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Abstract - This paper introduces an enhanced Distributed Energy-Efficient Clustering (DEEC) protocol combined with 

Improved Weighed Quantum Particle Swarm Optimization (IWQPSO) to address critical issues in Wireless Sensor Networks 

(WSNs), such as limited energy resources, uneven energy distribution, dynamic network conditions, and communication 

overhead. WSNs are vital for data collection and transmission in various applications, but their efficiency is hindered by these 

challenges. The proposed method leverages DEEC-IWQPSO for dynamic cluster allocation, optimizing the selection of CHs 

and cluster formations based on real-time network conditions like traffic load and resource availability. The integration of 

quantum principles in IWQPSO enhances the exploration and convergence speed of the optimization process, leading to more 

efficient resource utilization and energy management. The primary objectives are to improve energy efficiency, extend network 

lifetime, optimize data transmission, minimize communication overhead, and ensure scalability in large WSN environments. 

Simulation results demonstrate that the proposed DEEC-IWQPSO protocol reduces energy consumption by up to 35%, increases 

network lifetime by 30%, improves data transmission reliability by 25%, and reduces communication overhead by 20% 

compared to existing methods. These outcomes highlight the protocol's ability to provide a scalable and energy-efficient solution 

for WSNs, making it suitable for diverse, resource-constrained environments. 

Keywords - Wireless Sensor Networks, Distributed Energy-Efficient Clustering, Improved Weighed Quantum Particle Swarm 

Optimization, Dynamic cluster allocation, Energy efficiency, Network lifetime, Coordinated transmission, Data transmission 

efficiency, Resource optimization, Quantum optimization. 

1. Introduction  
The sensor nodes use microprocessors to process the 

information they acquire and then send or receive the 

processed data to or from nearby nodes in the wireless sensor 

network. In a centralized sensor network, all sensing nodes are 

connected to each other and to a centralized control node 

known as the SINK through the network [1]. The SINK 

gathers information requested by the consumer from the 

network's nodes. The SINK is designed with broadcasting 

capabilities, allowing it to trigger network sensors by 

transmitting control and policy data for various applications 

[2]. Figure 1 provides a graphical overview of a WSN. It 

gained popularity over the past decade due to its ability to 

evaluate, automate, and manage applications that improve 

living conditions. WSN consists of several small computers 

called sensor nodes. WSN is primarily used for activity 

sensing and monitoring of fields, machinery, environments, 

etc [3]. The creation, execution, and operation of a sensor 

network require careful consideration of signal processing, 

communication protocols, data handling, etc. Compared to 

existing application-specific sensor networks, WSNs in IoT 

contexts have a larger coverage area and a higher number of 

sensor nodes [4]. More advanced energy-efficient routing 

techniques are required than the existing ones designed for 

WSNs with relatively modest coverage areas. To overcome 

these challenges, the scalability and cost-effectiveness of 

WSNs are crucial in all design aspects, including secure key 

management, network architecture, and routing protocols [5]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Graphical representation of wireless sensor network 

Routing protocols can be classified into two categories 

based on node deployment: hierarchical (cluster-based) 

routing and flat routing. In flat routing protocols, every sensor 

node performs the same function, transmitting data from 

sensors to the base station. For example, in LEACH, one-hop 

communication involves the Cluster Head (CH) gathering data 

from its member nodes and sending it directly to the Base 

Station (BS) [6]. Single-hop protocols are advantageous due 

to their low cost and latency, and if the network covers a small 

area, every node in the field can reach the entire sensor field 

with its communication range. Researchers used the variable 

k as a sub-optimized fixed value for small-area sensor 

networks [7]. k needs to be optimized for large-area WSNs 

with more sensor nodes. Decentralized cluster-based routing 

systems use control messages to manage message 

transmission, join requests, CH advertisements, and other 

operations [8]. In the LEACH method and most of its 

variations, nodes transmit control messages with maximum 

power to reach the entire network, ensuring that even the 

farthest nodes in the sensor field receive the signals [9]. 

 

These internet-connected, wirelessly deployed smart 

sensor nodes offer unprecedented possibilities for various 

military and civilian applications, such as industrial process 

control, environmental monitoring, and battlefield 

surveillance [10]. The initial driving force behind the 

development of WSNs was military use, particularly for 

battlefield monitoring. WSNs are now employed in a wide 

range of civilian applications such as traffic management, 

home automation, healthcare, and environmental and habitat 

monitoring [11]. The deployment of small cells, including 

Remote Radio Heads (RRH), picocells for outdoor street 

coverage, and femtocells for personal indoor access, has 

significantly increased the number of access points.  

 

This type of deployment deviates from the existing 

regulated cellular design by placing points of contact in a 

pseudo-regular pattern and relying on known propagation or 

penetration models [12]. Recently, the Random Network (RN) 

topology, where BSs and Mobile Stations (MSs) are randomly 

distributed throughout space, has been developed to simulate 

this new model. It is important to note that the Poisson Point 

Process (PPP), widely used for its statistical tractability, 

cannot adequately represent real-world deployments of 

commercial services. As a result, important insights into the 

performance of dense cellular networks can be obtained [13]. 

 

For example, the mathematical calculation of coverage in 

an RN considers both general and specific cases of fading. 

Research shows that PPP distributions provide a lower bound 

on the efficiency of existing cellular networks and can be 

viewed as a worst-case deployment scenario [14]. Multiple 

tiers of randomly placed base stations in Heterogeneous 

Networks (HetNets) with different transmission powers can be 

modeled as a single RN architecture. The tightly packed, 

unplanned nature of dense cellular networks makes existing 

frequency planning for optimal utilization of costly spectrum 

resources difficult [15]. In this research, Coordinated 

Multiple-Point (CoMP) transmission is considered a key 

technology for future dense cellular networks, as it is an 

efficient approach to reduce inter-cell interference (ICI). 

