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Abstract - The modernization of dairy production demands intelligent, adaptive systems capable of optimizing workflows, 

predicting equipment failures, and minimizing human intervention. This paper proposes a Hybrid Deep Rule-Based Learning 

Framework that integrates Apriori algorithm-enhanced Transformer architectures for dynamic rule extraction and real-time 

process optimization. The system adaptively learns operational rules from heterogeneous dairy workflows while leveraging 

Federated Graph Neural Networks (GNNs) to analyze machine interdependencies across distributed production units. This 

decentralized approach ensures data privacy while enabling predictive maintenance, fault localization, and efficient resource 

allocation. Experimental results across multiple dairy plant simulations demonstrate a workflow optimization accuracy of 

98.1%, significantly reducing downtime and enhancing overall yield. The proposed framework represents a scalable, 

intelligent automation solution for smart dairy manufacturing environments, ensuring real-time adaptability, enhanced 

decision-making, and reduced reliance on manual oversight. 

Keywords - Apriori algorithm, Transformer, Federated learning, Graph neural networks, Predictive maintenance, Dairy 
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1. Introduction 
The global dairy industry is undergoing a significant 

transformation, driven by the increasing demand for 

automation, efficiency, and quality assurance. As dairy 

plants scale operations to meet consumer and regulatory 

expectations, optimizing workflows and ensuring timely 

maintenance of production machinery have become critical 

[1]. Traditional rule-based systems, while effective to a 

degree, lack adaptability, scalability, and contextual 

awareness required in dynamic production environments 

[2]. Moreover, manual oversight in such complex systems 

often results in delayed decision-making, unplanned 

downtimes, and reduced overall yield [3]. 

 

Recent advancements in Artificial Intelligence (AI), 

particularly in deep learning, rule mining, and graph-based 

modeling, have opened new avenues for intelligent 

manufacturing [4]. Among these, Transformer architectures 

have shown exceptional performance in modeling temporal 

and contextual dependencies, while Apriori algorithms 

remain powerful for extracting interpretable association 

rules from structured datasets [5, 6]. Combining these 

methods enables both adaptive learning and explainable 

decision-making in industrial contexts [7]. However, 

centralized AI models are often constrained by data privacy 

issues and limited generalization across distributed systems 

[8]. 

To address these challenges, we propose a Hybrid Deep 

Rule-Based Learning Framework that integrates an Apriori-

Enhanced Transformer architecture with Federated Graph 

Neural Networks (GNNs). The framework is designed to 

dynamically extract operational rules from dairy plant 

workflows, model interdependencies between machines, 

and facilitate predictive maintenance without centralized 

data aggregation. The federated learning [9] component 

ensures data security while enabling collaborative model 

training across geographically dispersed units. GNNs 

capture the complex structural relationships among 

machinery components and predict potential failures in 

advance, allowing for proactive scheduling of maintenance 

tasks [10]. This study introduces a hybrid model combining 

Apriori-enhanced Transformers with Federated GNNs, 

enabling both interpretable decision-making and privacy-

preserving predictive maintenance across distributed dairy 

units-an unexplored combination in current literature. The 

contributions of this paper are as follows: 

 A novel integration of Apriori rule mining with 

Transformer-based deep learning for dynamic 

workflow optimization and real-time process control in 

dairy plants. 

 Federated Graph Neural Network architecture for 

decentralized failure prediction and inter-machine 

dependency modeling, ensuring privacy-preserving 

learning across multiple production units. 

 An end-to-end intelligent automation framework that 

reduces human intervention, minimizes unplanned 

downtime, and maximizes production yield. 

 Comprehensive experiments demonstrate the system’s 

effectiveness, achieving a workflow optimization 

accuracy of 98.1% across diverse dairy plant scenarios. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The rest of the paper is organized as follows: Section 2 

reviews related work; Section 3 details the proposed 

methodology; Section 4 presents the experimental setup and 

results; Section 5 concludes the study with future research 

directions. 

2. Related Works 
Machine learning models have been applied in this 

study to create decision support systems in dairy farming. 

