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Abstract - Optimal crop growth through irrigation is achieved through the intelligent use of ensemble algorithms in 

predictive modelling, which depend on the massive amounts of information gathered and transmitted by various electronic 

devices and sensors pertaining to the crop's environment, well-being, and soil quality. Existing system: In traditional farming 

practices, the monitoring of environmental factors and soil conditions is often manual, resulting in delayed responses to 

potential issues, such as nutrient imbalances, water stress, or suboptimal climatic conditions. The delayed response in 

decision-making can result in decreased crop yield, inefficient resource use, and increased production costs. Many farmers 

rely on intuition or historical data, which do not account for the dynamic changes in the farm environment. As a result, there 

is an urgent need for systems that can offer real-time, data-driven insights into key environmental factors that influence crop 

health. Proposed system: This study presents an innovative framework of ML aimed at optimizing environmental 

management through continuous surveillance of essential weather parameters like temperature, air pressure, wind speed, 

and humidity to predict the future temperature with the Internet of Things. The objective of this article is to present the 

prediction of weather parameters through Adaboost and Modified Adaboost models, and to compare their performance 

indicators. Weather prediction with a modified Adaboost technique achieves an accuracy of 94%. By integrating these 

technologies, farmers can improve their farms' output and sustainability. They will also receive helpful information and be 

able to make informed decisions about irrigation and fertilization. 

 

Keywords - Machine Learning (ML), Weather prediction, Precision agriculture, Crop health, Adaboost and Modified 

Adaboost models. 

 

1. Introduction 
Edible and non-edible products are produced through 

various agricultural activities, including crop and livestock 

production, aquaculture, and forestry. When people learned 

to raise domesticated animals, it led to food surpluses that 

allowed them to settle down in cities, which paved the way 

for sedentary human civilization. Heatwaves, droughts, and 

other extreme weather events have a devastating effect on 

agriculture. These disasters cause crop failures, lower 

yields, and interruptions in farming cycles, affecting food 

security and people's ability to make a living.  

A better understanding of the weather is crucial for 

public safety since it allows for prompt planning and 

evacuation in severe weather occurrences such as cyclones, 

heat waves, and floods. Consequently, applications that 

provide data-driven insights into critical environmental 

parameters impacting crop health in real-time are urgently 

required. The spatial and temporal variability in 

environmental conditions further increases the complexity 

of farming environments. For instance, soil moisture levels 

and temperature can vary significantly across a single farm, 

and these variations directly affect crop growth. IoT sensors 

offer the ability to monitor these factors in real time. Still, 

the challenge is integrating this large volume of data into a 

cohesive system that can provide accurate predictions and 

actionable recommendations. Without an integrated 

solution, farmers are likely to either under- or overapply 

resources like water or fertilizers, leading to inefficient 

practices and uneven crop performance. The Decision 

Support System integrated into this framework provides 

dynamic recommendations for weather monitoring for 

irrigation scheduling, nutrient management, and pest control 

measures. With the help of an AR dashboard, which 

provides easy-to-understand data visualizations, farmers 

can make data-driven decisions while working the land. 

Along with accuracy in weather monitoring, measures like 

Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE) are used to appraise the performance of 

machine learning frameworks. The outcomes prove that the 

system is capable of enhancing crop management methods, 

increasing output, and guaranteeing the sustainable 

utilization of agricultural resources. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Agriculturally, they aid in optimizing crop 

management, resource utilization, and loss mitigation due to 

weather-related catastrophes. Weather prediction aids 

producers in making well-informed decisions regarding 

planting, irrigation, and harvesting, thereby maximizing 

crop management, reducing risks, increasing yields, and 

improving resource efficiency (Adinarayana, S., et al., 

2024). Artificial intelligence and machine learning in 

agricultural surveillance systems can significantly enhance 

crop yield prediction, insect detection, and soil health 

diagnosis (Kowalska, A., et al., 2023). Artificial intelligence 

(AI) systems may do things like predict weather patterns, 

evaluate the health of crops, and identify problems like 

pests, illnesses, or inadequate irrigation because of 

unpredictable weather conditions. In numerous disciplines, 

extensive research has been conducted to improve rainfall 

prediction, including statistical forecasting, operational 

hydrology, environmental machine learning, and weather 

data mining (Xu, T., et al, 2021). An essential principle of 

data mining is Knowledge Discovery in Databases (KDD). 

The primary emphasis of modern scholars is on discovering 

patterns in time series data. Meteorologists analyze data 

from previous hours, days, weeks, months, and years to 

forecast future rainfall (Shu, X., et al., 2023)..  

