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Abstract - The Assembly, Test, and Packaging (ATP) processes are pivotal in semiconductor manufacturing, ensuring chip 

reliability and performance for applications from consumer electronics to cutting-edge AI, 6G, and quantum computing systems. 

This review explores recent ATP advancements, including AI-driven automation, chiplet architectures, Fan-Out Wafer-Level 

Packaging (FOWLP), and sustainable practices using recyclable materials. It highlights innovative testing methods like adaptive 

testing and Built-In Self-Test (BIST), alongside emerging trends such as photonic interconnects and advanced thermal 

management. Key challenges-thermal management, scaling, supply chain resilience, and hardware security-are analyzed, with 

a special focus on Vietnam’s burgeoning role in the global semiconductor ecosystem. By integrating insights from AI-optimized 

assembly, eco-friendly packaging, and Vietnam’s supply chain dynamics, this survey underscores ATP’s critical role in next-

generation electronics and advocates for innovation to address technological and regional challenges. 
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1. Introduction  
Semiconductor chips are the backbone of modern 

technology, enabling innovations in smartphones, wearables, 

automotive systems, aerospace, medical devices, Artificial 

Intelligence (AI), quantum computing, and neuromorphic 

systems [1]. While front-end wafer fabrication is essential, 

back-end Assembly, Test, and Packaging (ATP) processes 

ensure chip functionality, reliability, and seamless integration 

through advanced techniques like wire bonding, flip-chip 

bonding, Through-Silicon Vias (TSVs), wafer-level testing, 

Built-In Self-Test (BIST), Fan-Out Wafer-Level Packaging 

(FOWLP), and System-in-Package (SiP) [8, 9]. Driven by the 

demand for smaller, faster, and energy-efficient devices, ATP 

innovations-such as 2.5D/3D integration, chiplet 

architectures, and heterogeneous integration-are pushing 

beyond Moore’s Law to support AI accelerators, 6G 

infrastructure, and autonomous vehicles [2]. Specialized ATP 

solutions, including cryogenic packaging for quantum systems 

and low-noise interconnects for neuromorphic chips, address 

unique requirements [10]. Sustainable practices, such as 

biodegradable polymers and low-temperature bonding, reduce 

environmental impact [3]. The global semiconductor market, 

valued at $595.3 billion in 2021 with a projected 5.6% CAGR 

through 2030, is propelled by AI, 6G, electric vehicles, and 

IoT [11]. However, challenges like thermal management, 

heterogeneous design complexity, supply chain 

vulnerabilities-evident during the 2021–2022 chip shortage-

and material shortages highlight the need for resilient ATP 

strategies [12]. Vietnam’s National Semiconductor Strategy 

aims to establish it as a regional electronics hub, bolstered by 

investments from industry leaders like TSMC [13]. Yet, 

Vietnam faces hurdles in accessing advanced ATP 

technologies, skilled labor, and robust infrastructure [6, 7]. 

This review examines ATP’s critical role in next-generation 

electronics, analyzing global advancements, emerging trends 

like photonic interconnects and sustainable practices, and 

Vietnam’s opportunities and challenges in the semiconductor 

ecosystem [3, 4, 13, 14, 50-52]. 

1.1. Related Works 

Prior studies have extensively explored semiconductor 

ATP technologies, providing a foundation for understanding 

global advancements. The authors in [1, 2] investigated 

heterogeneous integration and AI-driven packaging, 

emphasizing their roles in enhancing chip performance for AI 

and high-performance computing applications. Recent works, 

such as [41], have advanced AI-optimized wire bonding, 

achieving significant yield improvements through real-time 

defect correction. In [43], the authors analyzed Vietnam’s 

challenges in adopting advanced ATP technologies, 

highlighting gaps in infrastructure and skilled labor. Similarly, 

in [48], the authors examined Vietnam’s supply chain 

dynamics, underscoring its growing integration into the global 

semiconductor ecosystem. Emerging trends-including 
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advanced thermal management and photonic interconnects-

have gained attention for addressing high-bandwidth and heat 

dissipation challenges in next-generation ATP [50, 51]. 

Despite these contributions, few studies integrate a regional 

perspective with global technological trends, particularly 

regarding emerging semiconductor hubs like Vietnam. This 

review bridges that gap by synthesizing advancements in AI-

driven assembly, sustainable packaging, and photonic 

integration, alongside a focused analysis of Vietnam’s 

opportunities and limitations-offering a novel dual perspective 

on the evolution of ATP in both global and regional contexts 

[41, 47, 48, 52]. 

