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Abstract - Recently, the Internet of Things (IoT) has attracted the attention of many researchers due to its popularity in various 

applications. Connecting different capability devices in the Internet of Things architecture makes security a big challenge. 

Datagram Transport Layer Security Protocol is considered a standard for securing communication among Internet of Things 

devices by establishing a secret key. However, the default method, X.509, requires certificates and public key infrastructure that 

are more resource-consuming and not suitable for resource-constrained devices. On the other hand, datagram transport layer 

security supports the pre-shared key approach and raw pubic keys, which are lightweight but not scalable for such large 

networks. Hence, a scalable and lightweight mutual key establishment and management protocol is proposed for such a large 

number of resource-constrained IoT devices. The implementation of the proposed scheme in Contiki OS and on a real IoT 

platform shows its performance evaluation in terms of feasibility and scalability. 

Keywords - Internet of Things, Authentication, Key establishment, Security, Secret key. 

1. Introduction  
Transport Layer Security (TLS) protocol is one of the 

most famous and widely used security protocols in today’s 

Internet [1, 2]. It is used in parallel with the Transmission 

Control Protocol (TCP) for reliable and secure 

communication. However, TLS cannot be used in the Internet 

of Things, as it usually uses the TCP approach, but many IoT 

applications use the User Datagram Protocol (UDP) for 

communication.  

Keeping in view these limitations, IETF (Internet 

Engineering Task Force) developed Datagram Transport 

Layer Security (DTLS), which is a UDP-based on TLS and 

easily applicable in IoT applications [3, 4]. 

To establish a secure session using DTLS and TLS, client 

and server usually do a handshaking that is based on X.509 

certificates and a corresponding verification infrastructure. 

However, this architecture is not suitable for a large number 

of resource-constrained IoT devices.  

X. 509 certification is based on a central certification 

authority mechanism and also based on RSA (traditional PKI 

approach), which is not suitable for resource-constrained 

devices because of the high computational cost (multiplication 

and power operations). Also, a single point of failure is 

possible. Usually, sensor nodes use a preshared key approach 

to establish a secure session. 

However, using the preshared key approach alone is not 

feasible and scalable for a large IoT network, especially in 

cases where two devices have no prior direct relationship with 

each other and belong to different servers. This is because the 

Internet of Things consists of billions of devices and requires 

a memory equal to the key size * billions of devices. So 

constrained devices do not have such a large memory [5, 6]. 

Also, disclosing the server's symmetric key to an unknown 

device is not a good approach, and using Public Key 

Infrastructure (PKI) is unsuitable. Hence, key establishment 

and management are important issues in IoTs. However, 

Kerberos-like protocols have been used for a long time to 

solve such issues that use Key Distribution Center (KDC) and 

Trusted Third Party (TTP) to establish a key between the two 

clients without revealing the secret shared keys of their servers 

to each other. In many Internet applications, TTP is used as an 

authorization server to grant access to the trusted clients to 

reach a server. 

A similar Approach with some additional requirements is 

needed for IoT applications (for example, smart metering, 

building automation, personal health monitoring, and 

industrial control systems) where resource-constrained 

devices can get help from those authorization servers to 

generate a key and establish a session. But the size of 

messages and number of messages exchanged during the key 

establishment and session creation phase put an extra burden 

on resource-constrained devices and need to be optimized to 
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reduce this burden and improve the network performance and 

lifetime. Hence, introducing a Kerberos-like protocol for IoT 

applications is also not suitable. 

This paper proposes an efficient and scalable mutual 

symmetric key establishment and management protocol 

between two IoT devices that have no direct relationship with 

each other. In this scenario, two IoT devices will contact their 

network managers for help in establishing a secret key 

between them.  

This is because the key in the proposed scheme depends 

on both device parameters/share and network 

parameters/share to avoid any node replication attacks, sybil 

attacks, etc. First, the authentication phase is performed 

between the IoT device and the network manager, followed by 

key material generation. After successfully generating the key 

materials, an IoT device will be able to authenticate other IoT 

devices and establish a mutual symmetric key with them for 

secure communication. 

The rest of this paper is organized as follows. The 

literature survey is presented in Section 2, while Section 3 

presents the proposed algorithm for mutual key establishment 

and management protocol. Section 4 gives the complete 

details of the experimental testbed, while the results are 

discussed in Section 5, and finally, the paper is concluded in 

Section 6. 