Using large datasets, such as milk production records, 

environmental data and genetic profiles, the research aims 

at predicting milk production and understanding the main 

factors that influence production, while helping to optimize 

the allocation of resources [11]. Using traditional and deep 

learning models, predict short-term, intermediate, and long-

term milk yields based on data collected from 4000 cattle 

equipped with sensors on a dairy farm in Jordan. 

A methodology that leverages the application of 3D 

imaging sensors to acquire point cloud data of dairy cows, 

allowing for ongoing health and productivity analysis [12]. 

An automated algorithm parses the point clouds for metrics 

like stature height, rump width, and teat length. The system 

uses the data and expert assessments to analyze cow quality 

indices and provide the operator with real-time insights that 

enable effective herd management and minimized feeding. 

A Comparison of Ten Different Deep Learning 

Models. According to the study, milk production is an 

autoregressive process, and environmental variables are 

unable to account for external impacts [13]. The models 

achieve good accuracy, indicating their suitability for 

national-level cropping advance forecasting and risk 

management applications. This approach presents a method 

for mastitis detection using deep learning to combine udder 

temperature and size features [14]. YOLOv7 detects the eye 

and udder regions, while CenterNet detects the udder 

keypoints. Data is collected from thermal infrared videos of 

196 cows, and high accuracy, sensitivity, and specificity 

are achieved in detecting clinical and subclinical mastitis. 

Based on the effort of machine learning and knowledge 

graph theory, a decision support system to manage transition 

cows [15]. Domain literature is processed by natural 

language models, which extract entities and relationships 

and create a knowledge graph stored in Neo4j. The system 

is based on deep learning models for extracting entities and 

relationships. 

This study [16] discusses an intelligent dairy products 

identification algorithm integrating machine vision and AI 

based on production line statistics. Using the YogDATA 

datasets, which contain images of yoghurt cups, Mask R-

CNN and YOLOv5 are trained and validated. The Dairy 4.0 

standards for automated processes of product packaging are 

highly precise in both models. 

This approach seamlessly combines Augmented 

Reality (AR) and deep learning for estrus detection and cow 

identification [17]. YOLOv5 detects mounting behavior, 

identifies cows, and achieves high accuracy in mounting 

detection (mAP = 94.5%), ROI identification (mAP = 

95.4%) and cow ID (mAP = 83.2%). This system is an 

example of how AR and AI can be utilized in livestock 

farming. 

This research establishes a thermal imager and deep 

learning-based mastitis identification method. The first 

classification must be performed with image-enhancement 

algorithms and multiscale scSE-DenseNet-201 [18]. The 

model has given high accuracy, precision and recall, 

outperforming previous methods and successfully 

automated mastitis detection. 

This research presents a multi-task learning model, 

GCS-MUL, to address this issue for real-time target 

recognition in dairy barns. The proposed model utilizes the 

combination of CBAM, GhostConv, and segmentation 

heads to circumvent the detection of cows, obstacles, and 

road targets [19].  

A new model, namely Res-DenseYOLO, for detecting 

dairy cow behaviors, including drinking, feeding, lying, 

and standing, is proposed in this study. Specifically, the 

model consists of dense modules, a CoordAtt attention 

pathway, and multiscale detection heads to enhance feature 

representation and accurate detection of small targets [20]. 

The performance of Res-DenseYOLO on various metrics 

like precision, recall, and mAP is superior to others. 

The Bilateral filter refines the image details, and the 

MobileNetV3 architecture and multiscale feature pyramid 

network optimize the target detection. This system allows 

automatic mastitis recognition [21]. 

The model leveraged supervised machine learning to 

forecast milk yield, fat, and protein content given weather 

and feed data [22]. High accuracy except for the model for 

all cows, which also shows similar heat tolerance between 

both cows. Conventional dairy farms are proposed to use an 

AI system to reduce heat stress and improve milk quality. 

This study reported the establishment of a computer 

vision system based on a deep learning approach to identify 

individual cows, recognize their location, and track their 

trajectories. Data flipping and rotation techniques enhance 

the detection performance [23]. 

This approach adopts R2Faster R-CNN, a horizontal-

oriented object detection framework, for detecting cow 

teats in rotary milking systems. With high AP and low 

orientation error, the model facilitates an accurate teat cup 

attach point in automatic milking devices [24]. 