2. Assembly Process 
The assembly process transforms semiconductor dies into 

functional components, leveraging techniques such as wire 

bonding, flip-chip bonding, TSVs, and FOWLP [1, 8, 9]. AI-

driven automation, utilizing deep learning-based visual 

recognition, slashes defect rates by 25% in high-volume 

production, with recent advancements boosting yield by 30% 

through real-time defect correction [5, 41]. Copper wire 

bonding, enhanced by palladium-coated wires and optimized 

parameters, improves reliability by 30% and mitigates 

oxidation challenges, particularly in Vietnam’s high-humidity 

environments with limited automation [6, 15]. 

Flip-chip bonding supports high Input/Output (I/O) 

density, with low-temperature Cu/polymer hybrid bonding 

reducing energy use by 15–20%. However, Vietnam struggles 

to achieve sub-3-micron alignment accuracy due to equipment 

shortages [6, 7, 16, 17]. Fused-silica stitch-chip technology 

enables cost-effective sub-1-micron alignment for microbump 

bonding at a 10 μm pitch in RF/mm-Wave multichip modules, 

offering a viable solution for Vietnam’s constrained 

capabilities [18]. Copper TSVs with low-k dielectrics (e.g., 

SiCOH, k ≈ 2.5–3.0) enable 3D stacking, boosting bandwidth 

by 35–40% and reducing parasitic capacitance by 20–25%, 

with 0.5–2 microns alignment precision. These advancements 

lower signal delay to 10–12 ps and thermal stress by 15–20%, 

enhancing reliability by cutting bonding defect rates to under 

5% [10, 19, 20, 42]. Yet, Vietnam’s outdated infrastructure 

limits TSV adoption [6, 7]. FOWLP enhances reliability by 

20%, though Vietnam’s shortage of skilled engineers-

currently 5,500 against a 2030 target of 50,000-poses 

challenges [6, 7, 21, 22]. Heterogeneous integration using 

silicon/glass interposers accelerates integration by 30%, while 

photonic interconnects achieve 10 Tbps bandwidth, promising 

significant potential for high-performance systems [2, 23, 50]. 

Chiplet designs with UCIe standards deliver 1.6 Tbps 

bandwidth, but Vietnam requires advanced design tools to 

capitalize on this technology [4, 6]. Sustainable bonding and 

cryogenic TSVs address environmental and quantum 

computing needs, with Vietnam’s progress tied to global 

partnerships to overcome equipment and expertise gaps [3, 10, 

52]. 

3. Testing Processes 
Testing is the cornerstone of semiconductor reliability, 

ensuring chip performance across applications from consumer 

electronics to quantum computing [1]. Wafer-level testing 

employs AI-driven classification with 95% accuracy and 

Micro-Electro-Mechanical Systems (MEMS) probe cards for 

sub-5-micron interconnects, though Vietnam faces challenges 

due to limited access to advanced probe equipment [6, 27, 28]. 

Burn-in testing simulates early failures, with dynamic systems 

cutting test time by 25% and eco-friendly chambers reducing 

energy consumption by 15%. However, high costs hinder 

adoption by Vietnam’s Small and Medium Enterprises 

(SMEs) [3, 6, 29]. BIST enables on-chip diagnostics, with 

adaptive BIST improving fault coverage by 20% and AI 

streamlining design processes, yet Vietnam lacks the expertise 

to fully leverage this technology [5, 7, 30]. 

AI-driven testing, utilizing machine learning for defect 

detection and reinforcement learning for adaptive test pattern 

generation, achieves 98% defect detection accuracy and 

reduces test time by up to 40% [31, 44, 39, 49]. Cryogenic 

testing for quantum chips ensures reliability at low 

temperatures, but Vietnam’s lack of specialized equipment 

limits its adoption [45]. Emerging trends include AI-

optimized testing for 35% cost reduction, sustainable testing 

with 20% lower carbon emissions, digital twins enabling 50% 

fewer iterations, and cryogenic methods for quantum systems 

[3, 10, 32, 33, 44, 45]. To align with global standards, Vietnam 

requires investment in AI tools, cloud infrastructure, and 

training, supported by partnerships with industry leaders like 

Teradyne [6, 34, 53]. 