 

2. Related Work  
Internet of Things (IoT) networks include a wide range of 

devices with limited processing, memory, and energy 

capabilities. Due to these constraints, traditional security 

protocols like TLS are not suitable for IoT environments. 

Instead, Datagram Transport Layer Security (DTLS) [5] is 

commonly used as it supports UDP-based communication. 

However, DTLS still requires a secure session setup through 

certificate-based handshaking, which is not practical for 

resource-constrained devices. To overcome these limitations, 

researchers have proposed several alternative approaches for 

authentication and key management in IoT. 

 

Several works have enhanced authentication frameworks 

using cryptographic algorithms optimized for low-power 

environments. For example, Wang and Li [7] presented an 

improved IoT authentication protocol by integrating the 

Diameter framework with elliptic curve-based key agreement 

and lightweight encryption (AES/RC4). They also proposed a 

key management scheme based on multivariate quadratic 

polynomials, which improved scalability and security while 

reducing overhead. Similarly, Ju and Park [10] proposed a 

lightweight mutual authentication and key agreement protocol 

using elliptic curve cryptography and hash functions for 

cloud-based IoT, offering resistance against insider and 

impersonation attacks with low computational costs. 

Another important aspect of IoT security is group key 

management. Abdmeziem et al. [8] proposed a blockchain-

based group key management system that supports 

asynchronous IoT environments where device unavailability 

is common. Their protocol uses smart contracts and a 

reputation-based mechanism to ensure trust and secure 

consensus among distributed devices. Security features like 

Perfect Forward Secrecy (PFS) and Post-Compromise 

Security (PCS) were included with minimal overhead, making 

it suitable for real-world deployments. 

To further resist physical attacks and support cross-

domain communication, Mahmood et al. [9] introduced a 

blockchain and Physically Unclonable Function (PUF)-based 

key establishment protocol. Their method used an on-chain 

accumulator and cross-domain trust model, enabling devices 

from different domains to derive secure keys without 

revealing identities or requiring heavy computation. Similarly, 

Yang et al. [6] presented SAKMS, a key management protocol 

for 6TiSCH industrial wireless networks, using an improved 

elliptic curve algorithm. The scheme achieved faster key 

computation, implicit certificates, and dynamic key updates to 

minimize the risk of key leakage while maintaining 

compatibility with low-power devices. 

Rana et al. [11] proposed an innovative key management 

system for cluster-based IoT networks using lightweight block 

cyphers. Their method used pre-distributed partial keys that 

are later combined into full encryption keys, reducing storage 

needs and allowing frequent key updates without transmitting 

the keys over the network. This approach provided scalability 

and reduced vulnerability to key exposure. While these 

approaches enhance authentication and key establishment in 

different IoT scenarios, most of them either rely on pre-shared 

keys, certificate-based mechanisms, or blockchain 

infrastructures, which may introduce added complexity, 

communication overhead, or dependency on external servers. 

In contrast, the approach proposed in this paper focuses on a 

scalable and lightweight mutual symmetric key establishment 

and management scheme without prior trust between devices. 

By engaging network managers and using both device-

specific and network-specific parameters, the protocol 

improves security and resilience against attacks such as Sybil 

and node replication while ensuring minimal overhead and 

making it ideal for large-scale and heterogeneous IoT 

deployments. 

3. Proposed Algorithm  
Cryptography and key management are considered one of 

the main building blocks of security. However, it becomes 

more challenging if the network consists of resource-

constrained devices (for example, sensors, smart objects in the 

Internet of Things). In the traditional security approach over 

the Internet, clients authenticate servers using their digital 

signatures while servers authenticate clients using their 

username and password. However, these approaches are not 
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suitable for resource-constrained devices used in IoT due to 

the lack of a keyboard and screen. Public Key Infrastructure 

(PKI) is computationally very expensive and unsuitable for 

use in constrained devices. Some efficient procedure to 

authenticate such constrained devices using lightweight 

certificates (e.g. based on ECC) is needed. However, the most 

favorable approach is to use a symmetric key Approach. 

Symmetric key establishment is done using pre-shared secret 

key materials or using a lightweight PKI approach based on 

Elliptic Curve Cryptography (ECC). 
 