Interference becomes a much greater issue than in existing 

cellular networks [16]. 

 

1.1. Problem Statement  

Wireless Sensor Networks (WSNs) are widely used for 

real-time monitoring and data collection in diverse 

environments. However, their performance is critically 

constrained by limited energy resources and inefficient 

communication strategies. Existing static clustering 

techniques often result in unbalanced energy consumption 

among nodes, leading to premature node failures and reduced 

network lifetime. Moreover, the lack of intelligent 

coordination in data transmission contributes to increased 

latency, redundant communication, and reduced throughput. 

Dynamic cluster allocation, if not optimized, can further lead 

to frequent reclustering overhead and instability. Therefore, 

there is a pressing need for an adaptive and energy-aware 

clustering mechanism coupled with coordinated transmission 

that can dynamically form optimal clusters, select energy-

efficient cluster heads, and reduce communication costs. 

Addressing these challenges is essential for enhancing key 

performance measures such as energy efficiency, network 

longevity, data delivery rate, and overall reliability of WSNs. 

 

1.2. Motivation 

The growing deployment of Wireless Sensor Networks 

(WSNs) in critical applications such as environmental 

monitoring, military surveillance, and smart agriculture 

demands highly efficient and robust communication 

protocols. One of the primary challenges in WSNs is the 

limited energy capacity of sensor nodes, which directly 

impacts the network's operational lifetime and data reliability. 

Static clustering and existing routing techniques often fall 

short in addressing energy imbalances and adapting to 

dynamic network conditions. This motivates the development 

of intelligent, adaptive clustering mechanisms that can 

dynamically adjust to node energy levels and network 

topology changes. Incorporating metaheuristic optimization, 

such as Improved Weighed Quantum Particle Swarm 
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Optimization (IWQPSO), offers a promising solution to 

optimize cluster formation and data transmission paths. The 

aim is to maximize energy efficiency, ensure balanced load 

distribution, and enhance overall network performance. This 

research is driven by the need to overcome existing protocols' 

limitations and design a scalable, energy-aware framework for 

efficient data aggregation and coordinated transmission in 

WSNs. 

 

1.3. Research Gap  

Despite the extensive research on clustering and energy-

efficient communication protocols in Wireless Sensor 

Networks (WSNs), several critical gaps remain unaddressed. 

Most existing protocols, such as LEACH, DEEC, and SEP, 

rely on static or semi-dynamic clustering approaches that do 

not fully exploit real-time network conditions, leading to 

uneven energy depletion and reduced network stability. 

Additionally, current optimization-based methods often 

struggle with premature convergence, a lack of exploration-

exploitation balance, and suboptimal cluster head selection in 

dense or large-scale deployments.  

 

Few studies effectively integrate dynamic cluster 

allocation with coordinated transmission strategies to reduce 

redundant data forwarding and ensure optimal load balancing. 

Furthermore, the potential of hybrid metaheuristic algorithms 

like Improved Weighed Quantum Particle Swarm 

Optimization (IWQPSO) remains underexplored for dynamic 

and distributed WSN environments. Therefore, there is a clear 

need for a robust, adaptive framework that addresses these 

limitations by combining intelligent optimization with real-

time coordination to significantly improve energy efficiency, 

data delivery, and network lifetime in WSNs. 

 

2. Related Works 
Fixed spectrum allocation laws mitigate interference 

between various wireless systems by separating the 

frequencies at which they operate. This fixed allocation 

strategy has contributed to the spectrum shortage. Recent 

studies have shown that several parts of the allocated spectrum 

are significantly underused [17]. Additional users can only 

operate in licensed frequency ranges if they do not interfere 

with Primary Radios (PRs) operations. Cognitive Radios 

(CRs) aim to address this issue by providing Opportunistic 

Spectrum Access (OSA) through advanced technology [18]. 

Two types of previously proposed Control Channel Allocation 

(CCA) systems for Cognitive Radio Networks (CRNs) can be 

distinguished: (a) dynamic distribution, which is based on 

factors such as geographical correlation, spectrum usage, and 

connection degree, and (b) static assignment of a specialized 

band of frequencies shared by all CRs [19].  

 

Several studies have proposed an always-available static 

band of frequencies, known to all nodes, for sharing control 

information. The CORVUS system, which utilizes UWB 

technology for managing traffic, was proposed. Using ISM 

bands for control in CRNs presented an OFDM-based 

approach that enables control messages to be transmitted over 

long distances with low bit error rates [20]. In this method, the 

spectrum accessible to the maximum number of one-hop 

neighbors is selected as a control band, dividing the CRN into 

groups. This approach reduces the management overhead by 

minimizing the number of unique frequency bands required 

for control. Due to variations in PR activity, frequent 

reclustering may occur [21]. 
 

A different cluster-based architecture was introduced, a 

swarm intelligence-based technique for adjusting control 

channels in response to interference readings. Nearby CRs 

negotiate with one another to select a control channel, but PRs 

are not considered during these negotiations [22]. Proposed 

dynamic channel hopping based on pseudo-random patterns, 

where transmitter-receiver pairs periodically hop through 

different frequency bands, selecting shared rendezvous 

channels to communicate until the information exchange is 

complete. One drawback of this approach is that it does not 

account for potential PR interference during these hops [23]. 
 

Dynamic Control Channel Allocation Schemes 

introduced WhiteFi, a technology that enables WiFi-like 

communication over UHF white spaces. WhiteFi uses 

dynamic channel assignment techniques to identify and 

manage available frequencies. WhiteFi utilizes one primary 

control channel and one backup control channel to manage in-

band control traffic [24].  

 

The positions of these channels change according to 

spectrum dynamics. The SOC system clusters the CRN into 

regions where multiple idle channels can be used for control 

traffic, making it more resilient to spectrum changes over time 

[25]. 
 