4. Packaging Technologies 
Packaging safeguards semiconductor chips while 

enhancing performance for applications in AI, 6G, and 

flexible electronics [1]. System-in-Package (SiP) integrates 

multiple components, shrinking module size by 30% and 

leveraging AI for optimized placement, though Vietnam’s 

limited equipment hinders adoption [7, 24, 35]. Advanced 

materials, such as graphene composites with 2000 W/m·K 

thermal conductivity, improve cooling, while flexible 

substrates enable wearables, and sustainable polymers reduce 

environmental impact. Vietnam, however, faces material 

supply constraints [3, 6, 36]. Chiplet architectures with UCIe 

standards deliver 1.6 Tbps bandwidth and 25% efficiency 

gains via hybrid bonding, but Vietnam lacks advanced design 

tools [4, 6, 17]. 

FOWLP boosts reliability by 20%, with AI-driven defect 

reduction achieving 15% fewer errors and recent 

advancements in embedded passives and eco-friendly 

materials enhancing signal integrity by 25% and sustainability 

by 20% [5, 6, 22, 46, 47]. Advanced thermal management, 

including microfluidic cooling and phase-change materials, 

tackles heat fluxes above 100 W/cm², yet Vietnam’s access to 
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these technologies remains limited [14, 51]. 3D packaging 

with TSVs and hybrid bonding cuts latency by 40%, with glass 

interposers supporting quantum systems, though Vietnam 

requires significant R&D investment [7, 19, 25]. Photonic 

packaging achieves 10 Tbps bandwidth with 50% power 

reduction, offering transformative potential for Vietnam’s 

consumer electronics sector [40, 50].  

Emerging trends-AI-driven design reducing time by 30%, 

sustainable packaging, cryogenic solutions for quantum 

systems, and digital twins cutting iterations by 50%-promise 

enhanced performance and sustainability [3, 10, 13, 24, 33, 

56]. Vietnam’s packaging ecosystem can advance through 

global partnerships with firms like TSMC and Amkor, 

alongside investment in tools and training [6, 13, 48]. 

Nesting

Protection Connection

Traditional Packaging 

Optimization at Physical Connection Level

Enhancing Functional Density

Reducing 

Interconnect Length

System 

Reconfiguration

Advanced Packaging 

Circuit System Level Optimization  
(a) 

Traditional Packaging

Single dies in a package

Advanced Packaging
Multiple dies in a package

(b) 

Fig. 1(a, b) Comparison of traditional and advanced packaging 

functions 

Figure 1 illustrates the evolution from traditional to 

advanced packaging. Traditional packaging focuses on 

“Nesting” (protection and connection) for physical 

optimization, while advanced packaging emphasizes 

“Enhancing Functional Density” (shorter interconnects, 

system reconfiguration) for circuit-level efficiency, 

supporting AI, 6G, and quantum applications [2, 4, 19, 35]. 

The shift highlights 3D stacking, chiplets, and photonic 

interconnects, with challenges like thermal management and 

Vietnam’s adoption barriers requiring investment [6, 14, 48, 

50]. 

Table 1. Comparison of traditional and advanced packaging technologies 

Aspect Traditional Packaging Advanced Packaging 

Structure 
Wire bonding, leadframe-based 

[1, 9] 

3D stacking, chiplets, System-in-

Package (SiP) [4, 14, 25] 

Performance 
Basic I/O density, limited 

thermal handling [1, 9] 

High bandwidth, improved 

thermal management [4, 10, 14, 

19, 51] 

Applications Consumer electronics [1, 6] 
AI, 6G, HPC, Quantum systems 

[2, 4, 5, 10, 35, 50] 

Scalability Limited [9] 
High (supports heterogeneous 

integration) [2, 23, 25] 

Adoption in VN Widely used [6, 7] 
Emerging, limited by 

infrastructure [6, 13, 14, 48] 

Table 1 presents a comparative overview of traditional 

and advanced semiconductor packaging technologies across 

key aspects such as structure, performance, application, 

scalability, and adoption in Vietnam. Traditional packaging 

methods, such as wire bonding and leadframe-based designs, 

offer basic interconnection suitable for consumer electronics 

but face limitations in performance and integration.  

In contrast, advanced packaging incorporates 3D 

stacking, chiplets, and SiP, enabling higher bandwidth, 

compact form factors, and support for AI, 6G, and quantum 

applications. While traditional approaches are widely adopted 

in Vietnam, advanced technologies are still in the early stages 

of adoption due to infrastructure constraints. 