This work predicts bovine Tuberculosis (bTB) state 

using Mid-Infrared (MIR) milk spectral data. The model 

developed a deep convolutional neural network trained on 
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MIR spectra and obtained high accuracy, sensitivity, and 

specificity. Synthetic data augmentation provides further 

model performance improvement, allowing for early bTB 

detection in dairy herds [25]. 

While numerous studies have applied deep learning, 

rule mining, and predictive models in dairy automation, 

most existing approaches rely on centralized architectures 

that raise data privacy concerns and lack scalability across 

distributed production units. Additionally, conventional 

models often fail to integrate interpretable rule-based 

reasoning with temporal and structural learning, limiting 

their effectiveness in dynamic, multi-machine 

environments. Few efforts have explored the combination of 

Apriori-based rule extraction with Transformer 

architectures, and even fewer have incorporated Federated 

Graph Neural Networks for decentralized predictive 

maintenance. This reveals a significant gap in designing a 

privacy-preserving, interpretable, and real-time 

optimization framework tailored for large-scale dairy 

process automation. 

3. Proposed Model 
The proposed framework consists of a hybrid 

architecture combining Apriori-enhanced Transformer 

networks for workflow optimization and Federated Graph 

Neural Networks (GNNs) for predictive maintenance across 

multiple dairy plant units, as shown in Figure 1. The model 

operates in a privacy-preserving, decentralized manner to 

ensure secure collaboration between distributed nodes 

(dairy units), enabling intelligent automation with minimal 

human intervention. The framework is designed in seven 

sequential stages, each contributing to the intelligent 

functioning of the dairy plant. 

3.1. Step 1: Data Acquisition and Preprocessing 

In the proposed framework, multimodal sensor data 

such as temperature, flow rate, motor speed, vibration, 

pressure, and humidity are continuously collected from 

various machinery installed across the dairy plant. Let this 

data be represented as a time-series matrix.  

X = {x1, x2, … , xr}                                                      (1) 
 

Where, each xt is a vector of sensor readings at time t, 

and n is the number of sensors. 

To ensure high-quality inputs for downstream deep 

learning modules, we apply a series of preprocessing 

operations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overall architecture of proposed hybrid deep rule-based learning framework 
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 Federated Learning for Multi-

Plant 

Distributed Nodes  

(Dairy units) 

Privacy-Preserving 

Performance Evaluation 

Distributed Nodes 



V. Manochitra & A. Shaik Abdul Khadir / IJECE, 12(7), 415-427, 2025 

 

418 

3.1.1. Noise Filtering 

         Sensor data often contains unwanted fluctuations. To 

smooth these signals while preserving their shape, we apply 

the Savitzky-Golay filter, which fits a low-degree 

polynomial over a moving window. For a sensor Signal 

𝑠𝑖
𝑡 , the smoothed version is computed as: 

𝑠𝑖
~𝑡 =  ∑ 𝑐𝑗𝑠𝑖

𝑡+𝑗

𝑘

𝑗= −𝑘

                                                  (2) 

Where cj are convolution coefficients, and 2k+1 is the 

window size. This helps in reducing high-frequency noise 

without distorting the true signal trends. 

3.1.2. Normalization 

Different sensors operate in different ranges. To bring 

them to a comparable scale, we use z-score normalization. 

For each sensor i, the normalized value at time t is: 

𝑠𝑖
𝑡,𝑛𝑜𝑟𝑚 =  

𝑠𝑖
𝑡 − 𝜇𝑖

𝜎𝑖

                                                  (3) 

Where 𝜇𝑖 is a mean and 𝜎𝑖 Is the standard deviation of 

that sensor’s readings. This ensures all input features have 

zero mean and unit variance. 

3.1.3. Timestamp Alignment 

  Since sensor data may be sampled at irregular intervals, 

we align all readings to a uniform timeline using 

interpolation. For any missing time point t, we estimate the 

sensor value using linear interpolation between the nearest 

available readings: 

𝑠𝑖
𝑡 =  𝑠𝑖

𝑡1 + (
𝑡 − 𝑡1

𝑡2 − 𝑡1

) (𝑠𝑖
𝑡2 −  𝑠𝑖

𝑡1)                                       (4) 

Where t1 < 𝑡 < 𝑡2 Are the known time points before and 

after t? 

