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Abstract -  Cloud computing continues to redefine the way data is stored, processed, and accessed globally. However, as 

organizations use more cloud services, digital forensic investigations get more complex in these networks. Typical forensic 

methods still struggle to handle secure logging, key exchange, and current threat sharing in systems that change their operation 

with growth and shrinkage. This paper introduces ForenSecure-AILSO, a unique cloud forensics framework that uses Fuzzy 

Logic, CALSO, and mechanisms based on smart contracts to secure the collection of evidence. It tackles important problems in 

multi-cloud computing, such as log storage verification, mystery identity generation, real-time monitoring to spot risks, and 

matching forensic evidence. In order to keep the information secure and traceable, the log entries are cleaned, enriched, and 

hashed with SHA-3 on the private consortium blockchain. With a fuzzy identity engine, automatic tokens are created that are 

difficult to trace, while CALSO keeps session keys strong by adjusting them regularly based on how difficult they are to break. 

CALSO-TPR directs an anomaly detection engine to quickly spot and alert about any suspicious activity. An evaluation of six 

key areas, using 10 benchmark models, reveals that ForenSecure-AILSO performs better than other options, scoring an F1-score 

for log cleaning of 94.0%, accuracy in identifying threats of 96.5%, and a key entropy of 289 bits. The framework managed to 

detect 99.2% of attempts to change digital tokens and was precise with 93.5% of its subgraph matches, proving its strength and 

adherence to laws. 

 
Keywords - Cloud forensics, Blockchain, Fuzzy Logic, CALSO, Session key optimization, Forensic integrity, Anomaly detection, 

Evidence correlation, Threat Prediction, Smart Contracts. 

 

1. Introduction 
In the last decade, the way organizations use technology 

was revolutionized by cloud computing, as it made it possible 

for them to handle their data using virtual and scalable 

platforms. As a result, using the cloud, businesses, 

governments, and people are able to reduce their hardware 

installation expenses and work at greater speed, helping 

departments in different parts of the world collaborate more 

[1, 2]. Due to various cloud deployment and service models, 

businesses in every industry have embraced cloud technology. 

A dramatic increase is seen in data amounts, speeds, and types, 

in addition to a highly linked and split computing system. 

However, this move towards using the cloud can lead to major 

security and forensic difficulties. In many regions, on different 

platforms, and various administrative areas, cloud-based 

services cause new challenges in data management, ensuring 

user privacy, handling evidence, and meeting different sets of 

regulations [3, 4]. Cloud service providers have effective 

platforms for storing and running computations, though they 

tend to lack the required tools and assurances needed for any 

legal use of evidence. Therefore, models that require working 

directly with data or systems are not useful in the digital 

environments [1, 5]. 

 

Having many users on a single cloud system can lead to 

issues in cloud forensics. In multi-tenancy, the same hardware 

is shared by different clients, who still have their resources 

divided. While it reduces both expenses and the need for extra 

resources, it becomes more difficult to investigate crimes [6] 

[7, 8]. Evidence should be pulled from devices or the network 

without infringing on the privacy of co-resident tenants. 

Authorities cannot take a server without first separating it 

from the data of its various users. For this to happen, cloud 

providers should include more detailed and tenant-specific 

forensic technologies, which are mostly missing from regular 

CSP plans. It is also challenging to manage the elasticity of 
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resources, such as Virtual Machines (VMs), containers, and 

storage volumes. It only takes moments to build, use, and 

dispose of VMs. Since these events only last a moment, they 

do not leave a lot of evidence, and if they are not caught when 

they occur, information can be lost forever. Moreover, when a 

virtual IP address is reused, it makes it very difficult to 

maintain the same identity or actions from one session to the 

next [9-11]. For cloud data to be used in forensic analysis, the 

state should be unchanged, there may be time gaps between 

entries, and essential information should be added, which is 

generally not covered by API features. Figure 1 shows the 

security and compliance benefits in cloud forensics and secure 

log management. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 1 Security and compliance benefits in cloud forensics and secure log management 

 

The fundamental issue is that no unified forensic 

framework currently enables secure, anonymizes, cross-

correlates and verifies digital evidence in real-time across 

volatile and distributed frameworks [12]. Conventional digital 

forensics approaches that target static machines do not work 

in the context of dynamically orchestrated systems in which 

Virtual Machines (VM), containers, and user identities are 

ephemeral [13]. Also, current methods frequently require the 

use of CSPs to store and maintain the evidence itself, posing a 

question of trust, tampering and admissibility of the hard copy 

records. These underlying flaws have not been satisfactorily 

checked until now by earlier studies, albeit since the 

development of cryptography, blockchain, and the AI 

technique [14, 15]. 

 

Moreover, multi-tenancy offers potential co-residency-

based inference attacks, and Advanced Persistent Threats 

(APTs) use encrypted communication, anonymization 

overlays, and dynamic evasion techniques to hamper forensic 

visibility [16]. The lack of privacy-enabling authentication 

and authorization protocols and secure session key negotiation 

mechanisms makes it all the harder to attribute a set of actions 

to actors in a shared infrastructure [17]. This reveals an 

important research gap: a decentralized, intelligent, and 

tamper-resistant forensic model offering traceability, 

anonymity, and security, independent of centralized trust 

anchors [18, 19]. 

 

This paper proposes ForenSecure-AILSO, which is a 

robust forensic framework that combines the synergy of fuzzy 

logic, blockchain-enabled logging, and Crossover-based 

Artificial Lizard Search Optimization (CALSO). The multi-

source logs will be independently sanitized in the proposed 

system, the anonymous user identities will be created using 

fuzzy extractors, and blockchains will be used to ensure 

security properties of the system by keeping evidence or 

session key entropy in a blockchain encrypted with Merkle 

Tree structures. CALSO is also extended to threat prediction 

(CALSO-TPR), which allows scoring and real-time anomaly 

and forensic correlation. Unlike prior systems that were 

designed around addressing only individual aspects of privacy 

(key generation), privacy following identity exposure (identity 
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masking), or all-purpose logging, ForenSecure-AILSO 

provides an end-to-end solution with privacy, traceability, and 

predictive analytics integrated in a single architecture. The 

research not only introduces a technological step forward in 

the area of secure digital forensics but also establishes the 

cornerstone of future decentralized auditing systems in the 

multi-cloud world, where privacy, accuracy, and the ability to 

go to court need to be met simultaneously. 

 

1.1. Main Contribution of the Work 

 Novel Hybrid Forensic Framework (ForenSecure-

AILSO): In this work, a hybrid cloud forensics model is 

designed by using fuzzy logic, CALSO, and blockchain 

storage to ensure that forensic analysis in distributed 

clouds is trustworthy, unchanging, and secret. 

 Fuzzy-Based Anonymous Identity Generation: Using 

features like MAC address and frequency of access, a 

model is built that can generate anonymous profiles that 

are very resistant to reidentification and still provide high 

accuracy in authentication. 

 CALSO-Optimized Secure Session Key Management: 

The new design uses CALSO to intelligently develop 

session keys that are highly secure and difficult to break, 

improving on previous negotiation schemes and 

increasing key diversity. 

 Blockchain-Backed Forensic Logging and Chain-of-

Custody Enforcement: Secure log entries are verified 

with SHA-3, then written in Merkle Trees on a private 

consortium blockchain and controlled by smart contract 

permission roles. 

These contributions collectively offer a powerful, 

intelligent, and legally compliant forensic framework suitable 

for modern multi-cloud environments.  

 

The remainder of this paper is organized as follows: 

Section 2 presents related studies on cloud forensics, 

blockchain-based evidence preservation, fuzzy logic in 

identity anonymization, and bio-inspired optimization 

techniques for secure key generation. Section 3 outlines the 

proposed ForenSecure-AILSO methodology, including multi-

platform log sanitization, fuzzy-based identity extraction, 

CALSO-driven session key optimization, blockchain-backed 

storage, and predictive threat detection. Section 4 discusses 

the experimental results, comparing ForenSecure-AILSO 

against ten benchmark models across six forensic dimensions. 

Finally, Section 5 concludes the study with key insights and 

proposes future directions involving federated forensic agents, 

multi-modal inputs, and adaptive learning mechanisms for 

real-time forensic intelligence. 

 

2. Related Works 
Migration of conventional digital forensics to cloud-

based forensic systems has brought numerous issues and 

opportunities to fight cybercrime in the contemporary world. 

With cloud computing platforms becoming the standard 

through which organizations need to conduct operations, 

complexity of forensic evidence gathering, securing, and 

validation has become very high. Various studies have tried to 

fill such tech gaps in the forensics area with the help of 

blockchain technology, smart contracts, encryption 

algorithms, and so on. 

 

The forensic framework that combines Software Defined 

Networking (SDN) and blockchain was proposed in 

recognition of tamper-free evidence sharing in the cloud 

infrastructure space. The framework enabled the security of 

forensic workflows to ensure assurances through the use of 

SRVA to detect misuse and the application of Sadaun Elliptic 

Curve Cryptography (SECC) and the SHA-3 Merkle Hash 

Trees to secure and prove metadata hierarchies. This approach 

validated the use of blockchain to enhance the decentralization 

of evidence management and build trust in forensic systems. 

