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Abstract - Offline Signature Verification is a very important research area because signatures evolve throughout a person’s life 

and have many applications such as person authentication, verification in financial transactions, institute certifications, legal 

documentation, etc. It has been socially, legally, and culturally accepted as a behavioural biometric for centuries. So, it is more 

prone to forgery than any other biometrics. So, in order to counteract forgery and accept genuine signatures, we have proposed 

an offline signature verification system using a pre-trained deep convolutional neural network called “SqueezeNet v1.0” to 

enhance the verification accuracy of the system. Here, the use of a pretrained SqueezeNet model is an effective approach, 

especially when we need a lightweight model that can perform well with fast inference in resource-constrained environments 

like signature verification. Signature verification is challenging work because of large intra-class diversity and small inter-class 

distinction while considering forgeries. Despite the progress made with traditional methods, these techniques often face 

challenges related to feature engineering and performance under noisy conditions, making them less effective compared to 

modern deep learning-based approaches. With the progress of deep learning, offline signature verification has seen significant 

improvements, particularly Convolutional Neural Networks (CNNs), which are able to self learn hierarchical feature 

representations from raw signature images, eliminating the need for manual feature extraction. Here, skilled forgery signatures 

of each user are used for training and testing purposes to make the system robust and more accurate. Our system is trained and 

tested on the CEDAR database for all fifty-five users having different types of signature information, yielding average testing 

accuracy of 98.98% using random forgeries and 98.07% using skilled forgeries. Testing accuracy of random forgeries lies 

between 93.75%-100% and testing accuracy of skilled forgeries lies between 72.92%-100%.  

Keywords - Behavioural biometric, CEDAR database, Convolutional Neural Networks, Offline signature verification, 

SqueezeNet. 

1. Introduction 
Offline signature verification refers to the process of 

verifying handwritten signatures by using scanned images or 

digitally represented signatures, without real-time input from 

the signer. It is important for various sectors, including 

banking, legal, and governmental systems, all of which require 

signature-based authentication to verify the authenticity of 

signed transactions and documents. Offline signature 

verification is normally based on either structural or statistical 

properties of signatures. The prior processes involve various 

classification techniques, e.g., feature extraction, template 

matching, and machine learning algorithms to identify 

whether signatures are true or forged. Nonetheless, such 

methods often have limited robustness concerning the variety 

of styles and subtle variations of true vs. forged signatures. 

Traditional offline signature verification methods have relied 

on handcrafted features, such as geometric characteristics, 

pixel intensity values, and structural aspects of the signature. 

Sadly, they often struggle to deal with the large variance of 

signature styles and the nuances that differentiate genuine 

signatures from forgeries [1]. Recently, deep learning has 

dramatically changed the world of offline signature 

verification by being a more robust solution to more 

complicated variations in signature dynamics. Deep learning 

models, including Convolutional Neural Networks (CNNs), 

have shown themselves to be useful and powerful methods for 

signature verification, especially given their ability to learn 

hierarchical representations from image data [2] 

automatically. Deep learning models are capable of learning 

fine/grained and complex patterns in signature images without 

manual feature engineering, allowing for improved accuracy 

and robustness in similar signature verification tasks [3, 4]. 

Unlike other machine learning methods, deep learning models 

do not need extracted features that have been manually 

engineered and can handle complex variations associated with 

signature dynamics (i.e. scale, orientation, distortion, etc.). 

Deep learning in signature verification can be broadly 

categorized into two main types of approaches: verification-
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based models (authenticating a query signature against a 

reference signature) and classification-based models 

(determining the authenticity of a signature based on learned 

patterns) [5, 6]. Multiple studies have demonstrated that deep 

learning approaches generally outperform traditional methods 

of offline signature verification, lessening the false acceptance 

and false rejection rates [2, 7]. Use of lightweight, powerful 

pre-trained SqueezeNet CNN for the first time in an offline 

signature verification using both skill and random forgery to 

get very good verification results in a constrained 

environment, like a signature, is one of the novelties of our 

work. 

