credentials. Once NM2

receives a message from NM1, it first authenticates NM1. If

NM2 does not have the NM1 security credentials, it contacts

the network coordinator of NM1 to get its security credentials.

After successful authentication, NM2 send the device-2

credentials to NM1. NM1 sends the received credentials of

device-2 to device-1, while NM2 sends the received

credentials of device-1 to device-2. Once a device receives the

security credentials of another device (i.e. EP(a,b), E1 and

E2), it generates C1 as

 C1 = rE1 (5)

and C2 as

 C2 = Nonce + rE2 (6)

After successfully calculating C1 and C2, each device

sends them to the other communicating device. After

receiving C1 and C2, each device extracts the sent Nonce from

it.

 Nonce = C2− dNC1 (7)

If Nonce is calculated correctly, it is sent back to the

sending device to prove its authenticity (i.e., the sending

device used the correct credentials of the receiving device and

the receiving device has correctly recovered the Nonce from

C1 and C2). Figure 3 represents the necessary steps in the

authentication process of two devices belonging to two

different networks.

Fig. 3 Authentication process of devices

3.3. Symmetric Key Establishment

After successfully authenticating each other, two devices

establish a mutual symmetric key for secure communication,

a function of the device and network share.

 Key = f(Device/Share + Netowrk/Share) (8)

In the proposed approach, this symmetric key consists of

four parts, namely (1) device-1 share, (2) device-1’s network

manager share, (3) device-2 share and (4) device-2’s network

manager share. The dependence of symmetric key on the

mentioned network entities shares makes it difficult for an

attacker to launch any impersonation attacks or guess those

shares. To establish a symmetric key, device-1 sends a key

establishment request to device-2 along with its key share

aD1V1, where aD1 is a randomly selected constant by device-

1. Similarly, device-2 also sends its own key share, aD2V2,

during the key establishment response.

Once the devices receive the device shares of the key

from each other, they send a request to the network managers

to get the network share. Device-1 sends a request to NM2

while Device-2 sends a request to NM1. Now the NM2 sends

the network manager share of key bNM2W2 in its response to

device-1, while NM1 sends its own network manager share of

key bNM1W1 to device-2. After receiving all the key shares

from each device, they establish a mutual symmetric key as

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

242

Key = aD1V1+ aD2V2+ bNM1W1 + bNM2W2 (9)

Figure 4 represents the necessary steps in the mutual

symmetric key establishment process between two devices

belonging to two networks.

Fig. 4 Symmetric key establishment between two IoT devices

3.4. Additional Key Management Services

3.4.1. Clock Synchronization Issue

It is not a good practice to make the decision about

freshness or expiration of a key based on date and time. This

is because most resource-constrained devices do not have a

reliable means of measuring real time and suffer from clock

synchronization especially when they sleep for a long period

to save their energy and increase the network lifetime.

However, the platform used (i.e. CC2538DK of Texas

Instruments) has a real-time clock synchronization

mechanism, and freshness or expiration decision of keys can

be done on date and time. However, not all IoT devices have

such a mechanism; hence, this paper does not focus on this

approach to key freshness or expiration.

3.4.2. Key Freshness

There are a number of attacks where a compromised key

can be used at later stages, such as replay attacks. Hence, the

freshness of the key is an important factor that needs to be

considered and addressed in key establishment and

management algorithms. To this aim, the proposed algorithm

uses network share and device share, where random numbers

are multiplied (meaning addition of a point multiple times

based on that random number) with the point to generate a

secret symmetric session key. Once the session expires, IoT

devices want to establish a new session; they generate a new

symmetric session key.

3.4.3. Key Expiration

Each security key needs to expire after some time to

secure the system and prevent replay attacks. In the proposed

scheme, the security key based on time stamps (like date and

time approach) does not expire, but the key expiration in the

proposed scheme is based on the session, irrespective of its

duration. For example, if a device establishes different

sessions at different time intervals with other devices, it will

use different keys. Since these sessions may have different

durations, each key will have a different expiration time.

3.4.4. Key Revocation

Although the key expiration depends on the session

duration in the proposed scheme, there is still a possibility of

key compromise during the session. This is because if one of

the two communicating IoT devices gets compromised, it

violates the mutual agreement. In this case, key revocation

needs to be done early, and other communicating IoT devices

must send a key revocation message to both the network

managers from whom they got network shares during the key

establishment phase.

4. Implementation
To evaluate the proposed key establishment and

management scheme, two resource-constrained IoT devices

connected directly with their network managers are

implemented, and the network managers are connected

directly to the network coordinator. All the devices were in the

communication range of each other for experimental tests to

keep the network architecture simple. Figure 5 shows the

experimental setup of the proposed network architecture.