The system, however, did not support the development of 

dynamic session monitoring, adaptive key generation or 

managing of anonymized identities features, which are 

important in real-time multi-user scenarios. 

 

Immutability of the Forensic processes was also 

highlighted in the same article as an objective to attain further 

in the vision. The chain-of-custody was maintained, and the 

framework enhanced judicial admissibility by recording each 

transaction permanently on the blockchain. The use of smart 

contracts smoothed the way to the seamless integration of 

those with forensic APIs, where it is possible to automate the 

acquisition and validation processes. This system was found 

to be resource-efficient and applicable for implementation, 

even in resource-scarce environments, like IoT and healthcare 

systems [20]. Building on this, the case study involves a 

blockchain-based forensic architecture that examined one that 

was adapted to industrial safety applications that included IIoT 

(Industrial Internet of Things) systems [21]. They had an 

intelligent contract-based architecture and access control, 

which was token-based, to handle secure forensic transactions. 

The new batch consensus mechanism has been proposed to 

maximise the performance of data collection and guarantee 

fault tolerance in high-scale evidence gathering. The 

simulation test depicted this consensus method as much faster 

and consistent than the DPOS algorithm. Irrespective of such 

benefits, the system was IIoT-centric and lacked a universal 

forensic model that applies to cloud native systems, as well as 

user identity obfuscation. 

 

In order to have a broader perspective of the challenges 

related to the security of forensic data, a detailed study was 

held to compare the common and cloud-specific forensic 

procedures [22]. The researchers have found that the large 

spread of cloud technologies has brought about new attack 

surfaces, data privacy risks, and data volatility. The study was 

conducted based on the analysis of some significant cases of 

security breaches and the related expenses to conclude that 

classic forensic tools cannot meet cloud dynamics adequately. 
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Moreover, it predicted the worldwide cloud forensics market 

to develop at a CAGR of 16.53% between 2023 and 2031 and 

reach USD 36.9 billion at decade-end. This estimate points to 

the dire need for resilient, flexible, and smart forensic designs. 

The IoT field of development also could not be left behind 

with an advancement in the PBCIS-IoTF system, which 

provided a framework that is used to counter the challenges of 

evidence provenance and provenance in a heterogeneous IoT 

scenario [23]. This system was able to store digital evidence 

on the distributed ledger in the form of SHA-256 hash values, 

and the nodes used were Hyperledger blockchain and 

Raspberry Pi nodes. It allowed investigators and the court to 

authenticate the data retrieved by smart devices with great 

authenticity and integrity. Nevertheless, this framework had 

limitations in that it was based on the fixed identity of devices 

and could not perceive any intelligence in responding to 

threats or present any session key negotiation. 

 

Although significant progress has been jointly achieved 

on the above studies, it is noted that none of them have 

extended their work to the forensic lifecycle in detail, 

especially regarding privacy-preserving identity generation, 

real-time threat prediction, and adaptive session key 

management. They also did not have a single platform, which 

would efficiently combine the capabilities of sanitisation of 

evidence, correlation, and chain-of-custody management in a 

dynamic, multi-cloud environment. 

 

3. Methodology 
The proposed ForenSecure-AILSO framework contains a 

series of steps that are built for effective and smart cloud 

forensics. Logs are first fetched from various cloud sources 

and then filtered and assigned a priority using entropy and 

priority scoring. They are next enhanced with metadata and 

hashed using SHA-3 to build Merkle Trees for safe and secure 

blockchain-based storage. With fuzzy logic, anonymous user 

tokens are made from the attributes and patterns of a mobile 

device. CALSO is used to optimize session keys, which raises 

the entropy and makes it harder for enemies to break the keys. 

Moreover, CALSO watches for security threats as they occur, 

and traces any signs of wrongdoing within a timeline on 

forensic graphs. Figure 2 shows the architecture diagram. 

 
Fig. 2 Overview architecture of the proposed ForenSecure-AILSO framework 

 

3.1. Multi-Platform Log Acquisition (MLLAS – Multi-Layer 

Log Acquisition System) 

The first step in the ForenSecure-AILSO methodology is 

setting up MLLAS, a flexible and strong log acquisition tool. 

It is set up to run smoothly on clouds with different software, 

highlighting Infrastructure-as-a-Service (IaaS) suppliers such 

as AWS, OpenStack, and mixes of private and public 

resources. MLLAS is designed to allow a reliable data 

ingestion process for gathering crime-related evidence from 

multiple and decentralized cloud environments. For this 

purpose, the system uses a more detailed version of the Cloud 

Auditing Data Federation (CADF) schema, which is a 

standard suggested by DMTF that helps build clear and 

compatible audit trails across cloud services. Standardized 
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acquisition by MLLAS includes capturing many different log 

types. For example, system-level logs such as syslog and 

kernel events capture key system activity in virtual machines 

or containers, and API access logs (such as AWS CloudTrail) 

register any calls made by programs to the control plane. Also, 

the framework regularly keeps a record of all actions taken by 

users through dashboards, SSH sessions, and logging in using 

user credentials. The use of multifaceted logs allows 

investigators to see every detail of all actions taking place in 

the cloud infrastructure. 

 

One key feature of MLLAS is that it helps coordinate P2P 

cloud storage networks like BitTorrent Sync. Data from 

network monitors on edge devices and user terminals is 

collected and looked at by forensic investigators to see how 

files are transferred and find instances of unauthorized data 

sharing. This feature is important when criminals try to avoid 

centralized monitoring or make use of network anonymity by 

using P2P overlays.  

 

To make sure the logs are accurate and valid, MLLAS 

requires all systems to keep the same time using NTP. 

Allowing every event record to reference the same global 

clock guarantees that data is unaffected by out-of-order 

logging, time-skew attacks, and artificial timestamp changes. 

It is critically important to have clocks work in sync so that 

timelines for forensic investigations are correct and so that 

chain-of-custody regulations are observed. The MLLAS 

implementation gives a good base for collecting logs securely 

across platforms, which is needed for further forensic and 

security work using the ForenSecure-AILSO framework. 

 

3.2. Log Sanitization and Metadata Enrichment 

Sanitizing logs and enhancing metadata is crucial to turn 

a large amount of unmanageable log data into useful and 

organized forensic evidence. In the beginning, the email gets 

filtered by checking for patterns and giving scores depending 

on its importance. System messages, such as constant 

heartbeats and status checks, are identified and dismissed by 

using regular expressions and rule-based classifiers. Each log 

entry is also given a score for priority, considering things such 

as how serious the event is, how much trust the source IP has, 

how frequently it occurs, and whether it was previously 

unusual. As a result, investigators can pay close attention to 

logs that matter most, making the next steps much faster and 

more efficient use of the computer’s resources. Let 𝐿𝑟 =
{𝑙1, 𝑙2, … , 𝑙𝑛} be the set of raw log entries, 𝑆(𝐿𝑟) be the 

sanitization function that removes noise and assigns priority, 

and ℰ(𝑙) be the enrichment function applied to each 

sanitized log 𝑙 ∈ 𝑆(𝐿𝑟). Then, the final set of enriched logs is: 

 

𝐿𝑒 = {ℰ(𝑙)|𝑙 ∈ 𝑆(𝐿𝑟)}                                                     (1) 
 

Once irrelevant data is removed, the remaining log entries 

are given extra details that cannot usually be seen in regular 

log formats. One of the first layers of enrichment works by 

looking up the IP addresses of users or services, then finding 

out where they point to in real life with the help of online 

maps. This also helps add an important location factor to how 

people access data, which is key for spotting unusual activity 

that crosses borders or any data rules that might be broken. 

Each log entry 𝑙𝑖 is assigned a priority score 𝑝(𝑙𝑖) ∈ [0,1] 
based on a weighted sum of relevance features: 

 

𝑝(𝑙𝑖) = 𝑤1𝑓𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑙𝑖) + 𝑤2𝑓𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑙𝑖) + 𝑤3𝑓𝑡𝑟𝑢𝑠𝑡(𝑙𝑖)

+ 𝑤4𝑓𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑙𝑖)                                        (2) 

 

Where 𝑓𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 denotes the map’s event type to severity 

level, 𝑓𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  captures event repetition, 𝑓𝑡𝑟𝑢𝑠𝑡 assesses IP 

or user reputation, 𝑓𝑎𝑛𝑜𝑚𝑎𝑙𝑦  flags known derivations from 

historical behavior, ∑ 𝑤𝑗 = 1 , 𝑓𝑜𝑟 𝑗 = 1 … 4. A threshold 𝜏 ∈
[0,1] is chosen (e.g., 𝜏 = 0.5) to retain logs: 

 

𝑆(𝐿𝑟) = {𝑙𝑖 ∈ 𝐿𝑟|𝑝(𝑙𝑖) ≥ 𝜏}                                            (3) 
 

At the same time, logs are checked against known 

identifiers of both hosts, the browsers used, and the metadata 

of virtual machines. This way, the system can determine 

which device or virtual resource performed certain actions, 

preventing unclear identification of the source. Additionally, 

setting up devices with digital signatures or cryptographic 

hashes makes it easier to identify and monitor their setup. 