2. Literature Review 
Classic techniques for offline signature verification 

typically rely on manually extracted features and statistical 

methods. Early systems used feature extraction methods, 

including zoning (i.e., splitting the signature into separate 

pieces) and geometric features (i.e., length of strokes, 

curvature). Common methods include: 

 Dynamic Time Warping (DTW): DTW is used for 

signature verification, especially online signature 

verification, but has also been adapted to offline 

signatures [8]. DTW works by aligning the two sets in 

time to compare the similarity of the two sequences. 

 Hidden Markov Models (HMM): HMMs have been 

utilized in signature verification tasks for both offline and 

online scenarios. HMMs are trained with a sequence of 

signature features and learn the transition across different 

parts of the signature [9, 10]. The system measures how 

likely a subject is to sign the signature when looking at 

the learned model of a genuine signature. 

 Support Vector Machines (SVM): SVM classifiers have 

been used for offline signature verification [11, 12]. In the 

study, by extracting features including geometric shapes, 

curvature, and stroke direction, the SVM classifier checks 

between genuine and forged signatures. 

 

Although traditional approaches have been effective, 

these mostly failed from a feature engineering and variability 

perspective, particularly where features are conflated with 

noise (e.g. ink density, type of paper), and they are less 

scalable than approaches based on deep learning. Deep 

learning has brought significant advances to offline signature 

verification. Most notably, deep models can learn hierarchical 

representations of features from the raw signature image rather 

than rely on manual feature extraction. There are also some 

deep learning based approaches. Here are some of the major 

categories of deep learning based techniques: 

 Convolutional Neural Networks (CNNs): CNNs are the 

most common offline signature verification architecture. 

CNNs have shown the best performance on some 

benchmark datasets [2]. CNNs can automatically derive 

spatial features from signature images, including stroke 

shapes and textures, and classify the signature as genuine 

or forged. CNNs typically consist of multiple 

convolutional and pooling layers, and a few fully-

connected layers, where the latter performs the ultimate 

classification. For instance, [6] put together a system for 

signature verification using a CNN, and it easily 

surpassed traditional methods in terms of both accuracy 

and robustness. This model was trained with a large 

number of offline signature images and appears to 

generalise very well to unseen datasets. 

 Recurrent Neural Networks (RNNs): RNNs and advanced 

versions of them, such as Long Short-Term Memory 

(LSTM) networks, are structured to work on sequential 

data. Therefore, RNNs are appropriate for signature 

verification tasks, especially when signature images are 

formed in sequences. RNNs have been previously used 

for online signature verification tasks. In the paper 

presented in [13], the authors adapted RNNs for an offline 

signature verification task, where they modelled the 

signature as a sequence of extracted features. [13] 

Introduced RNNs to perform offline signature 

verification and were able to achieve substantial gains in 

accuracy by modelling the temporal dependencies 

between stroke segments in the signature image. 

 Generative Adversarial Networks (GANs): GANs are 

used to augment existing signature datasets by generating 

synthetic signature samples and can assist in the 

underlying structure of training offline signature 

verification systems. It will be mostly used in cases where 

training data is scarce [14]. GANs comprise two neural 

networks, the generator and discriminator. When the 

training procedure begins, the generator will generate 

synthetic signatures, and the discriminator will 

differentiate between real and generated signatures. This 

method has been demonstrated to improve performance 

by providing verification models with example signature 

samples from diverse sources [15]. 

 Transfer Learning: Transfer learning entails taking a 

model that has undergone training on a vast dataset and 

employing it by making it specific to signature 

verification tasks. This can help address the problem of 

insufficient labelled data, which is one of the problems 

with signature verification. For example, by using survey 

Convolutional Neural Networks (CNNs) that are pre-

trained on vast image datasets like ImageNet, it is 

possible to accomplish higher performance with a smaller 

labelled sample set by transferring the general knowledge 

base of the model to the new signature verification dataset 

[2, 16, 17]. 