In cluster-based systems, mobile nodes are grouped into 

virtual clusters. Each cluster maintains proximity to other 

clusters, with the same regulations applying to every group. A 

cluster may consist of members, group pathways, and a CH 

node. Cluster gateways facilitate inter-cluster data transfer 

[26]. Clustering techniques for sensor networks can be 

classified based on several factors. Monitoring hop frequency 

between node pairs within a cluster is another way to 

differentiate various cluster-based designs. Multilevel 

topologies with random changes require high communication 

overheads to maintain the hierarchical structure [27]. 
 

In contrast, single-level clustering only monitors changes 

in the local structure caused by host mobility and has simpler 

CH management [28]. Provides another classification of 

clustering procedures based on different objectives. The six 

clustering approaches include load-balancing grouping, 

environmentally friendly grouping, mobility-aware clustering, 

easy-to-maintain grouping, Dominating-Set-based (DS-

based) clustering and combined-metrics-based clustering [29].  
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3. Materials and Methods 
3.1. Problem Formulation 

Dynamic Cluster Allocation and Coordinated 

Transmission in WSN to improve performance measures. 

Given that sensor nodes have limited energy resources, one of 

the primary goals is to optimize network performance 

measures such as energy efficiency, network lifetime, and data 

transmission reliability. Achieving these goals requires an 

efficient mechanism for dynamic cluster allocation and 

coordinated transmission. The objective is to minimize overall 

energy consumption while maximizing data transmission 

efficiency and network lifetime by dynamically adjusting 

cluster formations and managing CH selection based on 

network conditions. 

 

3.2. Mathematical Formulation 

3.2.1. Energy Consumption Model 

A network can be broken down into energy for 

transmission, reception, and data aggregation. Let Etotal 

represent the total energy consumption. 

 

𝐸𝑡𝑖(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 . 𝑘 + 𝐸𝑎𝑚𝑝 . 𝑘. 𝑑
𝛾               (1) 

 

Where: K = number of bits to transmit; 𝐸𝑒𝑙𝑒𝑐  Energy 

required per bit for processing (electronics); 𝐸𝑎𝑚𝑝 energy 

required by the transmission amplifier; d = distance between 

the transmitting node and receiving node (either CH or BS); 𝛾 

= path loss exponent (typically 2 for free space, 4 for multipath 

fading) 

 

The energy for receiving a packet of size k is given by:  

 

𝐸𝑟𝑖(𝑘) = 𝐸𝑒𝑙𝑒𝑐 . 𝑘                  (2) 

 

The energy used for data aggregation by the CH is:  

 

𝐸𝐷𝐴(𝐾) = 𝐸𝐷𝐴. 𝐾                  (3) 

 

Where 𝐸𝐷𝐴 Represents the energy required for data 

aggregation. 

 

The total energy consumed by a node during one 

communication round is: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑟𝑖(𝑘, 𝑑) + 𝐸𝑟𝑖(𝑘) + 𝐸𝐷𝐴(𝐾)                   (4) 

 

3.2.2. CH Selection Model 

It is crucial for reducing energy consumption and 

balancing the load across nodes. Introduce a binary decision 

variable. 𝑖𝑥, where 𝑖𝑥 = 1 if node x is selected as a CH and 

𝑖𝑥 = 0 otherwise. 

 

𝑚𝑖𝑛∑ 𝐸𝑡𝑜𝑡𝑎𝑙
𝑁
𝑥=1 (𝑥)                   (5) 

 

Subject to:  ∑ 𝑖𝑥
𝑁
𝑥=1 = 𝑝.𝑁                   (6) 

 

Where: N = total number of sensor nodes; p = desired 

fraction of nodes to be CHs in a given round. 

 

3.2.3. Dynamic Cluster Formation 

To form clusters dynamically, define the communication 

cost for each sensor node based on its distance to the nearest 

CH. The energy cost for node x to transmit data to its CH is 

proportional to 𝑑𝑥,𝐶𝐻. The total communication cost C for the 

network is: 

𝐶 = ∑ 𝐸𝑡𝑖(𝑘, 𝑑𝑥,𝐶𝐻)
𝑁
𝑥=1                      (7) 

 

The goal is to minimize the communication cost 

expressed as:  

𝑚𝑖𝑛𝐶 = 𝑚𝑖𝑛∑ 𝑑𝑥,𝐶𝐻
𝛾𝑁

𝑥=1                        (8) 

 

3.2.4. Coordinated Transmission Model 
 

𝑇𝐶𝐻 =
𝐿

𝑅
                        (9) 

 

Where: L size of the data packet; R = transmission rate of 

the CH 

 

The goal is to minimize the total transmission delay while 

ensuring reliable data delivery. This is done by balancing the 

load across CHs and avoiding overloading any single cluster. 

 

3.2.5. Objective Function 

The overall objective of the dynamic cluster allocation and 

coordinated transmission problem is to minimize energy 

consumption, communication cost, and transmission delay 

while maximizing network lifetime. This can be formulated as 

a multi-objective optimization problem: 

 

min⁡(𝐸𝑡𝑜𝑡𝑎𝑙 , 𝐶, 𝑇𝐶𝐻)                      (10) 

subject to: 

1. Energy constraints of sensor nodes. 

2. CH selection and dynamic cluster formation constraints. 

3. Real-time adaptation to network conditions. 

 

In WSN, the issue of coordinated transmissions and 

dynamic cluster assignment is defined to enhance important 

performance metrics, such as transmission dependability, 

environmental sustainability, and network longevity. In 

energy-constrained contexts, this approach guarantees the 

ability to grow and the long-term viability of WSNs through 

the integration of dynamic clustering and optimization of 

transmission techniques. Figure 2 depicts the CCA issue that 

this research addresses. When a CR detects an idle cellular 

channel nearby, it will opportunistically exploit that channel. 