Each sanitized log 𝑙 is enriched as: 

 

ℰ(𝑙) = (𝑙, 𝛾(𝑙), 𝛿(𝑙), 𝛽(𝑙), 𝑣(𝑙))                                          (4) 

 

Where 𝛾(𝑙) is the geolocation vector (e.g., [country, 

region, city]), 𝛿(𝑙) is the device signature hash (e.g., SHA-256 

of hardware ID), 𝛽(𝑙) is the behavioral profile vector (e.g., 

login frequency, commands), and 𝑣(𝑙) is the cloud node 

metadata (e.g., {region ID, instance ID}).  

 

Additionally, learning from how people use the system 

helps, so what they usually do is captured in the logs by saving 

their regular access patterns, time on the platform, commands 

used, and resources used. It helps notice the difference 

between authorized users and hackers using the same 

processes. It is also used to detect anomalies in later parts of 

the analyzis when a sudden deviation is seen as suspicious. 

The enriched log set 𝐿𝑒 becomes: 

 

𝐿𝑒 = {(𝑙, 𝛾(𝑙), 𝛿(𝑙), 𝛽(𝑙), 𝑣(𝑙))|𝑝(𝑙) ≥ 𝜏, 𝑙

∈ 𝐿𝑟}                                                              (5) 

 

For each log entry, an attached cloud node metadata tells 

us the details about the server, location, environment, and 

service level involved. Because of this, investigators are able 

to connect events in different parts of the infrastructure, 

understand spreading actions, and chart the ways threats travel 

among different users in a cloud system. 
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3.3. Fuzzy Logic-Based Identity Generation (FISSE – Fuzzy 

Identity and Session Security Engine) 

Using the Fuzzy Identity and Session Security Engine 

(FISSE), the framework is designed to create safe and private 

user identities for each transaction. The module focuses on 

helping to secure cloud forensics by verifying every access, 

anonymizing the user’s credentials, and avoiding any leaks of 

their details. Most traditional ways of authenticating users 

depend on matching fixed credentials, putting them at risk of 

being copied, stolen, or used by others. The system relies on 

fuzzy logic, making user identification dynamic by taking into 

account the user’s naturally changing and occasion-dependent 

features, which helps strengthen resistance to advanced 

persistent threats. Let the user/session attributes be 

represented as a feature vector: 
 

𝑥 = [𝑥1, 𝑥2, 𝑥3]
= [𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷, 𝑀𝐴𝐶, 𝐴𝑐𝑐𝑒𝑠𝑠𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦]                            (6) 

 

This vector 𝑥 ∈ 𝑅3 contains noisy but unique session-

based identity features. A fuzzy extractor 𝐹(⋅) maps a noisy 

feature vector 𝑥 to a stable, anonymous identity 𝐼𝐷𝑎𝑛𝑜𝑛 and a 

helper string ℎ for future reconstruction: 
 

(𝐼𝐷𝑎𝑛𝑜𝑛 , ℎ) = 𝐹(𝑥)                                              (7) 
 

Where 𝐼𝐷𝑎𝑛𝑜𝑛 ∈ {0,1}𝑛 is the anonymous, stable identity 

representation, ℎ is public and used to regenerate 𝐼𝐷𝑎𝑛𝑜𝑛 later 

from a similar 𝑥′ ≈ 𝑥. The identity generation process starts 

by getting a list of device features and behavior every time 

someone uses the app. Key among these are things like the 

device identifier (such as a serial number or unique ID), the 

MAC address, and how often the devices perform certain 

actions or what kind of timing you see them using. These 

values often change because of things like different devices, 

moving computer memories around, or making changes to the 

network. To help deal with this uncertainty, FISSE uses fuzzy 

extractors, which are special tools that can create the same 

output even from bits that are close to, but not exactly the 

same. In essence, a fuzzy extractor takes in messy data like 

fingerprints or hardware features and turns them into a safe 

and anonymous identity code, while getting rid of any private 

information tied to a person. This process keeps user 

information safe and also lets the system know it is the same 

user or device every time, even when something small 

changes. Let 𝜇𝑐(𝑥) and 𝜇𝑡(𝑥) denote the membership 

functions for: 

 Confidence level of identity 

 Trustworthiness of access 

Then: 

𝜇𝑐(𝑥) = 𝑓𝑢𝑧𝑧𝑦(𝑥1, 𝑥2, 𝑥3) ∈ [0,1]                                          (8) 
 

𝜇𝑡(𝑥) = 𝑓𝑢𝑧𝑧𝑦(𝑥1, 𝑥2, 𝑥3, 𝑡, 𝐿𝑜𝑐) ∈ [0,1]                              (9) 
 

Where 𝑡 is the timestamp of access, and 𝐿𝑜𝑐 is the 

geolocation/IP region. Once the anonymous identity is 

established, FISSE uses a list of simple if-then rules to look at 

two important parts: the confidence level of the identity and 

whether they trust the person asking for access. For example, 

if a user logs in from their usual device and in their normal 

way of timing, the system will mark it as very likely to be 

them. Conversely, if the same user tries to get in from a 

different device or a place they typically would not be at that 

time, the confidence level could be lowered to "Medium" or 

"Low." The fuzzy rules look at things like whether a user is 

more active than usual, if their behavior is steady, and how 

long they have been active to determine how unusual the 

activity is. The result of this rule-based verification is then 

used to let someone in, ask for more information, or stop them, 

and it might also begin steps like sending a one-time code or 

asking a set of questions. Define a trust threshold 𝜃 ∈ [0,1]. 
The session is allowed only if both confidence and trust scores 

exceed this threshold: 

 

𝐴𝑐𝑐𝑒𝑠𝑠 𝐺𝑟𝑎𝑛𝑡𝑒𝑑 ⟺ 𝜇𝑐(𝑥) ≥ 𝜃    𝐴𝑁𝐷 𝜇𝑡(𝑥)
≥ 𝜃                                                               (10) 

 

Otherwise, the system may trigger multi-factor 

authentication or deny access. One major advantage of FISSE 

is that it is able to stop impersonation and replay attacks. As 

identities do not depend on set credentials but come from 

dynamic data, it is hard for anyone to copy or steal them. Even 

if the session traffic is stolen by the adversary, the underlying 

binding between the fuzzy identity and the session key will 

stop any attempts to use the stolen data again. Additionally, 

session keys are directly linked to the context-specific outputs 

from the fuzzy identity, so they are always unique for a given 

session. It ensures that when the fuzzy confidence and trust 

scores are too low, the same access requests will still be 

blocked after multiple attempts. 

 

3.4. Secure Evidence Hashing and Blockchain Storage 

(BETL – Blockchain Enabled Tamper Proof Ledger) 

At this step, blockchain technology is used to keep all log 

data from the forensic investigation secure and easily 

traceable. The BETL phase is when forensic information from 

the cloud is locked, checked, and allowed to be used in legal 

actions. BETL brings together cryptography, stratified 

organization of information, and decentralization to establish 

a system that stands up to unauthorized efforts to tamper, 

manipulate, or access evidence. Every sanitized and metadata-

enhanced log record is hashed cryptographically as the first 

step of the process.  

 

Applying the SHA-3 (Secure Hash Algorithm 3) 

algorithm generates an invariable-length hash digest for each 

log entry. It represents the log content in a way that is unique 

to this digest. Every time even one character in the original 

data is changed, the hash would also change. Using these 

SHA-3 hashes makes it possible to confirm the authenticity of 

the evidence in the future without showing the original 

records. Let 𝐿𝑒 = {𝑙1, 𝑙2, … , 𝑙𝑛} be the set of sanitized and 
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enriched log entries, and 𝐻: 𝐿 → {0,1}𝑘 be the SHA-3 

cryptographic hash function that maps each log to a fixed-

length digest of 𝑘 bits. Then, the hash set is: 

 

𝐻𝑒 = {ℎ𝑖 = 𝐻(𝑙𝑖)|𝑙𝑖 ∈ 𝐿𝑒}                                       (11) 

 

BETL stores and organizes hashed log entries in the form 

of a Merkle Hash Tree. Individual log hashes act as the end 

nodes in this structure, and each combination of two hashes is 

rehashed until only one root hash, also known as the Merkle 

Root, is left. Using the Merkle Root, all the data can be 

checked, and any log entry can be verified in logarithmic time.  

 

The structure allows for adjusting the number of 

transactions processed and for fast verification during some 

activities, like selective audits or validation. To build a Merkle 

Hash Tree, adjacent hashes are recursively combined and 

hashed again to generate parent nodes. Let ℎ𝑖 , ℎ𝑖+1 ∈ 𝐻𝑒 be 

two adjacent hashes. The parent node ℎ𝑝 is defined as: 

 

ℎ𝑝 = 𝐻(ℎ𝑖||ℎ𝑖+1)                                                               (12) 

 

Where || denotes concatenation, and 𝐻 is again the SHA-

3 hash function. This recursive process continues until the 

Merkle Root. 𝑀𝑟𝑜𝑜𝑡 is obtained: 

 

𝑀𝑟𝑜𝑜𝑡 = 𝐻log2(𝑛)(… 𝐻(𝐻(ℎ1||ℎ2)||𝐻(ℎ3||ℎ4)) … )        (13) 

 

After the Merkle Root is created for a collection of log 

records, it is uploaded to a compact consortium blockchain 

and accepted by a group of trusted forensic, legal, or 

compliance entities. Unlike open-source public blockchains, 

the private consortium model is powerful, has careful access, 

and fulfills all necessary regulations.  