 

Hybrid models combining machine learning and deep 

learning have been proposed alongside deep learning 

approaches to boost the accuracy and robustness of offline 

signature verification. For example, some researchers have 

combined CNNs with SVMs or HMMs to increase 

classification accuracy [18].  
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3. Proposed Model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Block diagram for offline signature verification using deep 

learning pretrained SqueezeNet network  

 

The block diagram above in Figure 1 represents how a 

pretrained SqueezeNet model can be adapted for offline 

signature verification. The process involves multiple steps, 

from loading the pretrained SqueezeNet Network to final 

verification. Below is the breakdown of the blocks: 

3.1. Block Diagram Description 

The following steps outline how a pretrained SqueezeNet 

model can be adapted for offline signature verification: 

Step 1: Pretrained Model (SqueezeNet) 

SqueezeNet is a lightweight CNN architecture as shown 

in Figure 2. It is ideal for applications requiring limited 

computational resources. The network will achieve almost the 

same accuracy as other architectures (e.g., ResNet, VGG) for 

fewer parameters. Many pretrained versions of SqueezeNet 

are also available in popular deep learning libraries and can be 

customized for specific tasks, like signature verification [17].  

SqueezeNet is a Convolutional Neural Network (CNN) 

architecture that is lightweight and is designed to strike a 

balance between model size and accuracy. It can be very 

helpful in low-computational resources or for instances when 

you need a smaller model with significantly quicker inference, 

thus it is an ideal solution for using offline signature 

verification systems based on a situation that may be 

constrained in resources. 

 
Fig. 2 Basic architecture of pre-trained SqueezeNet 

 

Features of SqueezeNet: 

 Compact Structure: When compared to other CNN 

architectures like VGG and ResNet, SqueezeNet has a 

small model size that achieves comparable performance 

with far fewer parameters. 

 Fire Modules: SqueezeNet introduced the Fire Module, 

which is made of two layers: a squeeze layer consisting 

of 1x1 convolutions and an expand layer consisting of a 

combination of 1x1 and 3x3 convolutions. This two-layer 

structure is designed to reduce the number of parameters 

with some accuracy. 

 Pre-trained Weights: As with other CNN architectures, 

they can fine-tune SqueezeNet with pre-trained weights 

for datasets like ImageNet. It can train the model 

specifically for any task, such as offline signature 

verification. 

 

The use of a pretrained SqueezeNet model for offline 

signature verification is practical, especially when a 

lightweight model that can work quickly and efficiently in 

low-resource situations is valuable or necessary. Utilizing 

transfer learning and modifying SqueezeNet, a deep 

Convolutional Neural Network (CNN), you can then utilize it 

to identify distinguishing features that separate genuine and 

forged signatures [19]. 

Step 2: Transfer Learning for Signature Verification 

Transfer learning means taking a pretrained model from a 

vast dataset (e.g. ImageNet) and customizing it on a 
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specialized dataset for a specialized task (e.g. offline signature 

verification). There are unique patterns to signatures (e.g., 

strokes, curvature, and speed) that require the models to adapt 

from general visual patterns to specific handwriting features 

[20]. 

Step 3: Pre-processing and Feature Extraction 

The first step in using SqueezeNet for offline signature 

verification is to preprocess the signature image and resize it 

to meet SqueezeNet’s input dimensions. In this case, all the 

images within the dataset were resized into a fixed size of 

227x227 pixels before inputting them to the image input layer. 

Each of the signature images in the CEDAR database was in 

grayscale PNG format. Therefore, the images were converted 

to RGB images to be compliant with the SqueezeNet image 

input layer. The image is then passed through SqueezeNet to 

extract the feature maps from the intermediate layers. These 

features are able to represent important aspects of a signature, 

including stroke patterns, shapes, and other exclusive 

signature features [21]. 

Step 4: Signature Comparison and Classification 

After the extraction of the features, the next step is to 

compare the input signature features extracted with the 

reference features from genuine signatures. The similarity 

between these features can be calculated using distance-based 

similarity metrics such as Euclidean distance or cosine 

similarity. Following the matching process, a decision-making 

process (e.g., thresholding or a SoftMax classifier) is used to 

assign the signature a genuine or forged classification based 

on the resulting similarity score [22]. 

Step 5: Fine-tuning the Model 

 Fine-tuning is critical for appropriately adapting the 

pretrained model to the signature dataset. Fine-tuning will 

require freezing the first layer as the model detects simple 

patterns such as textures and edges, and retraining the later 

layers with the signature dataset. The model will learn high-

level signature-specific features while appropriately adapting 

the embedded low-level features (e.g. lines and patterns), 

capturing the biases in the data that typically lead to 

challenging signature verification tasks [23].  