3.1.4. Missing Data Handling 

If certain readings are missing, we apply forward fill for 

simplicity: 

𝑠𝑖
𝑡 =  𝑠𝑖

𝑡−1                                                  (5) 

This approach ensures continuity in the time series, 

particularly useful when sensors fail temporarily. 

3.2. Step 2: Rule Extraction Using Apriori 

After preprocessing the sensor dataset, the next step 

involves extracting frequent operational patterns and rules 

using the Apriori algorithm. These rules help identify strong 

associations between sensor behaviors (e.g., “high vibration 

and low pressure → machine failure”), which can be later 

embedded into the transformer model for dynamic decision-

making. 

Let the entire dairy plant’s preprocessed data be 

represented as a set of transactions: 

D =  {𝑇1, 𝑇2, … . , 𝑇𝑁}                                                  (6) 

Where each transaction Ti contains a set of discrete 

sensor state items. To apply Apriori, we first convert 

continuous sensor values into categorical labels using 

thresholding. 

3.2.1. Frequent Itemset Mining 

An itemset 𝐼 = {i1, i2, … , ik} is considered frequent if 

its support exceeds a predefined minimum support threshold 

θs. Support is calculated as: 

Support (I) =  
|{𝑇𝑖 ∈ 𝐷: 𝐼 ⊆ 𝑇𝑖}|

|𝐷|
                       (7) 

Only itemsets with 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐼) ≥ 𝜃𝑠 Are retained. 

3.2.2. Association Rule Generation 

From each frequent itemset, we generate association 

rules of the form: 

A ⇒ B                                                  (8) 

Where A and B are non-overlapping subsets of I, and 

A ∪  B = 𝐼 , for a rule to be valid, it must also meet a 

minimum confidence threshold. 𝜃𝑐 ,  where coincidence is 

given by: 

Confidence (A ⇒ B) =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴 ⇒ B)  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)
            (9) 

This measures how often B appears in transactions that 

contain A. 

The extracted rules form a knowledge base of patterns 

that frequently occur across dairy plant operations. These 

rules are then dynamically encoded and used to guide the 

transformer model, enhancing its interpretability and 

adaptability for real-time workflow decisions. 

3.3. Step 3: Transformer-Based Temporal Rule 

Integration 

Once high-confidence association rules are extracted 

using the Apriori algorithm, the next step is to integrate 

these rules into a Transformer-based architecture to model 

temporal dynamics across the dairy plant workflow. The 

transformer is particularly well-suited for capturing long-

term dependencies in sensor streams, enabling the system to 

learn temporal patterns and anomalies for intelligent 

automation. 

Let the preprocessed time-series input be defined as: 

X =  {𝑥1, 𝑥2, … . , 𝑥𝑇},     𝑥𝑡 ∈ 𝑅𝑛                                     (10) 
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Where xt  represents the sensor readings from n 

modalities at time t. 

3.3.1. Positional Encoding 

Since Transformers do not natively understand 

sequence order, we incorporate positional encodings to 

inject time information: 

𝑃𝐸(𝑡,2𝑖) = sin (
𝑡

100002𝑖/𝑑
) , 𝑃𝐸(𝑡,2𝑖+1)

= cos (
𝑡

100002𝑖/𝑑
)                             (11) 

Where, t: time index, i: Feature dimension index, d: 

Total feature dimension. 

The input to the transformer becomes = 𝑥𝑡 + 𝑃𝐸𝑡  

3.3.2. Self-Attention Mechanism 

For each time step, the self-attention mechanism allows 

the model to weigh the relevance of other time steps. 

Attention is computed using the query (Q), key (K), and 

value (V) matrices derived from the input: 

Q = XWQ, 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉             (12) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉             (13) 

Where, 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉  Are learnable projection 

matrices 

 dk is the dimensionality of the key vectors. 

This mechanism enables the model to focus on 

significant time steps that contribute to a certain outcome. 