 

       Weather forecasting is taken to the next level with 

AdaBoost. This ensemble ML technique merges numerous 

"weak" predictors (such as decision trees) into a single, 

more robust predictor by zeroing in on misclassified 

occurrences and giving forecast weights (Nti, I.K., et al, 

2023).. It improves both accuracy and generalizability. The 

standard AdaBoost implementation bases the weight update 

on the error rate. Altering AdaBoost means recalculating 

alpha or including a regularization term. Alternatively, the 

combinations used for the weaker students will be changed. 

One alternative is to use a different base estimator. For 

example, switching from decision trees to SVMs is our 

learning system's backbone. Although theoretically feasible, 

SVMs are not frequently employed with AdaBoost due to 

their great learning capabilities. AdaBoost is an excellent 

tool for various machine learning problems due to its 

ensemble technique, which has benefits such as high 

accuracy, resilience to noisy input, and low implementation 

complexity.  

 

1.1. Objective of the Article  

 The proposed system uniquely integrates AI and recent 

information from diverse sources, including 

meteorological parameters and agricultural monitoring, 

with the help of IoT. This comprehensive approach 

ensures that decision-making is based on a holistic 

understanding of environmental conditions from a 

smart weather monitoring node. 

 Unlike traditional methods that rely on static resource 

allocation based on historical data, this system employs 

an advanced ML Ensemble algorithm of AdaBoost and 

a modified AdaBoost algorithm to predict the values 

accurately, considering real-time factors including 

humidity, wind speed and direction, temperature, and 

pressure to make precise weather predictions.  

 Both algorithms are performed, and their performance 

metrics are compared. The modified Adaboost 

algorithm predicts the weather with more accuracy than 

the standard Adaboost algorithm. Incorporating ML to 

create an AI-driven irrigation system that uses weather 

predictions and data from Internet of Things sensors 

(soil moisture, temperature, and humidity) to determine 

when crops need to be watered most effectively. 

 
Here is the article's structure. Section 2 outlines the 

relevant work that improves local weather forecasts using 

research methodologies and cutting-edge breakthroughs in 

computational intelligence for growing internet-enabled 

devices. The methodology's framework is labelled in 

Section 3, and the outcomes of Adaboost and modified 

Adaboost projected values are shown in Section 4. Section 

5 of the paper gives a synopsis of the findings and their 

possible applications moving forward.  

2. Literature Survey 
Researchers found that Intelligent Farming is made 

possible by nimble AI and the Internet of Things, including 

a reasonably priced cognitive weather station. The research 

introduced a cheap, agile framework for cognitive 

monitoring in smart farming powered by AI and built on the 

Internet of Things. Constantly monitoring a wide range of 

agricultural metrics, the hybrid Multi-Agent and completely 

containerized system includes pressure, humidity, and 

temperature to supply consumers with up-to-the-minute 

weather reports and predictions powered by artificial 

intelligence (Faid, A et al, 2021)  

 

Issa, A. A. et al. 2024 suggested Farming in the Digital 

Age: Smart Agriculture with AI and IoT. The present article 

gives a thorough overview of the developments in digital 

agriculture management, focusing on how sensors, machine 

learning, the Internet of Things (IoT), and machine learning 

have improved farming efficiency and output. The essay 

discusses 5G networks and innovative agricultural 

solutions. They explored how these networks affect rural 

data transport and communication. This essay examines 

how AI and the IoT may transform farming, enhance food 

security, and promote sustainable development.  

 

The authors introduced a LoRaWAN-based Internet of 

Things device that uses unsupervised machine learning and 

anomaly detection to provide control and monitoring 

solutions for smart farming. An innovative LoRaWAN-

based Internet of Things (IoT) device control and 

monitoring solution, including performance evaluation 

parameters, experimental setup, and dataset, is presented. 

This research examined Isolation Forest's ability to detect 

temperature and humidity anomalies. The study revealed 

that both linear regression and random forest predictors of 

temperature change are accurate. This technology boosts 

precision agriculture, smart farming efficiency, production, 

and sustainability (Fahaad Alumfareh, M., 2024) 

 

Precise crop monitoring and management utilizing AI 

and IoT was documented by Sharma et al. 2024. Innovative 
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methods, for instance, agroBots, inspection by satellite, and 

high-throughput phenotyping, are covered in this overview. 