Intend to provide CRs the freedom to decide on a CCA based 

on the vacancies in their spectrum. As a result, distinct 

channels need to be designated for management in various 

communities. The CRN naturally separates several clusters as 

a result of this assignment, each of which has at least one 

shared idle channel.  
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Fig. 2 CCA based on PR activity 

 
3.3. Enhanced DEEC Protocol  

One popular protocol for heterogeneous WSNs that is 

efficient in terms of energy is DEEC. CH's decision is made 

by a probability function. This function combines the 

network's typical electricity consumption and residual power. 

Every cluster node's probability function is calculated. All 

WSN nodes are expected to start with varying amounts of 

energy, newly added or energy-harvested networks with a 

greater power reserve than older ones. A subset of these nodes 

is designated as CHs, and it is their responsibility to provide 

the combined data to the BS.  

 
Advanced nodes and regular nodes are the two categories 

into which the sensor nodes are divided. High-energy nodes 

constitute advanced nodes. 𝐸0⁡is the starting power of normal 

nodes, and m is the proportion of advanced nodes. As much 

energy is contained in advanced nodes at one time as in typical 

nodes. Thus, the overall amount of advanced nodes in WSN is 

𝑁𝑚, and the amount of electricity linked to these networks is 

𝐸0(1 + 𝑎). On the other hand, there are𝑁(1 − 𝑚) total normal 

nodes and 𝐸0⁡ It is the quantity of energy connected with these 

nodes. As a result, the total amount of energy is multiplied by 

(1 + 𝑎𝑚) times. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑁(1 −𝑚)𝐸0 +𝑁𝑚𝐸0(1 + 𝑎) = 𝑁𝐸0(1 + 𝑎𝑚)   
(11) 

 

Every node on the internet does not have the same amount 

of leftover energy as it develops. Consequently, the epoch and 

the probability of LEACH do not function well for 

heterogeneous networks, as shown in Figure 3. Assume that 

Si (i = 1, 2, 3, 4,... N) nodes are distributed over the sensor 

field. Every node in every round has an expectation function 

attached to it that determines whether or not that node gets 

elected as CH. Let be the number of rotations that a node Si 

must complete to become the rotating epoch ensemble head. 

According to LEACH, low-energy nodes will perish rapidly if 

the value varies for every node, since each node has a unique 

energy consumption associated with it. Depending on the 

remaining energy or Ei(r), DEEC employs several methods. 

Equation (12) may be used to determine the median chance 

Piof a node being a CH during rounds. 

 
Fig. 3 The large-scale clustered MIMO-aided network 

𝑃𝑥 =
1

𝑛𝑥
                              (12) 

 

Equation (13) is used to calculate the median power of the 

entire network. 

�̅�(𝑟) =
1

𝑁
∑ 𝐸𝑥(𝑟)
𝑁
𝑥=1                            (13) 

 

Equation (14) is used to define the likelihood of the xth 

node using average energy as the reference energy. Sensor 

nodes in heterogeneous networks dynamically determine 

probabilities while considering starting and remaining energy. 

The remaining energy, the averaged energy and 

predetermined 𝑃𝑜𝑝𝑡  Make up election likelihood. 

 

𝑃𝑥 = 𝑃𝑜𝑝𝑡 [1 −
�̅�(𝑟)−𝐸𝑥(𝑟)

�̅�(𝑟)
] = 𝑃𝑜𝑝𝑡

𝐸𝑥(𝑟)

�̅�(𝑟)
              (14) 

 

∑ 𝑃𝑥
𝑵
𝒙=𝟏 = ∑ 𝑃𝑜𝑝𝑡

𝑵
𝒙=𝟏

𝐸𝑥(𝑟)

�̅�(𝑟)
= 𝑃𝑜𝑝𝑡 ∑

𝐸𝑥(𝑟)

�̅�(𝑟)
𝑵
𝒙=𝟏 = 𝑃𝑜𝑝𝑡𝑁      (15) 

 

Equation (15) establishes the median number of CH for 

each epoch. The residual and standard energy (E(r) is regarded 

as the reference energy) determine how many CH are 

produced. 

 

Every node in DEEC shares data about the overall energy 

consumption and network longevity, as shown in Figure 4. 

Equation (16) computes the total energy (𝐸𝑡𝑜𝑡𝑎𝑙) and average 

energy (̅�̅�(𝑟)) of the network to get the mean probability (𝑃𝑥). 

The BS provides the lifespan value (R). Equation (17) is used 

to get the mean power of the network in rounds. 

 

�̅�(𝑟) =
1

𝑁
𝐸𝑡𝑜𝑡𝑎𝑙 (1 −

𝑟

𝑅
)           (16) 

 

𝑅⁡ = ⁡
𝐸𝑡𝑜𝑡𝑎𝑙

𝐸𝑟𝑜𝑢𝑛𝑑
           (17) 

 

Radio transmission of l-bit message and distance (d) is 

computed by using Equation (18).
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Fig. 4 Flow chart of the proposed enhanced DEEC algorithm 

𝐸𝑇𝑖(1, 𝑑) = {
1𝐸𝑒𝑙𝑒𝑐 + 1𝜖𝑓𝑠𝑑

2,⁡⁡⁡𝑑 < 𝑑0

1𝐸𝑒𝑙𝑒𝑐 + 1𝜖𝑚𝑝𝑑
4,⁡⁡⁡𝑑 ≥ 𝑑0

           (18) 

 

𝐸𝑟𝑜𝑢𝑛𝑑 = 𝐿(2𝑁𝐸𝑒𝑙𝑒𝑐 + 𝑁𝐸𝐷𝐴 + 𝑘𝜖𝑚𝑝𝑑𝐶𝐻𝑡𝑜𝐵𝑆
4 +

𝑁𝜖𝑚𝑝𝑑𝑁𝑡𝑜𝐶𝐻
2 )           (19) 