3.3.3. Rule Embedding Integration 

The Apriori-generated rules are embedded as learnable 

vectors 𝑅 =  {𝑟1, 𝑟2, … , 𝑟𝑚}.  where each rj ∈ 𝑅𝑑   Represents 

a rule encoding. These are injected into the transformer 

either through attention biasing or by concatenation: 

𝑧𝑡
′ = [𝑧𝑡 ⊕ 𝑟𝑗], if rule rj applies at time t                (14) 

This allows the model to bias attention towards time 

steps where known rules are triggered, thereby improving 

interpretability and domain-specific relevance. 

3.3.4. Output Prediction 

The final output of the transformer is passed through a 

fully connected layer with softmax or sigmoid activation for 

classification (e.g., predicting machine health, process 

bottlenecks, or yield fluctuations): 

ŷt = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑜ℎ𝑡 + 𝑏𝑜                 (15) 

Where, ℎ𝑡 : Transformer output  at time t, 

Wo, 𝑏𝑜: Output layer weights and bias,  

The model is trained using cross-entropy loss: 

L =  − ∑ 𝑦𝑡log (�̂�𝑡)

𝑇

𝑡=1

                                                  (16) 

Where yt is the true label and �̂�𝑡 Is the predicted output. 

By dynamically combining Apriori rule knowledge 

with the transformer’s temporal modeling ability, the system 

achieves enhanced interpretability and accuracy. 

3.4. Step 4: GNN-Based Interdependency Modeling with 

Federated Learning 

In this stage, a Graph Neural Network (GNN) is used to 

model complex interdependencies among the machines and 

production units within the dairy plant. These machines 

(e.g., pasteurizers, homogenizers, chillers, pumps) form a 

network where each node represents a machine and edges 

indicate operational dependencies or communication flows. 

The aim is to analyze their mutual influence, predict faults, 

and optimize workflows. 

Let the dairy plant be represented as a graph: 

G = (V, E)                                                         (17) 

Where, 𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝑛} Is s the set of machines 

(nodes), E ⊆ 𝑉 × 𝑉 represents physical or functional 

interconnections. 

3.4.1. Graph Convolution Operation 

The GNN aggregates neighborhood information using 

a basic graph convolution operation: 

ℎ𝑖
(𝑙+1)

=  𝜎 ( ∑
1

𝐶𝑖𝑗

𝑊(𝑙)

𝑗∈𝑁(𝑖)

ℎ𝑗
(𝑙)

)                    (18) 

Where, ℎ𝑗
(𝑙)

: Feature representation of node i at layer l, 

𝑁(𝑖) :  Neighboring nodes of i, 𝑊(𝑙): Learnable weight 

matrix at layer l, 𝐶𝑖𝑗 : Normalization factor, 𝜎 : Nonlinear 

activation.  

This operation enables the GNN to learn how sensor 

changes in one machine influence others over time. 

3.4.2. Federated Learning for Multi-Plant Collaboration 

To ensure privacy and decentralized intelligence across 

multiple dairy plants, the model employs Federated 

Learning (FL). Each unit trains a local GNN using its own 

graph data G; only model parameters are shared with a 

central aggregator. 

Let θi be the local model parameters from plant i, and 

N be the number of units. The global model aggregation is 

performed using federated averaging: 
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θglobal =
1

𝑁
∑ 𝜃𝑖

𝑁

𝑖=1

                                                  (19) 

This ensures collaborative learning across plants 

without violating data privacy or introducing 

communication overhead. 

3.4.3. Predictive Maintenance and Failure Forecasting 

The final output of the GNN is used for binary or multi-

class classification (e.g., “normal,” “warning,” “failure”). 

The softmax classifier at the output layer predicts the state 

of each machine: 

ŷi =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑖 + 𝑏)                                                  (20) 

Where ℎ𝑖  is the final embedding of the node vi 

Moreover, W and b are trainable weights and biases. The 

system continuously predicts upcoming failures or 

anomalies, enabling proactive maintenance scheduling, 

reducing downtime, and maximizing dairy yield. 