 

By applying RBAC, BETL ensures that only 

investigators, auditors, and legal representatives are able to 

access or insert information into the public cell registry. 

Because a system’s operator decides beforehand, each node’s 

permissions are based on the organization’s rules, making sure 

confidentiality is not breached and sensitive forensic proof 

cannot be changed. The Merkle Root is embedded into a block 

in the blockchain ledger. Let a block 𝐵𝑡  at time 𝑡 contains: 

 

𝐵𝑡 = (𝑀𝑟𝑜𝑜𝑡
𝑡 , 𝑇𝑡 , 𝑀𝑒𝑡𝑎𝑡 , 𝑆𝑖𝑔𝑡)                                 (14)  

 

Where 𝑀𝑟𝑜𝑜𝑡
𝑡  is the Merkle Root of logs at timestamp 𝑡, 𝑇𝑡 

is the timestamp, 𝑀𝑒𝑡𝑎𝑡 is the metadata (e.g., source node, log 

count), and 𝑆𝑖𝑔𝑡   is the digital signature of the authorized 

forensic node. The entire chain 𝐶 is then: 

 

𝐶 = {𝐵1, 𝐵2 , … , 𝐵𝑡}                                      (15) 
 

Smart contrasts 𝑆𝐶 manage chain-of-custody events 𝐸, 
such as access, validation, or export: 

𝑆𝐶(𝐸) ⇒ 𝐴𝑢𝑡𝑜 − 𝑟𝑒𝑐𝑜𝑟𝑑(𝐸, 𝑇, 𝑈𝑠𝑒𝑟𝐼𝐷, 𝐴𝑐𝑡𝑖𝑜𝑛)          (16) 

 

Each event is permanently logged and cryptographically 

linked to prior events, ensuring non-repudiation and 

tamperproof provenance. Smart contracts are implemented in 

the blockchain to track the custody of each entry. With these 

scripts, every transaction involving evidence is automatically 

logged, showing the date, identity of the submitting party, all 

requests for access, and any analysis actions made. By doing 

this, every step in the supply chain can be traced and proven, 

which is necessary for using images in legal cases. Anything 

that tried to change or erase information within the blockchain 

would immediately be detected by the Merkle Root. With both 

cryptographic and blockchain-based features integrated, 

forensic logging becomes more secure, traceable, and reliable 

using the BETL system. It ensures that investigators and 

stakeholders can be sure the evidence is not touched and can 

be reliably checked in large multi-user cloud environments. 

 

3.5. Session Key Generation via CALSO (Crossover-based 

Artificial Lizard Search Optimization) 

In the next phase of the method, the attention is on using 

a bio-inspired technique called Crossover-based Artificial 

Lizard Search Optimization (CALSO) to safely and adaptably 

generate session keys. This module works to improve the 

safety of sessions in the cloud by producing session keys that 

are extremely resistant to various cryptanalytic attacks. Unlike 

fixed key generation, CALSO improves the quality of 

candidates by using smart search and mutation, leading to 

unique keys, unpredictable patterns, and strong cryptography. 

The first thing to do is generate a set of potential session keys 

using random numbers. Whether the candidate key is shown 

as a string of bits or as a numerical vector is influenced by the 

cryptographic scheme being used (for example, AES uses 

256-bit keys, and elliptic curves use points). The first set of 

individuals is either produced randomly or using a limited 

amount of session data, leading to more search diversity. 

These keys are genetic material that CALSO will change and 

develop continually toward the right answer. Let the 

population of session keys at generation 𝑔 be: 
 

𝑃(𝑔) = {𝐾1
(𝑔)

, 𝐾2
(𝑔)

, … , 𝐾𝑁
(𝑔)

}                                   (17) 

 

Where 𝐾𝑖
(𝑔)

∈ {0,1}𝐿 is the 𝑖𝑡ℎ session key and 𝑁 is the 

population size. Once the population exists, every key in the 

search space is evaluated for fitness based on three main 

points. Shannon’s entropy formula is used to find the entropy 

of the keys. A key with high entropy is preferred since such 

keys are tougher to predict and safer. Second, the strength of 

agreeing on a key is checked by seeing if it can safely be 

negotiated or shared between parties, often by checking for 

Diffie–Hellman compatibility or ECC robustness. Further, 

keys that show repeating or elementary patterns are given 

lower marks due to the study of known attack methods. Define 

the fitness 𝐹(𝐾𝑖) of a key 𝐾𝑖 as a weighted sum of three 

components: 
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𝐹(𝐾𝑖) = 𝛼 ⋅ 𝐻(𝐾𝑖) + 𝛽 ⋅ 𝑆(𝐾𝑖) + 𝛾 ⋅ 𝑅(𝐾𝑖)                        (18) 

 

Where 𝐻(𝐾𝑖) is the normalized Shannon entropy of the key 

𝐻(𝐾𝑖) = − ∑ 𝑝𝑏 log2 𝑝𝑏

𝑏∈{0,1}

                                              (19) 

 

With 𝑝𝑏 is the probability of bit 𝑏 in the key 𝐾𝑖, 𝑆(𝐾𝑖) is 

the key agreement strength score, 𝑅(𝐾𝑖) is the resistance to 

known brute-force or pattern-based attacks, and 𝛼 + 𝛽 + 𝛾 =
1 are the weight coefficients controlling influence. CALSO 

includes two strong genetic operators to enhance the 

population in each generation: crossover and mutation. During 

this step, two keys are taken and combined by trading parts of 

their bit strings or numerical elements back and forth. This is 

similar to genes crossing over in nature and helps the 

algorithm look for solutions by using properties from each 

parent. The first half of one of the keys can be combined with 

the second half of another, forming hybrid keys that could be 

more useful. Select parent keys 𝐾𝑎 , 𝐾𝑏 ∈ 𝑃(𝑔), and apply 

single-point crossover at index 𝑐 ∈ [1, 𝐿 − 1]: 
 

𝐾𝑐ℎ𝑖𝑙𝑑 = 𝐾𝑎[1: 𝑐]||𝐾𝑏[𝑐 + 1: 𝐿]                                     (20) 

 

Where || denotes the concatenation operator, 𝐾𝑎[1: 𝑐] is 

the prefix of key 𝐾𝑎 and 𝐾𝑏[𝑐 + 1: 𝐿] is the suffix of key 𝐾𝑏. 

When working with crossover, mutation helps introduce 

chance into the system and makes things more unpredictable. 

A mutation happens by making a slight, arbitrary change to 

the key, such as flipping data bits or swapping key 

components. As a result, this operator prevents the algorithm 

from settling at sub-optimal places too quickly and encourages 

it to explore further. 

 

3.5.1. Mutation Operation 

Introduce randomness by flipping 𝑚 random bits in the 

child key: 

 

𝐾𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝑀𝑢𝑡𝑎𝑡𝑒(𝐾𝑐ℎ𝑖𝑙𝑑 , 𝑚)                                 (21) 

 

Where 𝑚 is the mutation rate and Flip 𝑚 bits at random 

indices: 𝐾[𝑗] = 1 − 𝐾[𝑗]. Evaluation of fitness, crossover, 

mutation, and selection is done again and again until the 

process finally converges. The best session key is chosen by 

looking at its fitness score, as this ensures it has the highest 

entropy, best security during negotiation, and proves difficult 

for an adversary to recognize. After iterating through 𝐺 

generations, the optimal session key 𝐾∗ is chosen: 

 

𝐾∗ = arg max
𝐾∈𝑃(𝐺)

𝐹(𝐾)                              (22) 

 

This key 𝐾∗ has the highest entropy, best agreement 

strength, and strongest resistance to brute-force patterns. By 

combining CALSO into the process of creating session keys, 

ForenSecure-AILSO gives a more flexible and calculated way 

to make encryption stronger. It goes beyond standard static 

key strategies by always changing to fit new threats, trying to 

make things unpredictable, and keeping connections secure 

even in fast-changing and spread-out cloud environments. 