Fig. 5 Experimental setup

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

243

The implementation details are as follows: (1) The

network coordinator is implemented as a Java web server

application, and (2) the network manager is implemented as a

Java application on a laptop. (3) IoT devices are implemented

in C on constrained devices.

The network coordinator, which is implemented as a web

service application, accepts the members' registration and

network credential requests from each network manager as an

HTTP request over a secure TLS connection. The network

manager is connected to the resource-constrained devices

through a serial port using the Serial Line Internet Protocol

(SLIP) protocol. At the same time, the resource devices are

connected to each other through IEEE 802.15.4 radio links.

4.1. Network Coordinator Implementation

A Network Coordinator that is implemented as a web

server provides service to the network managers. It registers

the member resource-constrained devices of each network

manager to keep track of those devices and avoid any node

replication attacks. It also provides some security credentials

(explained in III) to each network manager that help in the

authentication and key establishment phases with the network

coordinator and the resource-constrained devices.

However, from the implementation point of view, the

network coordinator accepts each message as a JSON object

that includes the details of the network managers. The

response is also a JSON object that includes the confirmation

or any correction to the member registration request or the

network credentials to the network credentials request. TLS

approach is used at this level based on X.509 protocol for

implementation purposes because the main objective is to

evaluate the proposed algorithm (only key establishment part)

on resource-constrained devices.

4.2. Network Manager Implementation
The network manager is also implemented as a Java

application. It performs the following functions: (1) registers

the member resource-constrained devices with the network

coordinator and gets security credentials from the network

coordinator, (2) establishes a secure link with resource-

constrained devices and helps them to authenticate each other

and establish a mutual symmetric key. In the proposed

implementation, the network manager performs a DTLS

handshaking with resource-constrained devices through the

provided key materials and sends a CoAP request to the device

(like an HTTP request is sent by a device to a server when a

URL is entered).

4.3. Resource Constrained Device
The main objective of implementation is to check the real

performance of the proposed algorithm over constrained

devices. So the algorithm is implemented on the CC2538DK

of Texas Instruments, which has enough memory and

computational power to perform all the tasks. It also supports

the IEEE 802.15.4 radio link through which the devices

communicate directly. CC2538 also has cryptographic

accelerators and a random number generator that plays an

important role in the proposed key generation algorithm.

For practical implementation, the CC2538DK

development kit of Texas Instruments is used, which contains

a CC2538F512RKU processor, RAM of 32 KB, ROM of 512

KB, operate at a 32MHz clock frequency and at a voltage of

2.1 V. The current rating is 13 mA and has a 32.768 kHz

oscillator frequency. It also has a light sensor, 4 LEDs and an

accelerometer.

1) Contiki OS: Contiki Operating System (OS) is

specifically designed for IoT applications and is an open-

source OS. Contiki OS supports Internet Protocols, including

IPv6, TCP, and UDP. It also has a built-in CoAP protocol and

supports server/client architecture with minimal code size.

2) DTLS Library: A tiny DTLS library is used to

implement DTLS functionality. This is implemented in the C

language and is suitable for resource-constrained devices.

However, it has been extended to support the proposed

algorithm. For example, a hardware accelerator is used to

generate random numbers instead of a software-based

procedure. Also, the STLS session handler is modified so that

it searches for the existing session, and the DTLS event close

is added.

3) CoAP and DTLS Integration: CoAP is integrated

with DTLS to secure CoAP functionality. However, this

security is flexible and can be enabled and disabled using an

added SECURE flag. A callback method has also been

implemented to handle the CoAP secure messages. Whenever

a message is received by a CoAP receiver, it checks whether

to process the message securely or not. If it is to be sent

without security, the data message is handled as a normal

CoAP message.

5. Implementation
To show the performance of the proposed algorithm, the

network setup shown in Figure 5 is evaluated to check the

memory, time and energy overhead.

1) Memory Cost: To check the code size and memory

utilization, arm-none-eabi-size is used. This is because arm-

none-eabi-size gives the information about both RAM and

ROM utilization, and is also included in the ARM processor

utility toolchain.

The total memory overhead of the proposed algorithm is

1537 bytes. Among these 1537 bytes, 24 bytes are reserved for

global variables, while static information consumes 48 bytes,

and the remaining 1465 bytes are consumed by code.

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

244

The total memory occupied by the tiny DTLS library is

21592 bytes, including all the necessary changes in it. Detailed

investigations showed that 19368 bytes are occupied by

program code, while constant data occupied 140 bytes, and

2084 bytes are occupied by global variables.

2) Time and Energy Cost: To calculate the total time

taken by computation and energy consumed, the Contiki

Energest module [13] is used. This is because it is based on a

time clock and also measures the time of different components

separately. For example, CPU time, transmission time, etc.