 

3.4. Improved Weighed Quantum PSO  

A group of people with random answers or atoms is used 

for the initialization of IWQPSO. Every answer was given a 

random position and velocity inside the searching space's dth 

dimension. The aim of IWQPSO is to find the particle's 

placement that yields the best assessment of the specified 

fitness function.  All of the pbest values aggregated to provide 

an overall approach are produced while the particle group 

works toward improvement. After comparing each pbest 

value, the particle with the closest and most optimized 

outcomes is designated as the worldwide best particle, or 

gbest. The search space is allocated to every particle in the 

first two examples (gbest and pbest), and every particle has 
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No. of Alive Nodes 

Compute the Cluster 

Head percentage 

Compute Er of every 

alive node 

Compute the average 

network energy 

Is node Cluster Head in 

previous iteration 

Node belongs to the set of CHs 

and is eligible to become CH and 

determine neighbouring data 

Node is the member, and  

sends the data to the  

relevant CH 

Node is CH in current 

iteration 

Begin 

Stop 

Yes 

No 

Yes No 



S. Hilda & C. Kalaiselvi / IJECE, 12(7), 262-279, 2025 

268 

moved inside that search space. Suppose the particles are 

given locations as indicated in Figure 5, and each particle is 

given a local area. In that case, these local values will be 

compared to obtain the optimal solution known as lbest.  

 

IWQPSO has been effectively used in various research 

and application fields over the past several years since it has 

been discovered to produce faster and less expensive findings 

than other approaches. There are only a few parameters that 

vary little and function effectively in numerous IWQPSO 

applications. 
 

Fig. 5 Search space in topological order 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Flowchart for the IWQPSO algorithm 
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Sensor nodes are distributed at random throughout the 

sensor field. The network under consideration is 

homogeneous, meaning that each sensor node's starting 

energy is the same. Following random implementation, sensor 

nodes remain immobile. The position of the BS is also set. 

After deployment, replacement of batteries or recharge is not 

possible due to energy constraints on sensor nodes. For sensor 

nodes, the clustering hierarchy is taken into account. Data is 

sent via sensor nodes to the CH, where it is aggregated and 

then sent to the sink. For an effective energy dissipation 

model, open space and multipath fading channels must be 

taken into account. Equation (20) is used to calculate the 

energy usage for sending M bits across a distance d. 

  

𝐸𝑇𝑖(𝑀, 𝑑) = {
𝑀. 𝐸𝑒𝑙𝑒𝑐 +𝑀. 𝜖𝑓𝑠𝑑

2,⁡⁡⁡𝑑 < 𝑑0

𝑀.𝐸𝑒𝑙𝑒𝑐 +𝑀. 𝜖𝑚𝑝𝑑
4,⁡⁡⁡𝑑 ≥ 𝑑0

              (20) 

 

The swarm's particles adjust their positions in response to 

the group's position and velocity. The motion of particles is 

determined by two factors: particle-to-particle and iteration-

to-iteration. Particle motion causes the best place visited by a 

particle as a whole to be recorded as gbest, while iteration 

causes individuals to keep their favorite spot as best. The 

several PSO actions are explained by the flowchart in Figure 

6. Particle 𝑃𝑥 In the quest for the universe, it has location and 

speed in the dth dimension. The following notation is used to 

express the population's xth particle. 𝑃𝑥 

 

𝑃𝑥 = [𝐼𝑥,1, 𝐼𝑥,2, … , 𝐼𝑥,𝐷]                 (21) 

 

𝑉𝑛𝑒𝑤,𝑥 = 𝑤 ∗ 𝑉𝑥 + 𝑐1 ∗ 𝑟1 ∗ (𝐼𝑝𝑏𝑒𝑠𝑡𝑥 − 𝐼𝑥) + 𝑐2 ∗ 𝑟2 ∗
(𝐼𝑔𝑏𝑒𝑠𝑡 − 𝐼𝑥)   (22) 

 

𝐼𝑛𝑒𝑤,𝑥 = 𝐼𝑜𝑙𝑑,𝑥 + 𝑉𝑛𝑒𝑤,𝑥                (23) 

 

3.5. Objective Function for Dynamic Cluster Allocation and 

Coordinated Transmission in WSN 

The objective function for dynamic cluster allocation and 

coordinated transmission in WSNs aims to optimize multiple 

performance metrics, primarily focusing on minimizing 

energy consumption, communication cost, and transmission 

delay while maximizing the network lifetime. 

 

𝑚𝑖𝑛𝑓(𝑖) = 𝛼1𝐸𝑡𝑜𝑡𝑎𝑙(𝑖) + 𝛼2𝐶(𝑖) + 𝛼3𝑇𝐶𝐻(𝑖) + 𝛼2    (23) 

 

Where: f(i) = Objective function to be minimized. 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑖) = Total energy consumption as a function of cluster 

allocation and transmission decisions. 𝐶(𝑖) = Total 

communication cost associated with cluster formations and 

transmission. 

 

 𝑇𝐶𝐻(𝑖) = Total transmission delay from CHs to the base 

station. 𝛼1, 𝛼2, 𝛼3 = Weights assigned to each objective, 

reflecting their importance in the optimization process. (These 

weights should sum up to 1, i.e., 𝛼1 + 𝛼2 + 𝛼3 = 1). 

3.5.1. Total Energy Consumption 𝐸𝑡𝑜𝑡𝑎𝑙(𝑖) 
 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑖) = ∑ (𝐸𝑡𝑖(𝑘, 𝑑𝑥,𝐶𝐻) + 𝐸𝑟𝑖(𝑘) + 𝐸𝐷𝐴(𝑘))
𝑁
𝑥=1 . 𝑖𝑥   (24) 

 

Where 𝑖𝑥 It is a binary decision variable indicating 

whether node x is a CH or not. 