Figure 3 shows the flowchart of the ForenSecure-AILSO 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Flowchart of the ForenSecure-AILSO Framework 

 

3.6. Threat Detection and Predictive Alerting (CALSO-TPR) 

ForenSecure-AILSO then moves on to use CALSO-TPR, 

a modified version of Crossover-based Artificial Lizard 

Search Optimization, for live Threat Detection and Alerting. 
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The module runs in real time to go through the enriched logs, 

search for unusual activities that might indicate attacks, and 

predict if issues are going to lead to breaches. It joins fast-

running anomaly detection with an intelligent risk assessment 

tool to provide relevant alerts as incidents occur. Let 𝐿𝑡 =
{𝑙1, 𝑙2, … , 𝑙𝑛} be the set of real-time log entries at time 𝑡, 
and each log entry 𝑙𝑖 contains features 𝑥𝑖 ∈ 𝑅𝑑 , such as: 

 

𝑥𝑖 = [𝐿𝑜𝑔𝑖𝑛𝑅𝑎𝑡𝑒, 𝐴𝑐𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒, 𝐼𝑃𝐸𝑛𝑡𝑟𝑜𝑝𝑦, 𝑉𝑀𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡, 𝑈𝑠𝑒𝑟𝑇𝑟𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒]           (23) 

 

A real-time anomaly engine at the core of CALSO-TPR 

analyzes user activities, system events, and flow logs as they 

enter its system. It remembers the last set of events and 

compares every new entry with the specified expectations for 

each user, device, and cloud node. They are produced using 

data from past logs and adjust over time to permit changes in 

normal behavior. Define an anomaly score for each log feature 

vector 𝑥𝑖 using deviation from baseline behavior �̅�: 

 

𝐴(𝑥𝑖) = ||𝑥𝑖 − �̅�||
2

                                 (24) 

 

Where �̅� is the mean or centroid of historical user 

behavior, ||⋅||
2
 is the Euclidean norm, and if 𝐴(𝑥𝑖) > 𝜃𝑎, it is 

flagged as an anomaly. The project zeroes in on two forms of 

risky behavior. An increase in login attempts and abnormal 

movement inside VMs at the same time. This pattern tends to 

point to brute-force methods of attack or credential stuffing. 

Through time-series deviation models, CALSO-TPR can spot 

major increases in login failures or raised use of multi-factor 

authentication. This type of lateral movement means an 

attacker can access other VMs after first compromising one in 

the cloud infrastructure. Using session analysis, monitoring 

IPs, and examining effort to obtain greater privileges inside 

cloud instances, CALSO-TPR links events across different 

cloud users and areas. Let the threat risk score 𝑅(𝑥𝑖) be a 

weighted sum of behavioral features: 

𝑅(𝑥𝑖) = ∑ 𝑤𝑗 ⋅ 𝑓𝑗(𝑥𝑖𝑗)

𝑑

𝑗=1

                                   (25) 

Where 𝑓𝑗(𝑥𝑖𝑗) is the normalized risk function for feature 

𝑗, 𝑤𝑗  are the feature weights optimized using CALSO and 

∑ 𝑤𝑗 = 1𝑑
𝑗=1 . The CALSO algorithm evolves the weights 𝑤 =

[𝑤1, 𝑤2, … , 𝑤𝑑] to maximize a fitness function 𝐹(𝑤) that 

balances: 

 Detection accuracy 𝐴 

 False positive rate 𝐹𝑃 

 Adaptiveness to new patterns Δ 

𝐹(𝑤) = 𝛼𝐴(𝑤) − 𝛽𝐹𝑃(𝑤) + 𝛾Δ(𝑤)                          (26) 

 

Where 𝛼, 𝛽, 𝛾 are predefined importance weights, and 

CALSO uses crossover/mutation to evolve 𝑤 for maximum 

𝐹(𝑤). The CALSO-TPR system uses an improved risk 

prediction model that is based on CALSO. A multi-objective 

fitness function is applied to every detected unusual pattern to 

assess if it is most likely a real risk, considering factors like 

when someone accessed the device, the variety of source 

locations, the trust level of the device, and how much the 

behavior shows deviation. CALSO changes and optimizes the 

scoring process using crossover and mutation, making sure it 

stays up-to-date with new risks and unknown threats. Since 

CALSO follows an evolutionary approach, it can adapt to 

recognize more threats and recalculate the importance of 

different indicators over time. Suppose the threat score 

reaches the set limit. In that case, CALSO-TPR issues a 

predictive alert to the involved SOC teams and might take 

automated measures such as shutting down a session, locking 

access, or putting the affected VM in a sandbox. All 

communications, including alerts, are logged in the BETL to 

provide investigators and authorities with proof of traceability 

and accountability. An alert is issued when the predicted risk 

exceeds a dynamic threshold 𝜃𝑟: 

 

𝐴𝑙𝑒𝑟𝑡 ⟺ 𝑅(𝑥𝑖) ≥ 𝜃𝑟                                   (27) 
 

Threshold 𝜃𝑟 may be adaptive, depending on time-of-day, 

role, or prior incident density. In short, CALSO-TPR takes 

basic monitoring of logs and turns it into active and alert cyber 

defense. The system helps cloud systems find threats in real 

time, and also uses analytics to predict threats and stop them 

before they cause major harm. 

 

3.7. Evidence Correlation and Forensic Graph Construction 

Step seven of ForenSecure-AILSO is when forensic 

analysts start to connect evidence and create graph models to 

analyze the case fully. In this phase, you build a Logical Graph 

of Evidence (LGoE) to visually connect different aspects of 

data from a forensic investigation. LGoE helps investigators 

by taking simple blockchain records and turning them into a 

well-structured graph, making it easier to understand these 

incidents. First, valid evidence is withdrawn from the 

tamperproof blockchain ledger structured by the BETL 

(Blockchain-Enabled Tamperproof Ledger). A log entry that 

has been verified, with a time-stamp and hashed, and where a 

specific actor or component is tied to, becomes a node or edge 

in the graph. Each node in the LGoE stands for a user session, 

attempted logins, virtual machines, IP addresses involved, 

files opened, or devices referenced. Metadata such as location, 

time, reliability ratings, and behavior are added to each node, 

making it easier to do in-depth contextual analysis. 

 

These edges in the graph explain the ties or social 

connections among these entities. A connection may be 

marked by a user hopping between two devices in less than 

ten minutes, a user following an unexpected command right 

after logging in, or two people doing nearly identical things 

with the same files. As a result, forensic analysts using the 
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LGoE can look deeper into an attack by spotting the key stages 

and focusing on damaged segments in the cloud environment. 

Once the chart has been built, it becomes helpful for 

investigating cases and testing different ideas. Using graph 

traversal methods such as BFS or DFS, investigators follow 

the paths taken by hackers from one computer to another. 

Subgraph pattern mining and other advanced approaches help 

identify similar patterns or previous cases of attacks. For 

example, some subgraphs can tell us about a known sequence 

of a phishing attack, followed by accessing the RDP service 

through lateral movement. Additionally, the graph can be 

made with special tools that show things like moving 

timelines, colored areas that show clusters of information, and 

time-lapse views. These features help software programs not 

just analyze data, but also make it easier to share results with 

lawyers, people checking rules, or even in court. The LGoE 

can be saved among the formal documents that make up a 

forensic record, and can be changed little by little each time 

new information is checked and added to the blockchain. 

 

Algorithm: ForenSecure-AILSO – Secure and Intelligent 

Cloud Forensics Framework 

Input: Raw log data 𝐿𝑟 from multi-cloud platforms 

    Device and behavioral session features 𝑥 ∈ 𝑅𝑑 

    Trust threshold 𝜃, Priority threshold 𝜏, Alert threshold 

𝜃𝑟 

    Blockchain consortium network nodes 

    Initial CALSO parameters and population 𝑃(0) 

Output: Secure forensic ledger 𝐶, anonymized identities 

𝐼𝐷𝑎𝑛𝑜𝑛, optimal session keys 𝐾∗, alerts and evidence graphs 𝐺 

Step 1: Multi-Layer Log Acquisition (MLLAS) 

 Deploy MLLAS agents across AWS, OpenStack, hybrid and 

P2P platforms. 

 Collect logs: 

  System logs, API logs, and user activity logs. 

  P2P-specific events (peer join/leave, sync). 

 Apply NTP for timestamp synchronization. 

 𝐿𝑟 = {𝑙1, 𝑙2, … , 𝑙𝑛}     

  // Store acquired logs into raw set 

Step 2: Log Sanitization and Metadata Enrichment 

 For each 𝑙𝑖 ∈ 𝐿𝑟: 

  𝑝(𝑙𝑖) = ∑ 𝑤𝑗 ⋅ 𝑓𝑗(𝑙𝑖)4
𝑗=1    

  // Compute priority score 

  Retain logs 𝑆(𝐿𝑟) = {𝑙𝑖|𝑝(𝑙𝑖) ≥ 𝜏} 

 For each 𝑙 ∈ 𝑆(𝐿𝑟): 

  𝐸(𝑙) = (𝑙, 𝛾(𝑙), 𝛿(𝑙), 𝛽(𝑙), 𝑣(𝑙))   

  // Enrich Metadata 

  Add to the enriched set 𝐿𝑒 = {𝐸(𝑙)|𝑝(𝑙) ≥ 𝜏} 

Step 3: Fuzzy Logic-Based Identity Generation (FISSE) 

 𝑥 = [𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷, 𝑀𝐴𝐶, 𝐴𝑐𝑐𝑒𝑠𝑠𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] 
  // Extract session attributes 

 (𝐼𝐷𝑎𝑛𝑜𝑛 , ℎ) = 𝐹(𝑥)    
  // Apply fuzzy extractor 

 𝜇𝑐(𝑥), 𝜇𝑡(𝑥) ∈ [0,1]    

  // Compute fuzzy scores 

 Access is granted if: 

  𝜇𝑐(𝑥) ≥ 𝜃    𝐴𝑁𝐷 𝜇𝑡(𝑥) ≥ 𝜃 

 Else Challenge/deny session. 