Table 1. First 05 layers of pre-trained network SqueeezeNet as a sample 

Layers Name Type Activations 

1 

data 

227*227*3 images with ‘Zerocenter’ 

normalization 

Image Input 227(S)*227(S)*3(C)*1(B) 

2 

conv1 

64 3*3*3 convolutions with stride [2 2] and 

Padding [0 0 0 0] 

2-D 

Convolution 
113(S)*113(S)*64(C)*1(B) 

3 
relu_conv1 

ReLU 
ReLU 113(S)*113(S)*64(C)*1(B) 

4 

pool1 

3*3 max pooling 

With stride [2 2] 

and Padding [0 0 0 0] 

2-D Max 

Pooling 
56(S)*56(S)*64(C)*1(B) 

5 

fire2-squeeze 1*1 

16 1*1*64 convolutions with stride [2 2] and 

Padding [0 0 0 0] 

2-D 

Convolution 
56(S)*56(S)*16(C)*1(B) 

Table 1 above shows the sample of the first 05 layers of 

the SqueezeNet Pre-Trained network out of a total of 68 

layers, having 1.2M total learnables. 

 

3.2. About Database 

The CEDAR dataset was selected for testing the system's 

performance due to its widespread use by researchers and 

accessibility. The CEDAR dataset comprises 55 writers, each 

contributing 24 genuine and 24 skilled forged signatures. The 

dataset includes 1,320 genuine and 1,320 skilled forgeries, all 

stored in grayscale PNG format [18]. Figure 3 below shows 

some samples of genuine signatures for some writers from the 

CEDAR dataset and corresponding skilled forged signatures 

for those same writers. The CEDAR database is organized into 

two subfolders: full_forg and full_org. The full_forg folder 

contains 1,320 forged signatures—24 for each of the 55 

writers—while the full_org folder holds 1,320 genuine 

signatures, also with 24 samples per writer [24]. 

User 
Genuine 

Signatures 

Skill Forgery 

Signatures 

1 

  

2 
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3 

  

4 

  

5 

  

Fig. 3 Some sample signatures of the CEDAR database 

 

3.3. Verification 

3.3.1. Training 

Here, training is done with randomly selected 60% 

signatures data for each of the 55 users of the CEDAR 

database. The Training Confusion Matrix for User1 is shown 

in Figure 4 below. 

 
Fig. 4 Training confusion matrix for user1 

3.3.2. Testing 

Here, testing was done with all the 100% signatures data 

twice, once with the skill forgery data given in the CEDAR 

database. And once with the random forgery created using 

various users’ data mixed with some skill forgery data of the 

same particular user.  

 
Fig. 5 Testing confusion matrix for user1 using random forgeries 

Finally, accuracy is calculated for each case. Testing the 

Confusion Matrix for User1, using Random Forgeries and 

Skilled Forgeries, is shown in Figures 5 and 6, respectively. 

 
Fig. 6 Testing confusion matrix for user1 using skilled forgeries 

4. Verification Results and Performance 

Evaluation 
Accuracy is a basic metric to evaluate how well an offline 

signature verification system correctly classifies genuine and 

forged signatures. In addition, accuracy is commonly used in 

pattern recognition and classification tasks and is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                   (1) 

                                                     

TP (True Positive): Genuine signatures correctly 

classified as genuine. 

 

TN (True Negative): Forged signatures correctly 

classified as forged. 

 

FP (False Positive): Forged signatures incorrectly 

classified as genuine. 

 

FN (False Negative): Genuine signatures incorrectly 

classified as forged. 