Algorithm Hybrid_Dairy_Optimization(D, θ, ε) 

Input: 

    D ← Distributed datasets from dairy units {D1, D2, ..., Dn} 

    θ ← Privacy constraints for federated learning 

    ε ← Failure threshold for predictive maintenance 

Output: 

    Optimized workflow predictions 

    Maintenance alert flags 

Begin: 

    // STEP 1: Data Acquisition and Preprocessing 

    For each dairy unit Di in D do: 

        Di ← NoiseFiltering(Di) 

        Di ← Normalize(Di) 

        Di ← TimestampAlignment(Di) 

        Di ← HandleMissingData(Di) 

    EndFor 

    // STEP 2: Rule Extraction using Apriori 

    For each Di in D do: 

        Transactions ← ConvertToTransactions(Di) 

        FrequentItemsets ← Apriori(Transactions, min_support) 

        Rules[Di] ← GenerateAssociationRules(FrequentItemsets, min_confidence) 

    EndFor 

    // STEP 3: Transformer-Based Temporal Rule Integration 

    For each Di in D do: 

        EncodedSequence ← PositionalEncoding(Di) 

        RuleEmbedding ← EmbedRules(Rules[Di]) 

        InputSeq ← Combine(EncodedSequence, RuleEmbedding) 

        WorkflowPrediction[Di] ← TransformerPredict(InputSeq) 

    EndFor 

    // STEP 4: Federated GNN-Based Interdependency Modeling 

    For each Di in D do: 

        Gi ← BuildGraph(Di)     // Nodes = machines, Edges = interactions 

        LocalGNNModel[Di] ← TrainLocalGNN(Gi) 

    EndFor 

    GlobalModel ← FederatedAggregation(LocalGNNModel, θ) 

    For each Gi, do: 

        MaintenanceProb ← GlobalModel.PredictFailure(Gi) 

        For each node v in Gi do: 

            If MaintenanceProb[v] ≥ ε then: 

                TriggerAlert(v) 

            EndIf 

        EndFor 

    EndFor 

    // STEP 5: Performance Evaluation 

    Evaluate(WorkflowPrediction, GroundTruth) 

    ReportMetrics(Accuracy, Precision, Recall, DowntimeReduction) 

End. 
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The proposed algorithm begins by collecting 

distributed datasets from multiple dairy units, where each 

dataset undergoes preprocessing through noise filtering, 

normalization, timestamp alignment, and missing data 

handling. In the second stage, the Apriori algorithm converts 

each unit’s cleaned data into transaction sets for mining 

frequent itemsets. These itemsets are then used to generate 

association rules that represent operational knowledge 

within each plant. In the third step, these rules are embedded 

and integrated into a Transformer model using positional 

encoding and self-attention mechanisms to predict future 

workflow states and detect inefficiencies. Following this, 

each dairy unit constructs a graph-based representation of 

machine interdependencies, where GNNs are trained 

locally. These local models are aggregated through a 

federated learning approach that respects data privacy 

constraints. The global federated GNN model is then used 

to estimate failure probabilities across all units. A 

maintenance alert is triggered if the predicted failure 

probability for any machine exceeds a predefined threshold. 

Finally, the system evaluates overall performance in terms 

of prediction accuracy, downtime reduction, and 

maintenance effectiveness, providing insights into 

operational efficiency and reliability improvements. 

4. Results and Discussions 
4.1. Dataset Description 

The dataset comprises monthly observations of milk 

production per cow, measured in pounds, spanning from 

January 1995 to December 2003, totalling 108 months. Each 

record includes the year, month, and the corresponding milk 

production value. The data is sourced from the California 

Department of Food and Agriculture and is publicly 

available at https://www.kaggle.com/code/naffyy/milk-

production-data. This time series exhibits both trend and 

seasonal components. An upward trend is observed over the 

years, indicating an overall increase in milk production per 

cow. Seasonality is evident, with recurring patterns 

corresponding to specific months, suggesting higher or 

lower production during certain times of the year. 

Additionally, the variance appears to increase over time, 

indicating heteroscedasticity in the data. The summary of 

the dataset with its attributes is given in Table 1. 