5. Challenges in ATP  
ATP faces challenges in thermal management, scaling, 

supply chains, testing, costs, security, AI integration, and 

sustainability [1]. Thermal management addresses heat fluxes 

above 100 W/cm², with microfluidic cooling and phase-

change materials reducing temperatures by 30% and 25%, 

respectively, though Vietnam lacks access to these 

technologies [5, 7, 14, 51]. Scaling to sub-5-micron pitches 

increases stress, with low-k dielectrics improving reliability 

by 20%, but Vietnam’s SMEs face equipment costs [6, 20]. 

Supply chain material shortages delay innovation, with 

TSMC’s expansion aiding Vietnam [6, 12, 13]. Testing 

heterogeneous systems uses UCIe frameworks (40% test time 

reduction), but Vietnam lacks infrastructure [4, 7]. Advanced 
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packaging costs (e.g., $10M for hybrid bonding) are mitigated 

by open-source platforms (25% barrier reduction), with 

Vietnam needing incentives [6, 37]. Hardware security 

leverages PUFs/AI (30% improvement), but Vietnam lacks 

cybersecurity expertise [7, 38]. AI integration via federated 

learning and advanced defect classification improves 

scalability and accuracy by 20% and 98%, respectively, 

though Vietnam needs cloud platforms [6, 39, 51]. Sustainable 

practices with recyclable materials cut impact by 25%, 

supported by Vietnam’s green policies [3, 6, 55]. Mitigation 

includes AI, UCIe, sustainable practices, and diversified 

supply chains, with Vietnam requiring global collaboration [3, 

4, 13, 52]. 

 

Table 2. Comparison of ATP capabilities – Global vs. Vietnam 

Aspect Global Semiconductor Industry Vietnam Semiconductor Industry 

Technology 
Advanced (TSVs, hybrid bonding, UCIe 

chiplets, photonics) [4, 10, 14, 17, 25, 50] 

Limited access to advanced ATP tools [6, 7, 48, 

52] 

Labor Skilled, experienced [2, 3] Developing, skill gaps remain [6, 7, 43] 

Investment Strong public/private funding [13, 12] 
Growing interest, but limited incentives [6, 13, 

48, 56] 

Infrastructure 
Mature R&D and full-stack ATP production 

[2, 8, 14] 

Fragmented, reliant on imports or foreign 

partners [6, 7, 13, 52] 

Market Role 
Global leaders in innovation (USA, South 

Korea, Taiwan, Japan) [12, 13] 

Strategic partner, aspiring regional hub [6, 7, 

13, 48, 56] 

Table 2 compares global ATP capabilities with those of 

Vietnam, highlighting disparities in technology access, skilled 

labor, infrastructure, and investment. Globally, semiconductor 

leaders benefit from mature ecosystems with advanced 

integration technologies, experienced workforces, and 

substantial investments. In contrast, Vietnam is emerging as a 

potential hub with growing policy support but faces 

challenges such as fragmented infrastructure, limited high-end 

ATP facilities, and dependency on foreign partners. This 

comparison underscores the need for international 

collaboration and domestic capacity-building to bridge the 

capability gap. 

6. Emerging Trends and Future Directions 
ATP is evolving with AI automation, sustainability, 

quantum/neuromorphic packaging, chiplet standardization, 

multiscale modeling, photonics, and flexible packaging [1]. 

AI achieves sub-micron accuracy, cutting test time by 40%, 

with federated learning and defect classification enhancing 

scalability and accuracy by 25% and 98%, respectively [5, 7, 

31, 50, 51]. Advanced AI algorithms optimize testing and 

assembly for 6G and quantum systems [53, 57]. Vietnam 

needs cloud platforms and training to adopt these technologies 

[6]. Sustainable manufacturing with biodegradable polymers 

and eco-friendly FOWLP materials reduces impact by 25%, 

aligning with Vietnam’s green policies [3, 6, 47, 55]. 