The main objective of the proposed approach is to 

develop a mutual authentication scheme that avoids 

impersonation attacks. For each new session establishment, a 

new encryption key should be used for security purposes, and 

this requires selecting a new additive factor that generates a 

fresh random key. Although a password-based method can 

simplify this process, it is vulnerable to keylogger attacks. In 

ad hoc networks, one-time authentication is usually sufficient; 

however, in IoT-based environments, authentication is 

required at the start of each new session, similar to how 

different accounts are accessed on the Internet using different 

devices. 
 

Before explaining the proposed solution in detail, it is 

important to provide an overview of the network entities 

involved. The proposed network includes: (1) a client that 

utilizes the services of a server, (2) a server that provides 

services to clients, which may be either resource-constrained 

or resource-rich, (3) a Network Manager (NM) for each 

network, responsible for its management, (4) a Network 

Coordinator (NC) for each type of network (i.e., resource-

constrained and resource-rich), and (5) a Trusted Third Party 

(TTP) that establishes trust between the NCs.  

 

The architecture of the proposed network is illustrated in 

Figure 1. The authentication of IoT devices and establishing a 

secret symmetric communication key between them are the 

main security features of the proposed solution. The first 

authentication phase starts between the IoT devices, and once 

they authenticate each other successfully, they start the 

symmetric key establishment phase. 

 

3.1.  Key Pre-Distribution Phase 

Before the network deployment, each device is assigned 

some authentication and key generation materials offline. 

More specifically, each node is assigned (1) a special one-time 

authentication code, (2) an elliptic curve point generator, (3) 

an authentication material generation function and (4) a 

symmetric key generation function. 

3.2. Authentication 

Before going into the details of the authentication 

procedure performed by the IoT devices to authenticate each 

other, the authentication materials are first generated by the 

device and its network manager. 

 
Fig. 1 Proposed network architecture 

 

3.2.1. Authentication Material Generation 

Once the network is deployed, the network manager starts 

broadcasting Hello messages to learn about the network 

devices nearby. Each Hello message also consists of a special 

authentication code assigned to the NM before the network 

deployment to authenticate itself to its network devices. After 

receiving Hello messages from network devices, each device 

sends a joining message including its own special 

authentication code to authenticate itself to the NM. Upon 

receiving a Hello response/joining message from network 

devices, NM selects an elliptic curve EP(a,b) and a point eNM 

and sends this information to the network device. After 

receiving EP(a,b) and eNM, each device randomly chooses an 

additive factor dD and a point eD over EP(a,b) and calculates 

W as 

 W = dDeNM        (1) 

Each device sends W and eD back to its NM, where the 

NM calculates V after selecting an additive factor dNM as 

 V = dNMeD       (2) 

NM sends V to each particular network device from which 

it received eD. This W and V help the NM and a network 

device to calculate mutual authentication materials generation 

(i.e. E1 and E-2). The NM calculates E1 as 

 E1 = eNM + V          (3) 

and the network device calculates E2 and shares it with 

NM as 

 E2 = dDV + W               (4) 

Now, NM has EP(a,b), E1 and E2 for each device and 

registers this information with its NC. Figure 2 represents all 

the necessary steps involved in generating authentication-

related materials. 
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Fig. 2 Authentication material generation by a device and its network 

manager 

3.2.2. Authentication Phase 

After successfully generating authentication materials, 

the two devices are able to authenticate each other. The 

authentication procedure between any two IoT entities is the 

same, i.e., the same authentication procedure is followed by 

the network managers to authenticate each other, between the 

devices belonging to different networks, and between the 

network manager and its network coordinator. To better 

understand the authentication procedure, two devices that 

belong to two different networks are considered. Suppose 

device-1 wants to establish a secure session with device-2, it 

sends a session establishment request to its NM1. Suppose 

NM1 does not have the security credentials of NM2 of device-

2. In that case, NM1 contacts the network coordinator of NM2 

to get its security credentials after receiving the NM2 

credentials (i.e. EP(a,b), E1 and E2), NM1 becomes able to 

authenticate NM2 and sends device-1 credentials to NM2 

securely and requests device-2 credentials. Once NM2 

receives a message from NM1, it first authenticates NM1. If 

NM2 does not have the NM1 security credentials, it contacts 

the network coordinator of NM1 to get its security credentials. 