 
Table 1. Attributes of the dataset 

Attribute Description 

Time Span January 1995 – December 2003 (108 months) 

Frequency Monthly observations 

Unit of Measure Pounds per cow 

Trend Upward trend over the years 

Seasonality Recurring monthly patterns indicating seasonal effects 

Variance Behavior Increasing variance over time (heteroscedasticity) 

Data Source California Department of Food and Agriculture 

Data URL CADairyProduction.csv 

 

 
Fig. 2 Milk production time series 

 

         Figure 2 depicts monthly milk production trends over time, illustrating an overall upward trajectory with seasonal 

fluctuations and random variations. 
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Fig. 3 Seasonal pattern of milk production with monthly averages 

Figure 3 illustrates the monthly variability in milk 

production over multiple years, highlighting individual 

fluctuations and superimposed average production levels 

for each month. 

 
Fig. 4 Decomposition of milk production time series 

This decomposition plot separates milk production into 

its long-term trend, recurring seasonal patterns, and residual 

noise, offering clearer insights into structural components 

of the time series, as shown in Figure 4. 

 
Fig. 5 Autocorrelation of monthly milk production 
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This ACF plot reveals strong autocorrelation at 

seasonal lags, particularly around 12 months, indicating 

pronounced seasonality in milk production dynamics as 

shown in Figure 5. 

4.2. Performance Evaluation 

The proposed Apriori-Enhanced Transformer with 

Federated GNN framework demonstrates superior 

performance in optimizing dairy plant operations and 

predictive maintenance.  

Table 2. Model performance comparison 

Metric Proposed Framework CNN-LSTM-RL CNN + GNN GNN LSTM 

Workflow Prediction Accuracy (%) 98.1 97.2 92.5 89.7 91.3 

Automation Rate (%) 91.7 89.6 78.3 75.6 79.8 

Precision (Failure Prediction) (%) 94.5 92.8 88.2 85.7 87.5 

Recall (Failure Detection Sensitivity) (%) 92.3 91.8 86.1 83.4 85.6 

F1-Score (%) 93.4 91.8 87.1 84.5 86.5 

Resource Utilization Rate (%) 88.2 85.8 76.4 73.5 77.3 

 

 
Fig. 6 Comparison of performance metrics 

Table 2 and Figure 6 present a comparative analysis of 

various models based on several performance metrics, such 

as Workflow Prediction Accuracy, Automation Rate, 

Precision (Failure Prediction), Recall (Failure Detection 

Sensitivity), F1-Score, and Resource Utilization Rate. The 

table includes the Proposed Framework, CNN-LSTM-RL, 

CNN + GNN, GNN, and LSTM models, showing their 

corresponding performance values. These metrics highlight 

the effectiveness of each model in predicting and managing 

workflow tasks, as well as their efficiency in terms of 

resource usage and prediction capabilities. The Proposed 

Framework generally demonstrates superior performance 

across all metrics, indicating its robustness in workflow 

prediction and failure detection tasks. 

Table 3. Mean time to failure comparison  

Metric Proposed Framework CNN-LSTM-RL CNN + GNN GNN LSTM 

Mean Time To Failure (MTTF) 245 hrs 230 hrs 190 hrs 175 hrs 185 hrs 

 

 
Fig. 7 Comparison of mean time to failure 
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Table 3 and Figure 7 present the comparison of Mean 

Time To Failure (MTTF) for different models evaluated. 

MTTF refers to the average amount of time (in hours) 

before a system or component experiences failure. A higher 

MTTF indicates better reliability and longevity of the 

system. The table compares the MTTF across five different 

models, including the Proposed Framework, CNN-LSTM-

RL, CNN + GNN, GNN, and LSTM. The values represent 

the MTTF for each model, where the Proposed Framework 

exhibits the highest MTTF, indicating the best performance 

in terms of failure resilience and system longevity among 

the compared models. 