 

In offline signature verification, accuracy is a commonly 

used criterion to measure the effectiveness of a system. The 

above formula in Equation (1) was employed to evaluate the 

accuracy of an offline signature verification system by the 

authors, highlighting the importance of accuracy with 

complementary metrics such as False Acceptance Rate (FAR), 

False Rejection Rate (FRR), etc, in evaluating the 

performance of the system [22, 25]. Likewise, the same 

formula was used in their research to study offline signature 

verification, measuring the performance of offline signature 

verification employing discrete wavelet transforms and other 

machine learning methodologies by [21]. Here, training, 

testing accuracy and training time for all 55 users are recorded 

individually in Table 2 below for analysis. 
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Table 2. Training and verification results (training 60% randomly and testing with all 100%) 

User 
Training 

Accuracy(%) 

Testing Accuracy (%) 
Training Elapsed 

Time 
Random 

Forgeries 
Skilled Forgeries 

User1 100 100.00 100.00 1 min 17 sec 

User2 100 100.00 100.00 1 min 21 sec 

User3 100 97.92 100.00 1 min 23 sec 

User4 100 97.92 91.67 1 min 18 sec 

User5 100 95.83 97.92 1 min 21 sec 

User6 100 97.92 72.92 1 min 19 sec 

User7 100 97.92 100.00 1 min 23 sec 

User8 100 97.92 97.92 1 min 22 sec 

User9 100 97.92 97.92 1 min 17 sec 

User10 100 100.00 100.00 1 min 18 sec 

User11 100 97.92 100.00 1 min 20 sec 

User12 100 100.00 100.00 1 min 12 sec 

User13 100 100.00 100.00 1 min 19 sec 

User14 100 100.00 93.75 1 min 15 sec 

User15 100 100.00 100.00 1 min 4 sec 

User16 100 100.00 89.58 42 sec 

User17 100 100.00 100.00 44 sec 

User18 100 100.00 100.00 43 sec 

User19 100 100.00 100.00 41 sec 

User20 100 100.00 97.92 1 min 2 sec 

User21 100 100.00 100.00 47 sec 

User22 100 100.00 100.00 56 sec 

User23 100 93.75 95.83 49 sec 

User24 100 97.92 97.92 51 sec 

User25 100 100.00 100.00 53 sec 

User26 100 100.00 100.00 53 sec 

User27 100 100.00 95.83 1 min 33 sec 

User28 100 100.00 100.00 1 min 21 sec 

User29 100 100.00 100.00 1 min 21 sec 

User30 100 100.00 100.00 1 min 22 sec 

User31 100 97.92 97.92 1min 27 sec 

User32 100 100.00 100.00 1 min 20 sec 

User33 100 97.92 89.58 1 min 25 sec 

User34 100 100.00 100.00 1 min 17 sec 

User35 100 100.00 100.00 1 min 18 sec 

User36 100 100.00 100.00 1 min 16 sec 

User37 100 100.00 100.00 1 min 18 sec 

User38 100 100.00 93.75 46 sec 

User39 100 97.92 97.92 1 min 24 sec 

User40 100 100.00 100.00 1 min 22 sec 

User41 100 95.83 100.00 1 min 32 sec 

User42 100 100.00 100.00 1 min 19 sec 

User43 100 100.00 100.00 1 min 23 sec 

User44 100 93.75 100.00 46 sec 

User45 100 97.92 100.00 1 min 

User46 100 100.00 100.00 45 sec 

User47 100 97.92 97.92 50 sec 

User48 100 95.83 87.50 51 sec 

User49 100 100.00 100.00 52 sec 
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User50 100 100.00 100.00 51 sec 

User51 100 100.00 100.00 1 min 31 sec 

User52 100 100.00 100.00 51 sec 

User53 100 95.83 100.00 1 min 21 sec 

User54 100 100.00 100.00 1 min 22 sec 

User55 100 100.00 100.00 1 min 24 sec 

Average 100 98.98 98.07 1 min 9 sec 

Highest 100 100.00 100.00 1 min 33 sec 

Lowest 100 93.75 72.92 41 sec 

Apart from the accuracy above, Precision, Recall and F1-

Score metrics were used to evaluate the proposed model’s 

performance for testing with both random and skilled 

forgeries. A breakdown of each metric with formulas 

contextualized for signature verification is given below [26]: 

Accuracy: It measures the proportion of total correct 

predictions (both positive and negative) out of all predictions. 

The formula for it is given above in Equation (1). 