Quantum/neuromorphic packaging uses cryogenic packages 

(20% conductivity reduction), but Vietnam needs R&D 

investment [10, 13, 45]. UCIe chiplet standardization achieves 

1.6 Tbps and 30% cost reduction, with Vietnam’s SMEs 

needing tools [4, 6]. Multiscale modeling and digital twins cut 

prototyping by 50%, but Vietnam lacks computational 

resources [7, 33]. Silicon photonics delivers 10 Tbps with 50% 

power reduction, requiring significant investment in Vietnam 

[6, 40, 50]. Flexible packaging with stretchable interconnects 

improves durability by 25%, and it has been adopted in 

Vietnam for consumer electronics [6]. Advanced thermal 

management and photonic packaging enhance performance 

for AI and 6G applications, with Vietnam needing global 

partnerships to access these technologies [51, 54]. Vietnam’s 

SMEs can leverage chiplets/IoE with partnerships, supported 

by government incentives [13, 48, 56]. Future directions 

include AI, net-zero processes, quantum/photonic packaging, 

and UCIe, with Vietnam needing infrastructure, education, 

and international collaboration [3, 4, 6, 58, 59]. 

 

Table 3. Emerging ATP trends in 2023–2024. 

ATP Domain Key 2023–2024 Trends Expected Impact 

Assembly 
AI-guided wire bonding, cryogenic TSVs, 

photonic interconnects [5, 10, 19, 26, 41, 42, 50] 

20–40% defect reduction, support for quantum 

chips [10, 25, 52] 

Testing 
Reinforcement learning, digital twins, adaptive 

BIST, AI-driven testing [30-33, 44, 45, 53, 57] 

Up to 50% faster, improved yield prediction [31, 

32, 34, 57] 

Packaging 

UCIe chiplets, flexible substrates, eco-materials, 

photonic packaging [4, 3, 17, 36, 46, 47, 50, 54] 

Performance boost, sustainability, 3D integration 

[2, 14, 54] 
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Table 3 summarizes the key trends shaping ATP 

innovation from 2023 to 2024 across three core domains: 

assembly, testing, and packaging. These include AI-driven 

wire bonding, cryogenic TSVs for quantum integration, 

reinforcement learning for adaptive testing, digital twins for 

faster iteration, and the rise of UCIe chiplets and flexible 

substrates in packaging. Each trend promises significant 

improvements in performance, yield, and sustainability, 

offering both opportunities and challenges for emerging 

markets like Vietnam. Aligning national strategies with these 

global trends is essential to remain competitive. 

Sustainable manufacturing with biodegradable polymers 

reduces impact by 25%, aligning with Vietnam’s policies [3, 

6]. Quantum/neuromorphic packaging uses cryogenic 

packages (20% conductivity reduction), but Vietnam needs 

R&D [10, 13].  

UCIe chiplet standardization achieves 1.6 Tbps and 30% 

cost reduction, with Vietnam’s SMEs needing tools [4, 6]. 

Multiscale modeling and digital twins cut prototyping by 50%, 

but Vietnam lacks computational resources [7, 33]. Silicon 

photonics delivers 10 Tbps with 50% power reduction, 

requiring investment in Vietnam [6, 40].  

Flexible packaging with stretchable interconnects 

improves durability by 25%, and it has been adopted in 

Vietnam for consumer electronics [6]. Vietnam’s SMEs can 

leverage chiplets/IoE with partnerships [13]. Future directions 

include AI, net-zero processes, quantum/photonic packaging, 

and UCIe, with Vietnam needing infrastructure and education 

[3, 4, 6]. 

7. Conclusion 
ATP processes are vital in bridging semiconductor 

fabrication and system integration, enabling high-

performance electronics for AI, 6G, and quantum computing 

applications [1]. Innovations in hybrid bonding, AI-driven 

testing, chiplet architectures, and photonic interconnects are 

transforming the industry, addressing demands for efficiency 

and scalability [4, 40]. Persistent challenges, including 

thermal management, hardware security, and sustainability, 

require ongoing research and innovation [3, 14, 38].  

 

Vietnam’s National Semiconductor Strategy positions it 

as an emerging hub, yet its growth hinges on overcoming 

infrastructure limitations and skill shortages [6, 13]. To 

capitalize on global ATP advancements, Vietnam should 

prioritize investments in AI training programs to build 

expertise, forge strategic partnerships with industry leaders 

like TSMC and Amkor, and enhance infrastructure for 

advanced packaging and testing [6, 13]. By aligning national 

policies with global trends, Vietnam can strengthen its role in 

the semiconductor ecosystem. We call for collaborative 

action-through increased R&D funding, international 

cooperation, and workforce development-to drive ATP 

innovation and position Vietnam as a key player in next-

generation electronics [4]. 
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