After successful authentication, NM2 send the device-2 

credentials to NM1. NM1 sends the received credentials of 

device-2 to device-1, while NM2 sends the received 

credentials of device-1 to device-2. Once a device receives the 

security credentials of another device (i.e. EP(a,b), E1 and 

E2), it generates C1 as 

 C1 = rE1   (5) 

and C2 as 

 C2 = Nonce + rE2 (6) 

After successfully calculating C1 and C2, each device 

sends them to the other communicating device. After 

receiving C1 and C2, each device extracts the sent Nonce from 

it. 

 Nonce = C2− dNC1   (7) 

If Nonce is calculated correctly, it is sent back to the 

sending device to prove its authenticity (i.e., the sending 

device used the correct credentials of the receiving device and 

the receiving device has correctly recovered the Nonce from 

C1 and C2). Figure 3 represents the necessary steps in the 

authentication process of two devices belonging to two 

different networks. 

 
Fig. 3 Authentication process of devices 

3.3. Symmetric Key Establishment 

After successfully authenticating each other, two devices 

establish a mutual symmetric key for secure communication, 

a function of the device and network share. 

 Key = f(Device/Share + Netowrk/Share)        (8) 

In the proposed approach, this symmetric key consists of 

four parts, namely (1) device-1 share, (2) device-1’s network 

manager share, (3) device-2 share and (4) device-2’s network 

manager share. The dependence of symmetric key on the 

mentioned network entities shares makes it difficult for an 

attacker to launch any impersonation attacks or guess those 

shares. To establish a symmetric key, device-1 sends a key 

establishment request to device-2 along with its key share 

aD1V1, where aD1 is a randomly selected constant by device-

1. Similarly, device-2 also sends its own key share, aD2V2, 

during the key establishment response.  

 

Once the devices receive the device shares of the key 

from each other, they send a request to the network managers 

to get the network share. Device-1 sends a request to NM2 

while Device-2 sends a request to NM1. Now the NM2 sends 

the network manager share of key bNM2W2 in its response to 

device-1, while NM1 sends its own network manager share of 

key bNM1W1 to device-2. After receiving all the key shares 

from each device, they establish a mutual symmetric key as 
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Key = aD1V1+ aD2V2+ bNM1W1 + bNM2W2        (9) 

Figure 4 represents the necessary steps in the mutual 

symmetric key establishment process between two devices 

belonging to two networks. 

 
Fig. 4 Symmetric key establishment between two IoT devices 

3.4.  Additional Key Management Services 

3.4.1. Clock Synchronization Issue 

It is not a good practice to make the decision about 

freshness or expiration of a key based on date and time. This 

is because most resource-constrained devices do not have a 

reliable means of measuring real time and suffer from clock 

synchronization especially when they sleep for a long period 

to save their energy and increase the network lifetime. 

However, the platform used (i.e. CC2538DK of Texas 

Instruments) has a real-time clock synchronization 

mechanism, and freshness or expiration decision of keys can 

be done on date and time. However, not all IoT devices have 

such a mechanism; hence, this paper does not focus on this 

approach to key freshness or expiration. 

 

3.4.2. Key Freshness 

There are a number of attacks where a compromised key 

can be used at later stages, such as replay attacks. Hence, the 

freshness of the key is an important factor that needs to be 

considered and addressed in key establishment and 

management algorithms. To this aim, the proposed algorithm 

uses network share and device share, where random numbers 

are multiplied (meaning addition of a point multiple times 

based on that random number) with the point to generate a 

secret symmetric session key. Once the session expires, IoT 

devices want to establish a new session; they generate a new 

symmetric session key. 

3.4.3. Key Expiration 

Each security key needs to expire after some time to 

secure the system and prevent replay attacks. In the proposed 

scheme, the security key based on time stamps (like date and 

time approach) does not expire, but the key expiration in the 

proposed scheme is based on the session, irrespective of its 

duration. For example, if a device establishes different 

sessions at different time intervals with other devices, it will 

use different keys. Since these sessions may have different 

durations, each key will have a different expiration time. 

3.4.4. Key Revocation 

Although the key expiration depends on the session 

duration in the proposed scheme, there is still a possibility of 

key compromise during the session. This is because if one of 

the two communicating IoT devices gets compromised, it 

violates the mutual agreement. In this case, key revocation 

needs to be done early, and other communicating IoT devices 

must send a key revocation message to both the network 

managers from whom they got network shares during the key 

establishment phase. 