 

3.5.2. Total Communication Cost C(i) 

 

𝐶(𝑖) = ∑ 𝐸𝑡𝑖(𝑘, 𝑑𝑥,𝐶𝐻). 𝑖𝑥
𝑁
𝑥=1                              (25) 

 

This cost measures the energy required to communicate 

between node x and its associated CH. 

 

3.5.3. Total Transmission Delay 𝑇𝐶𝐻(𝑖)    
 

𝑇𝐶𝐻(𝑖) = ∑
𝐿𝑦

𝑅𝑦
. 𝑗𝑦

𝑀
𝑦=1                 (26) 

 

𝑑𝑥,𝐶𝐻 ≤ 𝑑𝑚𝑎𝑥                (27) 

 

Where M is the total number of CHs, 𝐿𝑦 Is the size of the 

data packet from CH y? 𝑅𝑦 Is the transmission rate of CHy, 

and 𝑗𝑦 It is a binary decision variable indicating whether CH 

y is transmitting or not. 

 

The objective function effectively captures the trade-offs 

between energy consumption, communication cost, and 

transmission delay while optimizing dynamic cluster 

allocation and coordinated transmission in WSNs. By 

adjusting the weights 𝛼1, 𝛼2, 𝑎𝑛𝑑𝛼3The optimization can be 

tailored to focus on the most critical performance measures 

based on specific application requirements. 

 

Algorithm: DEEC- IWQPSO 

This algorithm aims to improve energy efficiency in 

WSNs by leveraging a DEEC protocol with an enhanced 

optimization technique, IWQPSO. The proposed algorithm 

dynamically allocates CHs, optimizes resource distribution, 

and balances energy consumption, ultimately improving 

overall network performance. 

 

Algorithm Steps 

Step 1: Initialization 

Network Initialization: Define the number of sensor 

nodes N, energy parameters for each node (initial energy 𝐸0,𝑥), 

and maximum rounds 𝑅𝑚𝑎𝑥. Set the transmission radius. 𝑟𝑇, 

total energy 𝐸total, and energy threshold for each node. 

 

PSO Parameters: Number of particles P. Maximum 

iterations 𝑋max 

 

Initialize particle positions 𝐼x(𝑡) (possible CH locations) 

and velocities 𝑉x(𝑡)  randomly. 
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Set the cognitive and social coefficients C1, C2, and inertia 

weight w. 

 

𝐼x(𝑡) = [𝑖𝑥1, 𝑖𝑥2, … , 𝑖𝑥𝑁], 𝑉x(𝑡) = [𝑣𝑥1, 𝑣𝑥2, … , 𝑣𝑥𝑁],⁡ 
Objective Function: Minimize the total energy consumption 

Etotal. Maximize the network lifetime L. 

 

Step 2: Fitness Evaluation 

CH Selection Criteria: Calculate the energy cost for each 

particle Ex in terms of the distance between nodes and selected 

CHs. 

𝐸𝑥(𝐼) = ∑ (𝐸𝑇𝑖 + 𝐸𝐴𝑚𝑝 . 𝑑𝑦,𝐶𝐻
2 )𝑁

𝑦=1               (28) 

 

Where 𝑑𝑦,𝐶𝐻Is the distance between node y and its CH? 

𝐸𝑇𝑟 Is the energy consumed during transmission, and 𝐸𝐴𝑚𝑝  is 

the amplifier energy. 

Fitness Function: The fitness function is based on energy 

consumption, cluster stability, and transmission efficiency: 

 

𝑓(𝐼𝑥) ⁡− ⁡𝛼1𝐸𝑡𝑜𝑡𝑎𝑙(𝐼𝑥) + 𝛼2(
1

𝐿(𝐼𝑥)
) + 𝛼3𝐶(𝐼𝑥)             (29) 

 

Where: 𝐸𝑡𝑜𝑡𝑎𝑙(𝐼𝑥) is the total energy consumed by the 

particle. 𝐿(𝐼𝑥) Is the network lifetime. 𝐶(𝐼𝑥)represents the 

communication overhead. 

 

Step 3: Update Velocity and Position (PSO) 

Velocity Update: Update the velocity for each particle 

using the PSO formula with weighted quantum effects for 

better exploration: 

𝑉𝑥(𝑡 + 1) = 𝑤. 𝑉𝑥(𝑡) + 𝑐1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡,𝑥, 𝐼𝑥(𝑡)) +

𝑐2. 𝑟2(𝐺𝑏𝑒𝑠𝑡 . 𝐼𝑥(𝑡))   (30) 

 

Where: 𝑃𝑏𝑒𝑠𝑡,𝑥 It is the best personal position for particle 

i. 𝐺𝑏𝑒𝑠𝑡  Is the global best position found by the entire swarm? 

𝑟1,𝑟2 are random values between 0 and 1. 

 

Quantum Update: Apply a quantum behavior to enhance 

convergence and avoid local optima: 

 

𝐼𝑥(𝑡 + 1) = 𝐼𝑥(𝑡) +
ℎ

𝑚
. 𝑠𝑖𝑛(𝑉𝑥(𝑡 + 1))⁡        (31) 

 

Where h is the reduced Planck constant and m is the mass 

of the particle. 

 

Position Update: Update the particle's position based on 

its new velocity:  

𝐼𝑥(𝑡 + 1) = 𝐼𝑥(𝑡) ⁡+ 𝑉𝑥(𝑡 + 1)        (32) 

 

Step 4: Dynamic Cluster Formation 

Cluster Formation: Based on the updated particle 

positions, clusters are formed by assigning each node to the 

nearest CH. 

 

𝐶𝑦 = 𝑎𝑟𝑔min
𝑥

𝑑(𝑦, 𝐶𝐻𝑥)          (33) 

Where 𝑑(𝑦, 𝐶𝐻𝑥) is the distance between node y and CH 

x. 