Step 4: Secure Evidence Hashing and Blockchain Storage 

(BETL) 

 For each 𝑙𝑖 ∈ 𝐿𝑒: 

  ℎ𝑖 = 𝐻(𝑙𝑖)        

  // Compute SHA-3 hash 

Build a Merkle Tree from {ℎ𝑖} →Compute Merkle Root 

𝑀𝑟𝑜𝑜𝑡 

 𝐵𝑡 = (𝑀𝑟𝑜𝑜𝑡
𝑡 , 𝑇𝑡 , 𝑀𝑒𝑡𝑎𝑡 , 𝑆𝑖𝑔𝑡)   

  // Create blockchain block 

 Append 𝐵𝑡  to blockchain 𝐶 

 𝑆𝐶(𝐸) ⇒ 𝐴𝑢𝑡𝑜 − 𝑟𝑒𝑐𝑜𝑟𝑑(𝐸, 𝑇, 𝑈𝑠𝑒𝑟𝐼𝐷, 𝐴𝑐𝑡𝑖𝑜𝑛) 

  // Log access actions 

Step 5: Session Key Generation via CALSO 

 Initialize key population 𝑃(0) = {𝐾𝑖
(0)

} 

 For 𝑔 = 1 to 𝐺: 

  𝐹(𝐾𝑖) = 𝛼 ⋅ 𝐻(𝐾𝑖) + 𝛽 ⋅ 𝑆(𝐾𝑖) + 𝛾 ⋅ 𝑅(𝐾𝑖) 

  // Evaluate fitness 

  𝐾𝑐ℎ𝑖𝑙𝑑 = 𝐾𝑎[1: 𝑐]||𝐾𝑏[𝑐 + 1: 𝐿]   

  // Apply crossover 

  𝐾𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝑀𝑢𝑡𝑎𝑡𝑒(𝐾𝑐ℎ𝑖𝑙𝑑 , 𝑚)   

  // Mutate child key 

  𝐾∗ = arg max
𝐾∈𝑃(𝐺)

𝐹(𝐾)    

  // Select the best key 

Step 6: Threat Detection and Predictive Alerting (CALSO-

TPR) 

 For each incoming 𝑙𝑖 ∈ 𝐿𝑡: 

  Extract features 𝑥𝑖 ∈ 𝑅𝑑 
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  𝐴(𝑥𝑖) = ||𝑥𝑖 − �̅�||
2
    

  // Compute anomaly score 

 Flag if 𝐴(𝑥𝑖) > 𝜃𝑎 

 𝑅(𝑥𝑖) = ∑ 𝑤𝑗 ⋅ 𝑓𝑗(𝑥𝑖𝑗)𝑑
𝑗=1    

  // Compute risk score 

 Optimize 𝑤 = [𝑤1, … , 𝑤𝑑] via CALSO 

  𝐹(𝑤) = 𝛼𝐴(𝑤) − 𝛽𝐹𝑃(𝑤) + 𝛾Δ(𝑤) 

 If 𝑅(𝑥𝑖) ≥ 𝜃𝑟  

  Trigger alert, log to blockchain. 

Step 7: Evidence Correlation and Forensic Graph 

Construction 

 Retrieve verified logs 𝐿𝑣 ⊆ 𝐿𝑒 from blockchain 

 For each 𝑙 ∈ 𝐿𝑣: 

  Create a graph node 𝑛𝑙 

  Link interactions as edges 𝑒𝑖𝑗 

 Formulate graph 𝐺 = (𝑁, 𝐸) 

 Use BFS/DFS/subgraph mining to analyze paths and 

patterns 

Return: {𝐶, 𝐼𝐷𝑎𝑛𝑜𝑛 , 𝐾∗, 𝐴𝑙𝑒𝑟𝑡𝑠, 𝐺} 

End Algorithm 

3.8. Novelty of the Work 

The novelty of this research is that it brings together fuzzy 

logic, an evolutionary way of finding keys, blockchain 

security, and forensic checks all in one cloud-based system. 

Unlike traditional methods, which treat things like identity, 

security, and traceability as separate issues, this work uses a 

system called a fuzzy extractor to help create an anonymous 

identity while still keeping the user’s privacy safe and 

ensuring their authentication cannot be easily broken. 

Moreover, CALSO allows for better security during session 

key generation and prediction of threats since it mixes and 

combines different parts of methods to make them stronger 

and always changing. The incorporation of Merkle Tree-

structured logs on a consortium blockchain helps keep records 

permanent and makes tracking who has handled the data 

automatic with the help of smart contracts. Collectively, these 

changes make up a well-built, smart, and reliable way of 

collecting and using forensic evidence that works well in any 

kind of big, multi-cloud system—a big improvement over 

older forensic tools. 

 

Models like Deep-TrustChain and Hybrid-LSO either 

employ a static key negotiation protocol or conventional 

cryptographic schemes in terms of key generation. The 

methods tend to be vulnerable to brute-force or pattern-based 

attacks, and are elaborated. ForenSecure-AILSO has CALSO 

(Crossover-based Artificial Lizard Search Optimization), a 

dynamic optimization technique (entropy, resistance scoring 

and genetic operators) that evolves secure session keys. 

Consequently, this framework has a key entropy of 289 bits 

and resists brute force attacks well, 96.3%. This is better than 

all the similar models, such as SecureCADF+ (248 bits) and 

LogGuardian (240 bits). Moreover, forensic evidence 

correlation and visualization are impetuous components of the 

legal investigation that are overlooked by the majority of 

present-day structures. In the proposed model, Logical Graphs 

of Evidence (LGoE) are constructed to correlate logs, IP 

addresses, user sessions, and system activity in an 

understandable and legally acceptable manner. Compared to 

other models, such as CADF-Stack and EntropyChain-X, with 

slower correlation rates and low precision, this visual 

correlation with subgraph precision of 93.5 and correlation 

time of 8.4 seconds is superior. 

4. Results and Discussions 
Implementation of the ForenSecure-AILSO framework 

was carried out in a controlled test environment designed to 

replicate real-world cloud infrastructure conditions. The 

development and execution were conducted on a Windows 11 

Pro 64-bit system, powered by an Intel® Core™ i7 processor 

with 16 GB of RAM and 512 GB of storage. Python 3.10 was 

used for the backend, Flask for connecting modules, and 

Hyperledger Fabric for the private consortium blockchain 

layer. They coded mining logs with Pandas and Scikit-learn, 

cleaned them, enriched the metadata, extracted data, and 

scored identities by using NumPy and FuzzyLite libraries, 

which were also their responsibilities. The optimization 

engine in CALSO was coded from the beginning using 

evolutionary programming concepts, and key entropy was 

tested against standards by NIST. Testing SHA-3 hash 

generation and Merkle Tree creation was accomplished using 

the PyCryptodome framework. The framework utilizes linked 

and intelligent steps to help users achieve full forensic 

readiness when working in the cloud. Raw data is first 

gathered from cloud APIs, virtual machines, user sessions, and 

file systems. After logging, these entries go through an 

entropy-based process that looks for duplicate, unimportant 

information and marks it for removal. After being cleansed, 

the logs are joined with additional information such as the 

location, device used, how many sessions, and the timing of 

access, making them more meaningful to forensics. 

After hashing with the SHA-3 cryptographic function, 

each enriched log is added to a Merkle Hash Tree, creating the 

base for evidence blocks that cannot be altered. The private 

consortium blockchain has access control, along with strict 

monitoring of when the transaction takes place and archiving 

the records using smart contracts. At the same time, the fuzzy 

identity engine gathers real-time access details like the MAC 

address and device behaviour, and anonymizes those using 

fuzzy extractors to protect user privacy and still support 

traceability. By using CALSO, Crossover-based Artificial 
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Lizard Search Optimization, the session key management 

module develops powerful cryptographic keys based on key 

length, resistance to existing patterns, and strong negotiation. 

Every session features its own keys to make the system more 

resistant to brute-force and replay attacks. At the same time, 

the CALSO-TPR (Threat Prediction and Response) engine 

looks at real-time log activity and checks it against known 

patterns. CALSO ensures any abnormal behaviour, such as a 

sudden rise in logins or activity internal to the cloud, is 

captured and scored through a developing model that predicts 

risks. If the level of threat goes above the set security level, 

the system prompts either automated alerts or tools to counter 

the threat. Last, the LGoE helps create a visual model that 

includes nodes for people, events, objects, or data sets, plus 

lines that prove how one thing led to another or happened at 

different points in time. It allows investigators to study 

forensic timelines, find unexpected connections, and create 

documents that can be used in court. The design of the system, 

along with its automatic intelligence, allows it to always be up 

to date, work well, and be suitable for forensics in complex 

cloud settings. 