4. Implementation 
To evaluate the proposed key establishment and 

management scheme, two resource-constrained IoT devices 

connected directly with their network managers are 

implemented, and the network managers are connected 

directly to the network coordinator. All the devices were in the 

communication range of each other for experimental tests to 

keep the network architecture simple. Figure 5 shows the 

experimental setup of the proposed network architecture. 

 
Fig. 5 Experimental setup 
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The implementation details are as follows: (1) The 

network coordinator is implemented as a Java web server 

application, and (2) the network manager is implemented as a 

Java application on a laptop. (3) IoT devices are implemented 

in C on constrained devices. 

The network coordinator, which is implemented as a web 

service application, accepts the members' registration and 

network credential requests from each network manager as an 

HTTP request over a secure TLS connection. The network 

manager is connected to the resource-constrained devices 

through a serial port using the Serial Line Internet Protocol 

(SLIP) protocol. At the same time, the resource devices are 

connected to each other through IEEE 802.15.4 radio links. 

4.1. Network Coordinator Implementation 

A Network Coordinator that is implemented as a web 

server provides service to the network managers. It registers 

the member resource-constrained devices of each network 

manager to keep track of those devices and avoid any node 

replication attacks. It also provides some security credentials 

(explained in III) to each network manager that help in the 

authentication and key establishment phases with the network 

coordinator and the resource-constrained devices.  

However, from the implementation point of view, the 

network coordinator accepts each message as a JSON object 

that includes the details of the network managers. The 

response is also a JSON object that includes the confirmation 

or any correction to the member registration request or the 

network credentials to the network credentials request. TLS 

approach is used at this level based on X.509 protocol for 

implementation purposes because the main objective is to 

evaluate the proposed algorithm (only key establishment part) 

on resource-constrained devices. 

4.2. Network Manager Implementation 
The network manager is also implemented as a Java 

application. It performs the following functions: (1) registers 

the member resource-constrained devices with the network 

coordinator and gets security credentials from the network 

coordinator, (2) establishes a secure link with resource-

constrained devices and helps them to authenticate each other 

and establish a mutual symmetric key. In the proposed 

implementation, the network manager performs a DTLS 

handshaking with resource-constrained devices through the 

provided key materials and sends a CoAP request to the device 

(like an HTTP request is sent by a device to a server when a 

URL is entered). 

4.3. Resource Constrained Device 
The main objective of implementation is to check the real 

performance of the proposed algorithm over constrained 

devices. So the algorithm is implemented on the CC2538DK 

of Texas Instruments, which has enough memory and 

computational power to perform all the tasks. It also supports 

the IEEE 802.15.4 radio link through which the devices 

communicate directly. CC2538 also has cryptographic 

accelerators and a random number generator that plays an 

important role in the proposed key generation algorithm. 

For practical implementation, the CC2538DK 

development kit of Texas Instruments is used, which contains 

a CC2538F512RKU processor, RAM of 32 KB, ROM of 512 

KB, operate at a 32MHz clock frequency and at a voltage of 

2.1 V. The current rating is 13 mA and has a 32.768 kHz 

oscillator frequency. It also has a light sensor, 4 LEDs and an 

accelerometer.  

1) Contiki OS: Contiki Operating System (OS) is 

specifically designed for IoT applications and is an open-

source OS. Contiki OS supports Internet Protocols, including 

IPv6, TCP, and UDP. It also has a built-in CoAP protocol and 

supports server/client architecture with minimal code size. 

2) DTLS Library: A tiny DTLS library is used to 

implement DTLS functionality. This is implemented in the C 

language and is suitable for resource-constrained devices. 

However, it has been extended to support the proposed 

algorithm. For example, a hardware accelerator is used to 

generate random numbers instead of a software-based 

procedure. Also, the STLS session handler is modified so that 

it searches for the existing session, and the DTLS event close 

is added. 

3) CoAP and DTLS Integration: CoAP is integrated 

with DTLS to secure CoAP functionality. However, this 

security is flexible and can be enabled and disabled using an 

added SECURE flag. A callback method has also been 

implemented to handle the CoAP secure messages. Whenever 

a message is received by a CoAP receiver, it checks whether 

to process the message securely or not. If it is to be sent 

without security, the data message is handled as a normal 

CoAP message. 