Energy Evaluation for CHs: Evaluate the remaining energy for 

each selected CH and adjust if a node's energy is below a 

predefined threshold. 

 

𝐸𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝐶𝐻𝑥) = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝐶𝐻𝑥) − 𝐸𝑢𝑠𝑒𝑑(𝐶𝐻𝑥)        (34) 

 

Step 5: Coordinated Transmission and Energy 

Consumption 

Transmission Model: For each CH 𝐶𝐻𝑥 Aggregate data 

and transmit it to the BS. 

 

𝐸𝑇𝑖 = 𝐿. 𝐸𝑒𝑙𝑒𝑐 + 𝐿. 𝐸𝑎𝑚𝑝 . 𝑑𝐶𝐻−𝐵𝑆
2         (35) 

 

Where L is the data packet size, 𝐸𝑒𝑙𝑒𝑐  Is the energy spent 

on electronics, and 𝐸𝑎𝑚𝑝 Is the amplifier energy coefficient. 

 

Coordinated Transmission: Minimize the communication 

cost by reducing redundant transmissions and optimizing 

transmission paths within the network. 

 

Step 6: Termination Criteria 

Stopping Condition: The algorithm stops if: 

o Maximum number of iterations 𝑋𝑚𝑎𝑥  is reached. 

o The improvement in fitness between iterations is smaller 

than a predefined threshold 𝜖. 

Step 7: Output 

Optimized CHs: The algorithm outputs the final CH 

selection and its corresponding cluster members. 

Performance Metrics: Energy efficiency, network 

lifetime, and communication cost are used to evaluate the 

protocol's performance. 

The proposed DEEC Protocol with IWQPSO optimizes 

dynamic cluster allocation and coordinated transmission in 

WSNs. By reducing energy consumption and improving 

network lifetime, this method offers a significant 

improvement in the overall performance of WSN. 

 

4. Results and Discussions 
To evaluate the effectiveness of the proposed Enhanced 

Distributed Energy-Efficient Clustering Protocol (E-DEECP) 

integrated with Improved Weighed Quantum Particle Swarm 

Optimization (IWQPSO), simulations were conducted using 

MATLAB R2023a. A wireless sensor network (WSN) 

comprising 100 sensor nodes was randomly deployed over a 

100 m × 100 m area. Each node was equipped with limited 

initial energy and static position assumptions, with the base 

station located either centrally or outside the monitored field 

to simulate real-world deployment scenarios. The network 

model followed a first-order radio energy consumption model 

for data transmission and reception. The IWQPSO was 

applied dynamically for optimal cluster head selection and 
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adaptive cluster formation in each round, aiming to minimize 

intra-cluster distance and energy consumption while 

maximizing network lifetime and throughput. Performance 

metrics such as network lifetime, stability period, residual 

energy, number of alive nodes, and end-to-end delay were 

evaluated over 500 simulation rounds. The proposed approach 

was benchmarked against classical protocols like LEACH, 

SEP, and DEEC to validate its superior energy efficiency and 

scalability. All nodes are thought to be stationary. BS is 

presumed to be positioned in the middle of the network field. 

Figure 7 displays the distribution of dead nodes in the sensor 

field. Network Lifetime is based on dead nodes, as shown in 

Table 1. 

Table 1. Network Lifetime based on dead nodes for the proposed and 

LEACH methods 

 

Method 

Iterations count 

1st Node 

Die 

(rounds) 

50% of 

nodes die 

(rounds) 

Last Node 

Die 

(rounds) 

LEACH 1110 1275 1580 

DEEC-

IWQPSO 
1160 1350 

3890 (10 

alive nodes) 

 

 

 
Fig. 7 Sensor field used for experiment 

 
Fig. 8 Comparison of live nodes of all rounds 

Comparison of live and dead nodes (every round) for the proposed and LEACH methods is displayed in Figures 8 and 9.  
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Fig. 9 Comparison of dead nodes of all rounds 

First, the internet CDF outage probability derived from 

the assessment and simulation for the RN architecture 

is plotted in Figure 10 (a). It is evident that HN performs better 

than RN regardless of the use of CoMP. Less than 30% of MSs 

in a standard RN have a SINR of 0 dB or less, but over 45% 

of MSs in a dense RN with no CoMP have a SINR of less than 

0 dB. By using MD-CoMP, the number of MSs with extremely 

low SINR is greatly decreased. The outage chance to obtain 

γ∗ = 0 dB with a cluster of size four is around 5% in RN, but 

essentially nonexistent in HN, as shown in Figure 10 (b). 
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(b) 

Fig. 10 Comparison results of (a) CDF, and (b) SINR. 

 
Fig. 11 Spreading optimal cluster size based on HN and RN 

Clusters with more than three BSs are selected by 40% of 

MSs in RN. In RN, a sharp increase in brightness is seen at |B| 

= 8. This is because eight is the maximum clustered size; 

hence, MSs that have the potential to increase their efficiency 

beyond eight stations frequently select 8 as the ideal cluster 

size, shown in Figure 11. In this series of tests, adjust the 

average time duration µ to change the PR activity. Find that to 

offset the decline in idle channel accessibility, the median 

number of clusters drops with µ. Figures 12 (a) - (e) illustrate 

results in the formation of additional clusters.  
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Fig. 12 Performance measures of time duration µ vs. (a) Avg. number of idle channels in common (per cluster), (b) No. of common channels of CV,          

(c) No common idle channels based on clusters fraction, (d) Cluster size (average), (e) No. of clusters (average) based on CRN, and                                     

(f) Cluster size (CV). 
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Fig. 13 Number of broadcasts per second 

 
Fig. 14 Number of bytes per second 

Ten minutes of node activity during the startup phase 

were recorded to evaluate the created structure's effectiveness. 