The total energy consumed is calculated as

 Energy = V ∗ I ∗ t (10)

Where V is the voltage of the power supply, I is the

average current consumed, and t is the time during which the

modules are active. Its value is taken from the Energest

module of Contiki. In this way, the energy consumed by each

module is calculated and summed up to observe the total

energy consumption of the processor and radio transceiver.

Also, the total energy consumed during the authentication, key

generation and establishment phases is calculated separately

and shown in Table 1.

Table 1. Energy consumption during authentication and key

generation phase

Function
Energy Consumed

(µJ)

Authentication 32

Key Generation 23

The energy consumption of the proposed scheme is also

compared with the existing approach [14], which uses the

same platform for evaluation purposes, but the proposed

solution performs better than [14]. Figure 6 shows the

comparison of the energy consumption of the proposed

approach with [14].

3) Security Analysis: Although cryptography is

considered one of the main fundamental pillars of any security

system, the management and authenticity of those

cryptographic keys are more challenging in an IoT

environment. Hence, the exchange of cryptographic key

material must be secure and verifiable.

In the proposed algorithm, a cryptographic key not only

depends on the two communicating devices but also depends

on their network managers and their shares. This makes the

proposed algorithm more robust against attacks.

For example, an attacker would not be able to establish a

secret key with any other IoT device because the attacker

would not be able to authenticate itself to the network manager

and hence would not be able to get the required key share from

the network managers.

Fig. 6 Overall energy consumption during the key generation process

The AVISPA tool (Automated Validation of Internet

Security Protocols and Applications) was used to evaluate the

security strength of the proposed key management approach

for IoT devices. AVISPA is a widely used platform that helps

automatically test the security of network protocols. It offers

a flexible way to define protocols and their security goals, and

includes multiple analysis engines that apply advanced

techniques to find possible vulnerabilities.

The key management scheme was implemented using

AVISPA and tested against common types of attacks

supported by the tool, including OFMC (On-the-Fly Model-

Checker) and CL-AtSe (Constraint-Logic-based Attack

Searcher). OFMC dynamically builds a model of the

protocol's behavior during the analysis process, using

symbolic methods to manage complex states. CL-AtSe, on the

other hand, translates the protocol into a set of logical

constraints and searches for possible security flaws

automatically. Both tools carry out the analysis without

needing manual intervention. Results are shown in Table 2.

Table 2. Avispa simulation results

Technique Summary

OFMC SAFE

CL-AtSe SAFE

6. Conclusion
 Although the DTLS approach is becoming a security

standard for IoT devices, it requires a PKI certification

approach that is very resource-consuming in terms of

computation and is considered not suitable for resource-

constrained devices that are also part of an IoT network. A

scalable and mutual authentication and key establishment

protocol that does not require any certification authority and

is computationally lightweight is proposed in this work. The

implementation of the proposed protocol over resource-

constrained devices in an IoT network showed its feasibility

and adaptability in such a highly dynamic, heterogeneous

network. Future work aims to develop and implement similar

approaches to other cybersecurity protocols, such as

IPsec/IKE.

50

52

54

56

58

60

62

64

Proposed Solution Raza Approach

E
n
er

g
y
 µ

J

Ahmed S. Alfakeeh / IJECE, 12(7), 238-245, 2025

245

References
[1] Matheus K. Ferst et al., “Implementation and Analysis of a Secure Communication with SunSpec Modbus and Transport Layer Security

Protocols for Short-Term Energy Management Systems,” IEEE Access, vol. 13, pp. 105183-105198, 2025. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Mingping Qi, and Chi Chen, “HPQKE: Hybrid Post-Quantum Key Exchange Protocol for SSH Transport Layer from CSIDH,” IEEE

Transactions on Information Forensics and Security, vol. 20, pp. 2122-2131, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[3] Geovane Fedrecheski, Mališa Vučinić, and Thomas Watteyne, “Performance Comparison of EDHOC and DTLS 1.3 in Internet-of-Things

Environments,” 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, pp. 1-6, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Min Shi et al., “A Formal Analysis of 5G EAP-TLS Protocol,” IEEE Transactions on Networking, pp. 1-13, 2025. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Muhammad Rana, Quazi Mamun, and Rafiqul Islam, “Enhancing IoT Security: An Innovative Key Management System for Lightweight

Block Ciphers,” Sensors, vol. 23, no. 18, pp. 1-25, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Wei Yang et al., “SAKMS: A Secure Authentication and Key Management Scheme for IETF 6TiSCH Industrial Wireless Networks Based

on Improved Elliptic-Curve Cryptography,” IEEE Transactions on Network Science and Engineering, vol. 11, no. 3, pp. 3174-3188, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Qing Wang, and Haoran Li, “Application of IoT Authentication Key Management Algorithm to Personnel Information Management,”

Computational Intelligence and Neuroscience, vol. 2022, pp. 1-11, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Mohammed Riyadh Abdmeziem, Amina Ahmed Nacer, and Nawfel Moundji Deroues, “Group Key Management in the Internet of Things:

Handling Asynchronicity,” Future Generation Computer Systems, vol. 152, pp. 273-287, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[9] Khalid Mahmood et al., “Blockchain and PUF-Based Secure Key Establishment Protocol for Cross-domain Digital Twins in Industrial

Internet of Things Architecture,” Journal of Advanced Research, vol. 62, pp. 155-163, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[10] Sieun Ju, and Yohan Park, “Provably Secure Lightweight Mutual Authentication and Key Agreement Scheme for Cloud-Based IoT

Environments,” Sensors, vol. 23, no. 24, pp. 1-25, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Muhammad Rana, Quazi Mamun, and Rafiqul Islam, “Enhancing IoT Security: An Innovative Key Management System for Lightweight

Block Ciphers,” Sensors, vol. 23, no. 18, pp. 1-25, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] “CC2538EM Reference Design,” Technical Report, 2012. [Publisher Link]

[13] Adam Dunkels et al., “Software-Based On-Line Energy Estimation for Sensor Nodes,” Proceedings of the 4th Workshop on Embedded

Networked Sensors, Cork Ireland, pp. 28-32. [CrossRef] [Google Scholar] [Publisher Link]

[14] Shahid Raza et al., “S3K: Scalable Security with Symmetric Keys—DTLS Key Establishment for the Internet of Things,” IEEE

Transactions on Automation Science and Engineering, vol. 13, no. 3, pp. 1270-1280, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2025.3577972
https://scholar.google.com/scholar?q=Implementation+and+Analysis+of+a+Secure+Communication+with+SunSpec+Modbus+and+Transport+Layer+Security+Protocols+for+Short-term+Energy+Management+Systems&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/11028069
https://doi.org/10.1109/TIFS.2025.3539943
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HPQKE%3A+Hybrid+Post-Quantum+Key+Exchange+Protocol+for+SSH+Transport+Layer+From+CSIDH&btnG=
https://ieeexplore.ieee.org/abstract/document/10877938
https://doi.org/10.1109/WCNC57260.2024.10570830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Comparison+of+EDHOC+and+DTLS+1.3+in+Internet-of-Things+Environments%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/10570830
https://doi.org/10.1109/TON.2025.3556374
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Formal+Analysis+of+5G+EAP-TLS+Protocol&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Formal+Analysis+of+5G+EAP-TLS+Protocol&btnG=
https://ieeexplore.ieee.org/abstract/document/10976431
https://doi.org/10.3390/s23187678
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+IoT+Security%3A+An+Innovative+Key+Management+System+for+Lightweight+Block+Ciphers&btnG=
https://www.mdpi.com/1424-8220/23/18/7678
https://doi.org/10.1109/TNSE.2024.3363004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SAKMS%3A+A+Secure+Authentication+and+Key+Management+Scheme+for+IETF+6TiSCH+Industrial+Wireless+Networks+Based+on+Improved+Elliptic-Curve+Cryptography&btnG=
https://ieeexplore.ieee.org/abstract/document/10423230
https://doi.org/10.1155/2022/4584072
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+IoT+Authentication+Key+Management+Algorithm+to+Personnel+Information+Management&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/4584072
https://doi.org/10.1016/j.future.2023.10.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+key+management+in+the+Internet+of+Things%3A+Handling+asynchronicity&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X23003965
https://www.sciencedirect.com/science/article/abs/pii/S0167739X23003965
https://doi.org/10.1016/j.jare.2023.09.017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Blockchain+and+PUF-Based+Secure+Key+Establishment+Protocol+for+Cross-domain+Digital+Twins+in+Industrial+Internet+of+Things+Architecture&btnG=
https://www.sciencedirect.com/science/article/pii/S2090123223002667
https://www.sciencedirect.com/science/article/pii/S2090123223002667
https://doi.org/10.3390/s23249766
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Provably+Secure+Lightweight+Mutual+Authentication+and+Key+Agreement+Scheme+for+Cloud-Based+IoT+Environments&btnG=
https://www.mdpi.com/1424-8220/23/24/9766
https://doi.org/10.3390/s23187678
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+IoT+Security%3A+An+Innovative+Key+Management+System+for+Lightweight+Block+Ciphers&btnG=
https://www.mdpi.com/1424-8220/23/18/7678
https://www.ti.com/tool/CC2538EM-RD
https://doi.org/10.1145/1278972.1278979
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software-based+on-line%C2%A8+energy+estimation+for+sensor+nodes&btnG=
https://dl.acm.org/doi/abs/10.1145/1278972.1278979
https://doi.org/10.1109/TASE.2015.2511301
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S3K%3A+Scalable+Security+With+Symmetric+Keys%E2%80%94DTLS+Key+Establishment+for+the+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/abstract/document/7373695