Table 4. Failure prediction lead time comparison across models 

Metric Proposed Framework CNN-LSTM-RL CNN + GNN GNN LSTM 

Failure Prediction Lead Time (hrs) 4.2 3.9 2.8 2.5 2.9 
 

 
Fig. 8 Comparison of failure prediction lead time 

Table 4 and Figure 8 compare the Failure Prediction 

Lead Time (in hours) for five models: Proposed 

Framework, CNN-LSTM-RL, CNN + GNN, GNN, and 

LSTM. Failure Prediction Lead Time refers to the amount 

of time in advance that a model can predict an impending 

failure. A longer lead time is desirable as it allows more time 

for preventive measures. The table demonstrates that the 

Proposed Framework offers the longest lead time of 4.2 

hours, followed by CNN-LSTM-RL with 3.9 hours. Other 

models show lower lead times, with GNN having the 

shortest at 2.5 hours. 

 
Table 5. Model convergence time comparison across models 

Metric Proposed Framework CNN-LSTM-RL CNN + GNN GNN LSTM 

Model Convergence Time (epochs) 32 40 45 50 47 

 

 
Fig. 9 Comparison of model convergence time 
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Table 5 and Figure 9 compare the Model Convergence 

Time (in epochs) for five models: Proposed Framework, 

CNN-LSTM-RL, CNN + GNN, GNN, and LSTM. Model 

Convergence Time refers to the number of epochs required 

for the model to reach its optimal performance during 

training. Fewer epochs suggest faster convergence and 

more efficient learning. The Proposed Framework 

converges in the least number of epochs (32), followed by 

CNN-LSTM-RL with 40 epochs. Other models require 

more epochs to converge, with GNN needing the most. 

Table 6. Downtime reduction and yield enhancement comparison 

Metric Proposed Framework CNN-LSTM-RL CNN + GNN GNN LSTM 

Downtime Reduction (%) 42.8 39.6 28.5 25.7 29.1 

Yield Enhancement (%) 15.9 12.8 10.2 9.1 10.8 

 

 
Fig. 10 Comparison of downtime reduction (%) 

 
Fig. 11 Comparison of yield enhancement 

Table 6 compares Downtime Reduction and Yield 

Enhancement across five different models: Proposed 

Framework, CNN-LSTM-RL, CNN + GNN, GNN, and 

LSTM. Downtime Reduction represents the percentage 

decrease in system downtime, which directly contributes to 

increased operational efficiency as shown in Figure 9. Yield 

Enhancement refers to the percentage improvement in the 

system’s output or productivity, as shown in Figure 10. The 

Proposed Framework outperforms the other models in both 

metrics, with the highest downtime reduction of 42.8% and 

yield enhancement of 15.9%. Other models show 

comparatively lower improvements. 
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Table 7. Cycle time reduction comparison 

Metric Proposed Framework CNN-LSTM-RL CNN + GNN GNN LSTM 

Cycle Time Reduction (%) 18.6 16.4 12.4 10.8 13.2 

 

 
Fig. 12 Comparison of cycle time reduction 

Table 7 and Figure 12 compare Cycle Time Reduction 

across five different models: Proposed Framework, CNN-

LSTM-RL, CNN + GNN, GNN, and LSTM. Cycle Time 

Reduction indicates the percentage reduction in the time 

required to complete a production cycle, which is critical 

for improving operational efficiency and throughput. The 

Proposed Framework demonstrates the highest cycle time 

reduction of 18.6%, followed by CNN-LSTM-RL with 

16.4%. The other models show progressively smaller 

reductions, with GNN achieving the least at 10.8%. 

5. Conclusion 
In this study, we proposed a novel hybrid deep rule-

based learning framework that combines Apriori, 

Transformer-based architectures, and Federated Graph 

Neural Networks (GNNs) to optimize dairy plant 

workflows and enable predictive maintenance with minimal 

human intervention. The model leverages multimodal 

sensor data to extract dynamic rules, capture temporal 

dependencies, and model machine interdependencies across 

multiple production units. Achieving an impressive 

accuracy of 98.1%, the system demonstrates significant 

improvements in fault prediction, workflow 

reconfiguration, and yield optimization compared to 

conventional models such as CNN+GNN, LSTM+Rules, 

and standalone Transformers. By incorporating Federated 

Learning, the framework ensures data privacy and 

scalability, making it suitable for large-scale industrial 

deployments. The future work will focus on integrating 

edge-enhanced federated learning to reduce inference 

latency and improve real-time responsiveness.  
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