By automating processes like sorting, harvesting, and weed 

detection, these technologies drastically cut down on labor 

expenses and their adverse effects on the environment. For 

more informed judgments about fertilization, irrigation, and 

pest management, high-throughput phenotyping gathers 

data on plant attributes using robotics, spectral imaging, and 

remote sensing. DGPS and remote sensing provide accurate, 

real-time data to evaluate soil quality and track crop health.  

 

Integrative methods in contemporary agriculture, such 

as the Internet of Things (IoT), Machine Learning (ML), and 

Artificial Intelligence (AI), were suggested by Delfani et al. 

(2024) for disease forecasting in the context of climate 

change. This article discusses the technical background, 

validation testing, developments, and significance of high-

quality, publicly available data in crop disease forecasting 

models. It also explores the challenges and potential 

solutions for open-source, easily understandable AI models. 

The agricultural community can enhance these models by 

pooling its data in a novel research effort. 

 

A study by Rahaman, M., et al. (2024) proposed using 

privacy-centric AI along with IoT technology to monitor 

and regulate country farms smartly. This project offers a 

comprehensive framework for intelligent remote farming 

surveillance that preserves privacy through computational 

intelligence and the web.  

 

Susmitha, P., et al. (2014) discovered the creation and 

establishment of an atmospheric surveillance and control 

system. Collecting data on temporal dynamics is crucial 

because monitoring the weather is critical to human 

survival. Certain risks necessitate weather monitoring. The 

objective of this embedded system project is to track 

industry-specific weather conditions. The surveillance 

system featured an LPC1768 central processing unit 

(ARM9), as well as sensors for gas, humidity, and 

temperature, all in a single setup. Through Serial 

Communication, the microcontroller transmits sensor data 

to LABVIEW, which then stores the data in an Excel 

spreadsheet and, through the GSM module, sends SMS 

messages to our phones. The system is powered by small-

form-factor circuits derived from the LPC1768 (ARM9) 

microprocessor. Embedded C applications can be written 

using the Keiluvision4 IDE. Microcontroller code is loaded 

over the JTAG interface. 

 

Almalki, F. A. et al. 2021 proposed a low-cost platform 

for an environmentally innovative agricultural surveillance 

system utilizing uncrewed aerial vehicles and the World 

Wide Web of Things. This experimental study met the 

criteria for automated, real-time monitoring of 

environmental factors using both above-ground and below-

ground sensors. According to empirical results, the novel 

combination of Internet of Things (IoT) sensors with drones 

enables the application and suggestion of both automated 

and human-made activities. Because of these astute moves, 

precision agriculture can significantly increase crop output 

while decreasing the usage of natural resources. 

 

Improving agricultural circumstances through the use 

of internet-enabled devices was suggested by Doshi, J., et 

al. (2019). A multi-channel alert system is recommended for 

farmers to enhance crop yield. This alert system enables 

contemporary farmers to monitor their harvests. If farmers 

have access to real-time weather reports, they may be able 

to increase agricultural yields while reducing fertilizer and 

water usage. 

 

       As an example of an AI-based real-time weather 

forecast with optimal agricultural resources, Pierre, N., et al. 

(2023) presented the idea. This project aimed to develop an 

AI and IoT system that analyzes, manages, and schedules 

fertigation and irrigation using real-time weather and 

agricultural data. The system will also allow farmers to 

connect with their farms through smartphones or computers, 

which will help them optimize their energy and water 

resources.  

 

Data collected in real-time from weather sensors, 

including pressure, temperature, humidity, and wind speed, 

is analysed using a Fuzzy Inference System (FIS) to forecast 

the rainfall rate for the next 24 hours in the agricultural area.  

Javaid, M., et al. (2023) uncovered the possible uses of 

predictive modelling in farming. This study identified and 

analyzed articles about AI in agriculture that were relevant 

to the topic. This paper aims to examine AI and its potential 

uses in agriculture. This presentation aimed to introduce the 

audience to AI and its numerous applications in agriculture, 

specifically focusing on the features that AI is presently 

monitoring. 

 

Applying machine learning techniques for weather 

prediction in crop production was proposed by Kumari, S., 

et al. (2024). This study aimed to increase crop productivity 

using a machine-learning model for weather prediction. The 

survey of humidity, wind speed, direction, precipitation, and 

temperature uses various meteorological sources. Data 

outliers and missing values are removed during 

preprocessing, and essential information is extracted during 

feature engineering. Researchers trained and assessed 

prediction models using ensemble approaches, decision 

trees, and regression models. 

 

A study conducted by Banerjee, S., et al. in 2023 

debuted crop prediction using machine learning techniques 

applied to weather data broken down into regions. 