Table 1. Log sanitization accuracy (%) 

Model Precision Recall F1-Score 

Blockchain-FSC 89.2 86.1 87.6 

CADF-Stack 91 88.7 89.8 

Fuzzy-Auth 84.5 79.9 82.1 

Hybrid-LSO 90.3 87.1 88.6 

Deep-TrustChain 88.9 85.3 87.1 

EntropyChain-X 87.5 83.1 85.2 

LogGuardian 92 90.1 91 

SecureCADF+ 89.8 87.5 88.6 

ChainWatchAI 90.6 88.8 89.6 

ForenSecure-AILSO 95.8 92.4 94 

Table 1, along with Figure 4, showcases the measuring of 

Precision, Recall, and F1-Score for different models on log 

sanitization tasks. The ForenSecure-AILSO model shows the 

best performance, gaining 95.8% in precision, 92.4% in 

Recall, and 94% in F1-Score out of all the models reviewed. 

This illustrates that it is highly effective at picking out 

valuable log data and avoiding both information leaks and 

false reports. In comparison, traditional models, specifically 

Fuzzy-Auth, tend to perform poorly on all metrics (Precision: 

84.5%, Recall: 79.9%, F1-Score: 82.1%), suggesting they are 

not very suitable for sensitive and complex situations. 

LogGuardian and CADF-Stack have done very well (with F1-

Scores of 91% and 89.8% each) and are considered among the 

strongest options for regular recall and good precision. The 

F1-Scores of both EntropyChain-X and Blockchain-FSC are 

lower than 88%, suggesting that there is still room for 

improvement in their sanitization ability.  

 
Fig. 4 Log sanitization accuracy comparison 
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The performance of Hybrid-LSO and SecureCADF+ is 

close to ChainWatchAI, with F1-Scores of 88.6% and 89.6% 

respectively. These results confirm that the ForenSecure-

AILSO design has a clear advantage, and it serves as a strong 

standard for log management systems that focus on being 

secure and properly managed. 

Table 2. Identity anonymity effectiveness 

Model Reidentification Rate (%) ↓ Avg. Confidence Score (0–1) ↑ 

Blockchain-FSC 7.8 0.82 

CADF-Stack 6.4 0.85 

Fuzzy-Auth 4.1 0.88 

Hybrid-LSO 3.9 0.87 

Deep-TrustChain 5.6 0.83 

EntropyChain-X 6.1 0.84 

LogGuardian 3.4 0.89 

SecureCADF+ 5.2 0.86 

ChainWatchAI 4.3 0.88 

ForenSecure-AILSO 2.3 0.91 

Table 2 and Figure 5 show how well different models 

protect identity by looking at two main things. 

Reidentification Rate is one way to measure the accuracy of a 

model, and the Average Confidence Score is another measure 

where a bigger number is better, and the score can range from 

0 to 1.  

 
Fig. 5 Reidentification rate and avrage confidence score 

 

The ForenSecure-AILSO model did the best job 

anonymizing data, having only 2.3% of records that could be 

linked to the original data and an average confidence score of 

0.91. This shows that it can hide details that can identify 

someone while still being sure the information that comes out 

is anonymous. LogGuardian performs well, coming in second 

with a rate of 3.4% reidentification and a confidence value of 

0.89. Hybrid-LSO and Fuzzy-Auth are also top performers, as 

they both maintain good anonymity, re-identifying less than 

4.2% of users and ranking above 0.87 on the confidence score. 

They make sure the user’s identity is always protected without 

compromising their work. On the other hand, using those 

models like Blockchain-FSC, EntropyChain-X, and 

DeepTrustChain leads to higher reidentification rates 

(between 5.6% and 7.8%) and less sure anonymization (0.82–

0.84), showing the models have weaker anonymity. All in all, 

the ForenSecure-AILSO framework works better than other 

approaches by keeping exposures of identities low, allowing 

for strong privacy protection in forensics and audit work. 
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Table 3. Session key strength 

Model 
Key Entropy 

(bits) ↑ 

Brute-force 

Resistance (%) ↑ 

Negotiation Time (ms) 

↓ 

Blockchain-FSC 224 85.6 42.1 

CADF-Stack 192 81.2 38.3 

Fuzzy-Auth 256 87.9 44.6 

Hybrid-LSO 268 91.5 48.9 

Deep-TrustChain 250 86.4 43.2 

EntropyChain-X 230 83.9 41.8 

LogGuardian 240 88.5 45.1 

SecureCADF+ 248 90.2 44.3 

ChainWatchAI 255 89 42.6 

ForenSecure-AILSO 289 96.3 40.2 

Table 3 and Figure 6 illustrate how Session Key Strength 

measures up for several cybersecurity models by using three 

key metrics. The main factors are the Key Entropy (bits), 

Brute-force Resistance (%), and Negotiation Time (ms). This 

model, ForenSecure-AILSO, clearly stands out for having 

high cryptographic capabilities, key entropy of 289 bits, a high 

degree of protection from brute force attacks at 96.3%, and 

fast negotiation times of only 40.2ms. Thus, the model ensures 

the session keys are very hard to guess and the process takes 

less time than other systems. Although Hybrid-LSO has a high 

level of security and cannot be easily attacked due to a key 

entropy of 268 bits and brute-force resistance of 91.5%, it has 

a slightly longer negotiation time than other schemes at 

48.9ms. While SecureCADF+ and ChainWatchAI are the 

strongest in terms of entropy (248–255 bits) and resistance 

(≥89%), neither manages this feat fully, as they still fall under 

ForenSecure-AILSO in one parameter. 

 
Fig. 6 Model comparison: Negotiation time 

 

Even though CADF-Stack is weakest in key entropy (192 

bits) and offers less brute-force resistance (81.2%), it still 

records the fastest negotiation time at 38.3ms. ForenSecure-

AILSO introduces a higher standard for establishing session 

keys, ensuring they are secure and efficient, making it easier 

to fight off modern attacks in real-time internet 

communications. 
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Table 4. Threat detection performance 

Model 
Detection 

Accuracy (%) ↑ 

False Positive 

Rate (%) ↓ 

Response Latency 

(ms) ↓ 

Blockchain-FSC 91.2 5.6 124 

CADF-Stack 88.7 7.1 135 

Fuzzy-Auth 90.1 4.8 118 

Hybrid-LSO 92.9 4.1 111 

Deep-TrustChain 89.4 6 130 

EntropyChain-X 90.5 5.5 122 

LogGuardian 93.2 3.6 107 

SecureCADF+ 92 4.4 115 

ChainWatchAI 91.8 4.9 113 

ForenSecure-AILSO 96.5 2.7 102 

In Table 4 and Figure 7, the performance comparison in 

Threat Detection of several security models based on these 

key metrics: the detection, false positive rates, and how fast 

the response occurs in milliseconds, is used as an assessment. 

The results from the ForenSecure-AILSO model show it 

performs remarkably, reaching 96.5% accuracy, 2.7% false 

positives, and a response latency of just 102ms. The results 

prove that it is better at spotting and responding to real risks 

while cutting down on the number of false alarms. 

 
Fig. 7 Model detection accuracy comparison 

 

LogGuardian works well by having an excellent 93.2% 

detection rate, only 3.6% false positives, and a quick latency 

time of 107ms. ForenSecure-AILSO remains ahead, providing 

strong detection and still handling tasks more efficiently than 

the next two approaches, Hybrid-LSO and SecureCADF+. 

Lagging performance and a high latency of 130ms in CADF-

Stack and Deep-TrustChain reveal their problems in handling 

threats. Fuzzy-Auth performs well in terms of latency, yet its 

false positives are higher, and its accuracy is weaker at 90.1%. 

ForenSecure-AILSO leads in all detection areas and is thus 

proven to be a powerful and responsive alert system for 

environments where security and capacity matter most. 
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Table 5. Evidence correlation and graph construction 

Model Correlation Time (s) ↓ Path Coverage (%) ↑ Subgraph Precision (%) ↑ 

Blockchain-FSC 14.3 81.7 84.5 

CADF-Stack 12.1 85.4 86 

Fuzzy-Auth 11.5 82.3 85.2 

Hybrid-LSO 10.7 86.5 87.9 

Deep-TrustChain 13.2 83.9 85.8 

EntropyChain-X 12.5 84.7 86.3 

LogGuardian 9.8 88.2 90.1 

SecureCADF+ 10.1 87 88.7 

ChainWatchAI 10.5 86.1 87.6 

ForenSecure-

AILSO 
8.4 91.2 93.5 

The analysis on Evidence Correlation and Graph 

Construction compares different models, using as main 

measures: Scores for correlation time, path coverage, and 

subgraph precision are considered. The promoted 

ForenSecure-AILSO model is much better than all the other 

approaches, easily beating the others by showing 91.2% 

coverage of all traces and 93.5% precision in the subgraphs. It 

can effectively analyzes different types of data very fast and 

produce precise event graphs with only a few similarities or 

errors. 