Precision: Precision measures the proportion of true 

positive predictions out of all predicted positives. The formula 

for it is given below in Equation (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                      (2) 

 

Recall (Sensitivity or True Positive Rate): Recall 

measures the proportion of true positives out of all actual 

positive cases. The formula for it is given below in Equation 

(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                         (3) 

 

F1-Score: F1 Score is the harmonic mean of Precision and 

Recall. It balances the two when you want to consider both 

false positives and false negatives. The formula for it is given 

below in Equation (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                         (4) 

 

True Positive (TP), True Negative (TN), False Positive 

(FP) and False Negative (FN) have been recorded in Tables 3 

and 4 below from the Confusion Matrix of each individual 

User while testing once with Random Forgery and 

subsequently with Skilled Forgeries. Further, Precision, 

Recall, and F1 Scores were calculated for all 55 users while 

testing using random and skilled forgeries, and these were 

presented in Tables 3 and 4, respectively. 

 

Table 3. Precision, recall and F1-score while testing using random forgeries for all 55 users 

User 
Random Forgeries 

TP TN FP FN Precision % Recall % F1-Score % 

User1 24 24 0 0 100.00 100.00 100.00 

User2 24 24 0 0 100.00 100.00 100.00 

User3 23 24 0 1 100.00 95.83 97.87 

User4 23 24 0 1 100.00 95.83 97.87 

User5 22 24 0 2 100.00 91.67 95.65 

User6 23 24 0 1 100.00 95.83 97.87 

User7 23 24 0 1 100.00 95.83 97.87 

User8 23 24 0 1 100.00 95.83 97.87 

User9 23 24 0 1 100.00 95.83 97.87 

User10 24 24 0 0 100.00 100.00 100.00 

User11 23 24 0 1 100.00 95.83 97.87 

User12 24 24 0 0 100.00 100.00 100.00 

User13 24 24 0 0 100.00 100.00 100.00 

User14 24 24 0 0 100.00 100.00 100.00 

User15 24 24 0 0 100.00 100.00 100.00 

User16 24 24 0 0 100.00 100.00 100.00 

User17 24 24 0 0 100.00 100.00 100.00 

User18 24 24 0 0 100.00 100.00 100.00 

User19 24 24 0 0 100.00 100.00 100.00 
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User20 24 24 0 0 100.00 100.00 100.00 

User21 24 24 0 0 100.00 100.00 100.00 

User22 24 24 0 0 100.00 100.00 100.00 

User23 21 24 0 3 100.00 87.50 93.33 

User24 23 24 0 1 100.00 95.83 97.87 

User25 24 24 0 0 100.00 100.00 100.00 

User26 24 24 0 0 100.00 100.00 100.00 

User27 24 24 0 0 100.00 100.00 100.00 

User28 24 24 0 0 100.00 100.00 100.00 

User29 24 24 0 0 100.00 100.00 100.00 

User30 24 24 0 0 100.00 100.00 100.00 

User31 24 23 1 0 96.00 100.00 97.96 

User32 24 24 0 0 100.00 100.00 100.00 

User33 23 24 0 1 100.00 95.83 97.87 

User34 24 24 0 0 100.00 100.00 100.00 

User35 24 24 0 0 100.00 100.00 100.00 

User36 24 24 0 0 100.00 100.00 100.00 

User37 24 24 0 0 100.00 100.00 100.00 

User38 24 24 0 0 100.00 100.00 100.00 

User39 24 23 1 0 96.00 100.00 97.96 

User40 24 24 0 0 100.00 100.00 100.00 

User41 22 24 0 2 100.00 91.67 95.65 

User42 24 24 0 0 100.00 100.00 100.00 

User43 24 24 0 0 100.00 100.00 100.00 

User44 21 24 0 3 100.00 87.50 93.33 

User45 23 24 0 1 100.00 95.83 97.87 

User46 24 24 0 0 100.00 100.00 100.00 

User47 24 23 1 0 96.00 100.00 97.96 

User48 22 24 0 2 100.00 91.67 95.65 

User49 24 24 0 0 100.00 100.00 100.00 

User50 24 24 0 0 100.00 100.00 100.00 

User51 24 24 0 0 100.00 100.00 100.00 

User52 24 24 0 0 100.00 100.00 100.00 

User53 22 24 0 2 100.00 91.67 95.65 

User54 24 24 0 0 100.00 100.00 100.00 

User55 24 24 0 0 100.00 100.00 100.00 

Average 99.78 98.18 98.94 

Highest 100.00 100.00 100.00 

Lowest 96.00 87.50 93.33 

 
Table 4. Precision, recall and F1-score while testing using skilled forgeries for all 55 users 