5. Implementation 
To show the performance of the proposed algorithm, the 

network setup shown in Figure 5 is evaluated to check the 

memory, time and energy overhead. 

1) Memory Cost: To check the code size and memory 

utilization, arm-none-eabi-size is used. This is because arm-

none-eabi-size gives the information about both RAM and 

ROM utilization, and is also included in the ARM processor 

utility toolchain. 

The total memory overhead of the proposed algorithm is 

1537 bytes. Among these 1537 bytes, 24 bytes are reserved for 

global variables, while static information consumes 48 bytes, 

and the remaining 1465 bytes are consumed by code.
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The total memory occupied by the tiny DTLS library is 

21592 bytes, including all the necessary changes in it. Detailed 

investigations showed that 19368 bytes are occupied by 

program code, while constant data occupied 140 bytes, and 

2084 bytes are occupied by global variables. 

2) Time and Energy Cost: To calculate the total time 

taken by computation and energy consumed, the Contiki 

Energest module [13] is used. This is because it is based on a 

time clock and also measures the time of different components 

separately. For example, CPU time, transmission time, etc. 

The total energy consumed is calculated as 

 Energy = V ∗ I ∗ t (10) 

Where V is the voltage of the power supply, I is the 

average current consumed, and t is the time during which the 

modules are active. Its value is taken from the Energest 

module of Contiki. In this way, the energy consumed by each 

module is calculated and summed up to observe the total 

energy consumption of the processor and radio transceiver. 

Also, the total energy consumed during the authentication, key 

generation and establishment phases is calculated separately 

and shown in Table 1. 

Table 1. Energy consumption during authentication and key 

generation phase 

Function 
Energy Consumed 

(µJ) 

Authentication 32 

Key Generation 23 

 
The energy consumption of the proposed scheme is also 

compared with the existing approach [14], which uses the 

same platform for evaluation purposes, but the proposed 

solution performs better than [14]. Figure 6 shows the 

comparison of the energy consumption of the proposed 

approach with [14].  

3) Security Analysis: Although cryptography is 

considered one of the main fundamental pillars of any security 

system, the management and authenticity of those 

cryptographic keys are more challenging in an IoT 

environment. Hence, the exchange of cryptographic key 

material must be secure and verifiable. 

In the proposed algorithm, a cryptographic key not only 

depends on the two communicating devices but also depends 

on their network managers and their shares. This makes the 

proposed algorithm more robust against attacks.  

For example, an attacker would not be able to establish a 

secret key with any other IoT device because the attacker 

would not be able to authenticate itself to the network manager 

and hence would not be able to get the required key share from 

the network managers. 

 
Fig. 6 Overall energy consumption during the key generation process 

The AVISPA tool (Automated Validation of Internet 

Security Protocols and Applications) was used to evaluate the 

security strength of the proposed key management approach 

for IoT devices. AVISPA is a widely used platform that helps 

automatically test the security of network protocols. It offers 

a flexible way to define protocols and their security goals, and 

includes multiple analysis engines that apply advanced 

techniques to find possible vulnerabilities. 

The key management scheme was implemented using 

AVISPA and tested against common types of attacks 

supported by the tool, including OFMC (On-the-Fly Model-

Checker) and CL-AtSe (Constraint-Logic-based Attack 

Searcher). OFMC dynamically builds a model of the 

protocol's behavior during the analysis process, using 

symbolic methods to manage complex states. CL-AtSe, on the 

other hand, translates the protocol into a set of logical 

constraints and searches for possible security flaws 

automatically. Both tools carry out the analysis without 

needing manual intervention. Results are shown in Table 2.  

Table 2. Avispa simulation results 

Technique Summary 

OFMC SAFE 

CL-AtSe SAFE 

 

6. Conclusion  
 Although the DTLS approach is becoming a security 

standard for IoT devices, it requires a PKI certification 

approach that is very resource-consuming in terms of 

computation and is considered not suitable for resource-

constrained devices that are also part of an IoT network. A 

scalable and mutual authentication and key establishment 

protocol that does not require any certification authority and 

is computationally lightweight is proposed in this work. The 

implementation of the proposed protocol over resource-

constrained devices in an IoT network showed its feasibility 

and adaptability in such a highly dynamic, heterogeneous 

network. Future work aims to develop and implement similar 

approaches to other cybersecurity protocols, such as 

IPsec/IKE. 
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