 
Fig. 8 Model comparison: path coverage, subgraph  

 

4.1. Precision and Correlation Time 

Both LogGuardian and SecureCADF+ achieve good 

performance, taking 9.8 and 10.1 seconds to correlate logs and 

having a subgraph precision over 88%. Their path coverage 

percentages of 88.2% and 87% are reduced in comparison to 

ForenSecure-AILSO’s figure. Both of these peers do a decent 

job of maintaining accuracy and fast results, but they fail to 

perform as well as the proposed solution. Blockchain-FSC and 

Deep-TrustChain lie at the lower end because their correlation 

times are over 13 seconds, and their subgraph precision is less 

than 86%, meaning there could be delays in high-situation 

forensics. ForenSecure-AILSO becomes a stable and scalable 

solution for creating real-time forensic graphs, speeding up, 

enhancing, and simplifying the analysis of valuable 

information. 
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Table 6. Chain-of-custody and evidence integrity 

Model 
Tamper Detection 

(%) ↑ 

Blockchain 

Consistency ↑ 

Admissibility Readiness 

(%) ↑ 

Blockchain-FSC 95.1 0.91 92.3 

CADF-Stack 93.2 0.87 89.6 

Fuzzy-Auth 90.8 0.85 87.9 

Hybrid-LSO 96.4 0.92 93.1 

Deep-TrustChain 92 0.88 90.5 

EntropyChain-X 94.5 0.9 91.8 

LogGuardian 97 0.95 95 

SecureCADF+ 95.6 0.93 93.7 

ChainWatchAI 94.2 0.91 92.4 

ForenSecure-AILSO 99.2 0.97 96.8 

 

 
Fig. 9 Model tamper detection accuracy 

 

Table 6 and Figure 9 compare how well the different 

models handle managing the security of digital evidence and 

Chain-of-Custody. The highest bar in security is achieved by 

the ForenSecure-AILSO model, attaining 0.97 for blockchain 

consistency, 0.99 for tamper detection, and close to perfect 

admissibility, as its readiness is 96.8%. The results prove that 

the model successfully preserves the legal security and 

approval of evidence, which makes it appropriate for court-

related forensic procedures. 

Likewise, LogGuardian and SecureCADF+ prove their 

reliability with high tamper detection, a 93%–95% blockchain 

consistency, and overall admissibility readiness at 93%. 

Although Hybrid-LSO is also a competitive approach, it falls 

slightly behind the others when it comes to overall readiness. 

Fuzzy-Auth and CADF-Stack are functional, but they fall 

short in all the metrics, indicating possible weak points in 

maintaining chain-of-custody or a less dependable status in 

courts. Blockchain-FSC and ChainWatchAI have moderate 

consistency but do not reach the same level as the elite models. 

In short, ForenSecure-AILSO provides the best solution for 

securing digital evidence with the help of blockchain, reliable 

consistency checks, and readiness for approval in the court, 

making it a leader in the integrity management of digital 

evidence. 

4.2. Discussion 

The experimental validation of the ForenSecure-AILSO 

framework exhibits improved efficiency in terms of all six 

main forensic dimensions in relation to the leading ten state-

of-the-art techniques. The framework's strength will perform 

better than these benchmark models because of the integrated 

nature of blockchain, fuzzy logic, and the CALSO 

optimization strategy, which targets the block of forensic gaps 

in multi-cloud environments. 

Sanitization of the logs is one of the areas that needs 

improvement. ForenSecure-AILSO attained a 94.0% F1-

score, which is better than the popularity of established models 

like LogGuardian and CADF-Stack. One strength that has 

contributed to this improvement is the entropy-based 

proprietary filtering scheme, together with metadata 
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enrichment, making it capable of separating the high-priority 

forensic events more effectively than in the traditional rule-

based and fixed-threshold models. In contrast to traditional 

approaches, which fail and produce high scores on noisy or 

redundant logging entries, ForenSecure-AILSO employs 

adaptive scoring based on source trustworthiness, access 

frequency and access history anomalies. This ensures a greater 

number of relevant data is retained with a low false positive 

rate. Within the category of identity anonymity, this 

framework delivered an impressive reidentification rate of 

only 2.3% along with a confidence score of 0.91, significantly 

better rates than the models Fuzzy-Auth and Deep-

TrustChain. This is in virtue of the invention of the Fuzzy 

Identity and Session Security Engine (FISSE) that relies on 

attributes (such as those based on a session), including the 

MAC address of the devices, frequently accessed or a specific 

destination to produce anonymous identities that the validators 

can check. Unlike in other models, where the identity 

representation is fixed with the token, the fuzzy extractor 

mechanism is dynamic and has minimum privacy leakage. 

This provides strong privacy of the user along with strong 

forensic traceability- a dichotomy that has not been efficiently 

captured in prior literature. 

ForenSecure-AILSO also shows significant advancement 

in secure session key generation. The framework with an 

entropy rate of 289 bits and a resistance rate against brute 

force of 96.3% evidently beats the benchmarked models 

SecureCADF+ and ChainWatchAI. The most important 

strength belongs to CALSO, the Crossover-based Artificial 

Lizard Search Optimization algorithm, which propagates keys 

according to entropy, negotiation strength, and resistance to 

known attacks. Unlike most known key exchange schemes 

like RSA or Diffie-Hellman, which use a static or semi-

random key, it uses crossover and mutation techniques that 

constantly modify and reinforce key settings, thus practically 

ruling out brute-force and pattern-driven attacks. 

ForenSecure-AILSO shows great promise in another area, 

threat detection. It offered a high detection accuracy of 96.5%, 

low false positivity at 2.7% and a low response latency of only 

102 milliseconds. These metrics are of CALSO-TPR, the real-

time threat prediction and alerting engine, which is constantly 

scoring risk on the basis of behavioural deviation. By contrast 

to current systems utilizing fixed thresholds, or signature 

detection, CALSO-TPR uses evolutionary fitness functions to 

dynamically adjust weights and a scoring threshold in 

response to evolving system activity. It is a dynamic 

recalibration that enables the model to identify new and zero-

day threats and reduce the number of unwanted alerts, which 

is not possible in traditional models. In forensics analysis and 

graph building, the framework showed its capacity to match 

the evidence only in 8.4 seconds and the subgraph accuracy of 

93.5%. These findings highlight the relevance of data-rich 

metadata and graph models. ForenSecure-AILSO has 

developed the Logical Graph of Evidence (LGoE) that 

correlates user sessions, devices, IP addresses, and activities 

into a structure that is easily interpretable by a visual interface. 

This degree of semantic looping is frequently missing between 

competing models, making reconstructing events more 

difficult or only admissible timelines presented by 

investigators. Conversely, LGoE helps in navigation of the 

graph structures, lateral movement detection, and coordinated 

attacks with a high degree of precision and contextual 

particularity. 

Regarding the evidence integrity and legal admissibility 

parameters, ForenSecure-AILSO reported a 99.2% rate of 

tamper detection, the consistency of blockchain 0.97, and the 

admissibility preparation of 96.8%. These numbers are higher 

than those of Blockchain-FSC and EntropyChain-X. SHA-3 

hashing, log structuring based on the Merkle tree, and a 

consortium blockchain and private chain to keep a record of 

the evidence provide the possibility to detect any changes to it 

in real-time. Smart contracts can also restrict and preserve an 

open chain-of-custody, which most generalised blockchain 

implementations do not implement. With such a secure 

logging architecture, ForenSecure-AILSO becomes especially 

well-suited to forensic applications that require data 

traceability and legal soundness as a compliance requirement. 

Future work will look into connecting cloud systems together, 

developing simpler ways to run things at the edge, and using 

AI to make forensic tasks automatic, so that security can work 

better, faster, and at a larger scale. 

 

5. Conclusion and Future Work 
Cloud forensics in ForenSecure-AILSO is supported by 

integrating blockchain validation of image integrity, 

anonymizing identity with fuzzy logic, and using CALSO to 

create smart, multi-level keys. Researchers found that 

ForenSecure-AILSO performs better than other current 

methods in both the accuracy of its findings and the manner in 

which records are handled in the legal process. In particular, 

the AI model was able to detect threats with 96.5% accuracy, 

give a confidence score of 0.91 for identity, and had a 99.2% 

tamper detection rate, so it works well for important and 

shared cloud architectures. Besides the fact that LGoE is 8 

times more efficient in analyzing evidence, it also reduces 

evidence correlation time to just 8.4 seconds and makes the 

detection of attack patterns 93.5% more precise, helping 

investigators find out how they occurred with precision and 

rapidity. Now ForenSecure-AILSO is based on a consortium 

blockchain and fuzzy logic managed at a central location, but 

future work will change it to work on a federated network with 

edge agents. Utilizing zero-knowledge proofs in auditing and 

accessing data sources such as network packets, cloud APIs, 

and access logs would add to both the scope and the 

dependability of cyber auditing. Exploring reinforcement 

learning methods could help in the automatic design of 

forensic policies. The tests showed that ForenSecure-AILSO 

is capable of being used in the field for forensics, track 

compliance, and cybersecurity tasks in hybrid cloud 

environments.
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