User 
Skilled Forgeries 

TP TN FP FN Precision % Recall % F1-Score % 

User1 24 24 0 0 100.00 100.00 100.00 

User2 24 24 0 0 100.00 100.00 100.00 

User3 24 24 0 0 100.00 100.00 100.00 

User4 20 24 0 4 100.00 83.33 90.91 

User5 23 24 0 1 100.00 95.83 97.87 

User6 11 24 0 13 100.00 45.83 62.86 

User7 24 24 0 0 100.00 100.00 100.00 

User8 23 24 0 1 100.00 95.83 97.87 
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User9 23 24 0 1 100.00 95.83 97.87 

User10 24 24 0 0 100.00 100.00 100.00 

User11 24 24 0 0 100.00 100.00 100.00 

User12 24 24 0 0 100.00 100.00 100.00 

User13 24 24 0 0 100.00 100.00 100.00 

User14 21 24 0 3 100.00 87.50 93.33 

User15 24 24 0 0 100.00 100.00 100.00 

User16 19 24 0 5 100.00 79.17 88.37 

User17 24 24 0 0 100.00 100.00 100.00 

User18 24 24 0 0 100.00 100.00 100.00 

User19 24 24 0 0 100.00 100.00 100.00 

User20 23 24 0 1 100.00 95.83 97.87 

User21 24 24 0 0 100.00 100.00 100.00 

User22 24 24 0 0 100.00 100.00 100.00 

User23 22 24 0 2 100.00 91.67 95.65 

User24 23 24 0 1 100.00 95.83 97.87 

User25 24 24 0 0 100.00 100.00 100.00 

User26 24 24 0 0 100.00 100.00 100.00 

User27 22 24 0 2 100.00 91.67 95.65 

User28 24 24 0 0 100.00 100.00 100.00 

User29 24 24 0 0 100.00 100.00 100.00 

User30 24 24 0 0 100.00 100.00 100.00 

User31 24 23 1 0 96.00 100.00 97.96 

User32 24 24 0 0 100.00 100.00 100.00 

User33 19 24 0 5 100.00 79.17 88.37 

User34 24 24 0 0 100.00 100.00 100.00 

User35 24 24 0 0 100.00 100.00 100.00 

User36 24 24 0 0 100.00 100.00 100.00 

User37 24 24 0 0 100.00 100.00 100.00 

User38 21 24 0 3 100.00 87.50 93.33 

User39 24 23 1 0 96.00 100.00 97.96 

User40 24 24 0 0 100.00 100.00 100.00 

User41 24 24 0 0 100.00 100.00 100.00 

User42 24 24 0 0 100.00 100.00 100.00 

User43 24 24 0 0 100.00 100.00 100.00 

User44 24 24 0 0 100.00 100.00 100.00 

User45 24 24 0 0 100.00 100.00 100.00 

User46 24 24 0 0 100.00 100.00 100.00 

User47 24 23 1 0 96.00 100.00 97.96 

User48 18 24 0 6 100.00 75.00 85.71 

User49 24 24 0 0 100.00 100.00 100.00 

User50 24 24 0 0 100.00 100.00 100.00 

User51 24 24 0 0 100.00 100.00 100.00 

User52 24 24 0 0 100.00 100.00 100.00 

User53 24 24 0 0 100.00 100.00 100.00 

User54 24 24 0 0 100.00 100.00 100.00 

User55 24 24 0 0 100.00 100.00 100.00 

Average 99.78 96.36 97.77 

Highest 100.00 100.00 100.00 

Lowest 96.00 45.83 62.86 
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Fig. 7 Comparison of testing accuracy of various users using random forgery  

 

 
Fig. 8 Comparison of testing accuracy of various users using skill forgery 

 
Table 5. Verification Report of Proposed Method 

Performance Parameters Results Obtained 

(%) 

Random 

Forgery 

Skilled 

Forgery 

Average Testing Accuracy 98.98 98.07 

Average Precision 99.78 99.78 

Average Recall 98.18 96.36 

Average F1-Score 98.94 97.77 

 

The performance analysis report of our proposed offline 

signature verification system in terms of Testing Accuracy, 

Precision, Recall and F1-Score, which performs remarkably 

well, is shown in Table 5.  