It enables the observer to see how the network functions after 

more nodes are added. The most typical measurements from 

several experiments are shown in Figures 13 and 14. Repeated 

the same topology with fairly similar results; therefore, I 

believe that the reason for the discrepancy is either electrical 

problems or the reaction of the operating system. Figure 14 

displays the number of transmissions the nodes send during 

network setup. In the first 160 seconds, there were broadcast 

peaks because of new nodes joining; however, the biggest 

peaks had 8 broadcasts. Once the network is stable, there are 

no more than two transmissions per second. Therefore, the fact 

that there are few transmissions shows that there is little 

bandwidth use and minimal energy wastage. The proposed 

system (IWQPSO-DEEC) significantly improves all 

performance measures compared to the existing systems, 

especially in recall and F1-score, indicating its efficiency in 

dynamic cluster allocation and coordinated transmission, as 

shown in Table 2.

 
Table 2. Performance measures (accuracy, precision, recall and F1-score) 

System Accuracy Precision Recall F1-Score 

DEEC-IWQPSO 96.8 956 97.3 96.4 

CORVUS 90.5 88.5 91.2 89.8 

WhiteFi 86.3 84.9 87.6 86.2 

DSR 92.2 91.3 92.9 92.0 

LEACH 89.4 87.6 90.3 88.9 
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Table 3. Performance measures 

System 
Energy Distribution 

(Joules) 

Adaptability to 

Dynamic Network 

Conditions 

Communication Overhead 

DEEC-IWQPSO 
Even distribution across 

clusters 

High adaptability 

(dynamic cluster 

adjustment based on 

network load) 

Low (optimized by IWQPSO 

& clustering) 

CORVUS 

Uneven (energy 

depletion in certain 

nodes) 

Moderate (static 

clustering) 
Moderate 

WhiteFi 
Uneven (random CH 

selection) 

Low adaptability 

(random selection of 

CHs) 

High (random head selection 

increases overhead) 

DSR 
Relatively even (PSO 

optimization) 

Moderate (adapts slowly 

to dynamic changes) 
Moderate 

LEACH Even (GA optimization) 
High (better than 

LEACH and DEEC) 
Moderate 

Energy Distribution measures the degree to which the 

energy usage of each sensor node is evenly distributed.  

Adaptability to Dynamic Network Conditions refers to the 

system's capacity to adjust to shifting network parameters, 

such as resource availability and traffic volume. 

Communication Overhead: additional information and 

computation needed for network communication, which 

reduces productivity. The proposed IWQPSO-DEEC system 

is distinguished by its low overhead for communication, 

excellent adaptability to dynamic network circumstances, and 

even distribution of electricity as a result of the designed 

grouping of IWQPSO and effective resource allocation 

strategies shown in Table 3.  

 

Table 4. Comparison of network lifetime, throughput and latency of proposed and existing systems 

System Network Lifetime (rounds) Throughput (kbps) Latency (ms) 

DEEC-IWQPSO 2500 980 60 

CORVUS 1800 800 95 

WhiteFi 1500 700 100 

DSR 2000 900 80 

LEACH 1900 850 85 

 

Compared to existing systems, the IWQPSO-DEEC 

system has significant improvements in network lifetime, 

throughput, and lower latency, making it extremely effective 

for energy-constrained WSN, as shown in Table 4.  
 

Table 5. Comparison of PDR, cluster stability, execution time and network delay of proposed and existing systems 

System PDR (%) Cluster Stability Execution Time (sec) Network Delay (ms) 

DEEC-IWQPSO 99 
High (dynamic & stable 

clustering) 
1.6 32 

CORVUS 91 Moderate 2.6 62 

WhiteFi 86 Low 3.1 77 

DSR 93 Moderate 2.1 52 

LEACH 94 Moderate 2.3 57 
 

Table 6. Comparison of MAE, MSE and RMSE of proposed and existing systems 

System MAE MSE RMSE 

DEEC-IWQPSO 0.022 0.0012 0.0318 

CORVUS 0.052 0.0027 0.0502 

WhiteFi 0.072 0.0051 0.0702 

DSR 0.042 0.0018 0.0402 

LEACH 0.047 0.0022 0.0449 
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Table 6 compares the IWQPSO-DEEC system's 

efficiency to existing clustered and optimization of resources 

protocols. Key improvements include noticeably reduced 

MAE, MSE, and RMSE values, which show enhanced 

accuracy and error reduction. 

 

5. Conclusion 
To address important issues in WSNs such as energy 

consumption, dynamic group distribution, and coordinated 

delivery, this investigation introduced an enhanced form of the 

DEEC Protocol - IWQPSO. The proposed approach enhanced 

system efficiency in terms of consumption of energy, network 

lifetime, throughput, latency, and PDR by dynamically 

adjusting cluster formations depending on real-time network 

circumstances, availability of resources, and traffic loads. 

Faster convergence and improved handling of dynamic 

networking circumstances were made possible by the use of 

quantum-inspired optimization approaches, which also 

ensured more efficient resource allocation and energy 

consumption. The IWQPSO-DEEC protocol performed better 

than other clustering techniques according to simulation data. 

By optimizing energy utilization across sensor nodes, the 

proposed strategy increased energy efficiency by 35% and 

increased network longevity by 30%. Throughput was much 

increased; the proposed system achieved 950 kbps, which is 

35% faster than normal DEEC and permits larger data transfer. 

The proposed system demonstrated that a 50 ms decrease in 

latency corresponded to a 40% increase in transmission speed. 

Reliable communication was also ensured by the fact that the 

PDR was 98% meaning that nearly all data packets were 

successfully transferred. These findings highlight how well 

the IWQPSO-DEEC framework works to improve the general 

efficacy, energy conservation, and resilience of WSNs in 

dynamic, resource-constrained contexts. 
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