 

5. Results and Conclusion 
Our Pretrained SqueezeNet is trained and tested on the 

CEDAR database for all fifty-five users, yielding average 

testing accuracy of 98.98% using Random Forgeries and 

98.07% using Skilled Forgeries, as shown in Table 2 above. 

For random forgeries, testing accuracy ranges from (93.75%-

100%) for all fifty-five users; similarly, for skilled forgeries, 

testing accuracy ranges from (72.92%-100%). The average 

training time elapsed is observed to be 1 min 09 sec, with a 

highest of 1 min 33 sec and a lowest of 41 sec. The highest 

and lowest training accuracy is 100%. The highest testing 

accuracy for random as well as skill forgery is 100%. The 

lowest testing accuracy is 93.75% and 72.92% respectively, 

for random forgery and skill forgery. All the above parameters 

are depicted in Table 2 above. It is clear that the model’s 

performance with average testing accuracy of 98.98% (Using 

Random Forgery) and 98.07% (Using Skill Forgery) indicates 

great overall efficiency. The average precision of 99.78% 

(Using Random Forgery) and 99.78% (Using Skill Forgery) 

shows that the model effectively reduces false positives. With 

an average recall of 98.18% (Using Random Forgery) and 

96.36% (Using Skill Forgery), the model minimizes false 

negatives. Moreover, a well-balanced tradeoff between recall 

and precision, known as F1-Score, comes out to be 98.94% 

(Using Random Forgery) and 97.77% (Using Skill Forgery).  

All the above findings suggest the model’s dependability, high 

accuracy, and careful handling of false positives and 

negatives. Hence, the values of Average Testing Accuracy, 
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Average Precision, Average Recall and Average F1-Score 

from Tables 2, 3, 4 and 5 indicate that our proposed system 

performs remarkably well in line with the state-of-the-art 

results presented to date.  

Using a pretrained SqueezeNet deep learning model for 

offline signature verification is an effective approach, 

especially when a lightweight model is needed that can 

perform well in resource-constrained environments with 

limited signature data. Comparison of the testing accuracy of 

various users using Random Forgery and Skill Forgery is 

shown in Figures 7 and 8 as a bar diagram, respectively. 

6. Conclusion 
 Deep learning has brought notable changes in offline 

signature verification. In terms of accuracy and resilience, 

models like CNNs, RNNs, and GANs have surpassed 

conventional methods. However, issues like real-time 

processing, complex forgeries, and small datasets must be 

resolved. Hybrid models that combine deep learning and 

conventional techniques and developments in data 

augmentation and model optimization are expected to propel 

further advancements in signature verification systems as the 

field develops. By altering a pretrained SqueezeNet model for 

the purpose of offline signature verification, we have taken 

advantage of deep learning's power while keeping a 

lightweight and efficient model appropriate for 

implementation on devices with constrained computational 

resources. SqueezeNet is a lightweight Convolutional Neural 

Network (CNN) architecture designed to achieve a reasonable 

balance between accuracy and model size. It is especially 

helpful for applications with limited computational resources 

or a smaller model with rapid inference, making it a good 

choice for offline signature verification tasks in resource-

constrained environments. In real-world scenarios, signature 

verification can be significantly challenged by various 

distortions such as stamps, overlapping text, smudges, or 

background noise, which are out of the scope of this research. 

These interferences can hinder accurate verification and 

authentication. Therefore, the development of robust 

techniques for the effective removal or mitigation of such 

distortions presents a valuable direction for future research. 

Advancing in this area could greatly enhance the reliability 

and accuracy of automatic offline signature verification 

systems.  
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