Predicting the weather before planting crops is helpful for 

farmers. In recent technological developments, machine 

learning can help with everyday issues. A machine may 

mimic human behavior and learn from its own experiences 

and other forms of data using this technique. Modern 

agriculture is a subfield of AI that uses various algorithms 

to forecast crop yields using weather records. It is a boon to 

farmers, who can use those forecasts to their advantage.  
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Researchers Das, S.K., 2024 discussed Innovation in 

Agronomy: The Internet of Things (IoT) and Artificial 

Intelligence (AI) for local weather forecasting. Researching 

weather prediction tasks that benefit agriculture using AI-

ML and IoT techniques is an essential part of this study's 

contribution to the area.  

 

It also incorporates real-time, high-resolution 

meteorological data provided by IoT technology, a 

significant advancement. Additionally, the article delved 

into important knowledge gaps, such as the substantial 

challenges farmers, especially those in rural regions, face 

when trying to incorporate AI into their weather forecasting 

and agricultural practices. These challenges include a lack 

of clear solutions and digital literacy. Further empirical 

studies are upgraded to improve the present designs and 

tackle these shortcomings. 

 

Kamatchi, S. B., et al (2019) improve crop production 

using a recommender system based on weather 

forecasts. According to this study, combining Case-Based 

Reasoning (CBR) with other systems enhances system 

success and enables the prediction of the optimal crop to 

plant based on weather conditions.  

 

Researchers applied collaborative filtering and case-

based reasoning in their innovative hybrid system. The 

model's hybrid recommender system examined data 

collected at the district level to generate weather predictions 

and crop recommendations tailored to each district's unique 

agricultural pattern. Building on related work, my proposed 

research focuses on environmental monitoring and weather 

prediction. 

 

3. Methodology 
The needs of farming activities were considered when 

building an artificial intelligence-based answer for farmers. 

This solution was created with a human development 

perspective in mind. Thunderstorms, heatwaves, heavy 

rainfall, fog, and other severe weather phenomena have been 

better predicted by the India Meteorological Department 

(IMD) by 40-50% over the last five years, according to 

modern Indian meteorology.  

 

Predicting severe weather occurrences has become 

significantly easier for the IMD, with an accuracy boost of 

40-50% over the last several years. The accuracy for severe 

rainfall events remains below 80%, indicating a gap in the 

forecasting system that could lead to catastrophes. Here, 

prediction is planned with the ensemble technique of the 

Adaboost classifier because it is a powerful tool for 

classification and regression issues that is straightforward to 

deploy and achieves high accuracy.  

 

As shown in Figure 1, the server with machine learning 

collects raw weather data from online sources for prediction. 

Environmental parameters, such as temperature, pressure, 

wind speed, and humidity, are considered to predict the 

weather in a particular location.  

 

Real-time data were collected in an Excel file for 

historical data collection. This article demonstrates the 

AdaBoost technique with an alteration of weight assignment 

to enhance accuracy. The boosting technique achieves more 

accuracy in modifying the weight than Adaboost. Here, the 

proposed ML ensemble technique, Adaboost, and its 

modified version with a learning rate of 1.5 have been 

performed, and the results are compared with predicted 

parameters.  

 

The modified Adaboost algorithm yields more accurate 

predictions than the original Adaboost algorithm. The server 

with machine learning will be incorporated into the 

Decision Support System (DSS) to achieve automated 

irrigation and crop monitoring for smart agriculture.  

 

The DSS receives real-time data from IoT sensors in the 

farm field to predict the weather and inform farmers on how 

to perform according to the environment. This article 

demonstrates the successful implementation of ML 

technology in predicting weather, as shown below. 

 

3.1. Adaboost Algorithm Flow Chart 

The Adaboost algorithm flow chart is shown in Figure 

2. The first input step involves fetching a large dataset, and 

the algorithm then creates the first base learner. This learner 

is initially a decision stump or a weak learner trained on the 

entire dataset with equal weights. It is a classification 

challenge because the target column is binary.  

Before anything else, these data points will be given 

weights. Everything starts with an equal weight. Then, a 

repetition loop for T-weak learners takes place there. The 

method of determining the error rate (TE) after training is 

by the weights of the misclassified data points. The mistake 

rate is used to evaluate the performance of a weak learner, 

such as the decision stump.  

The stump's impact on the final model directly relates 

to its performance. Revising the masses of samples as 

AdaBoost raises the weights of the incorrectly classified 

cases and lowers them for the true ones. At this point, the 

algorithm is prepared to tackle the more difficult problems 

in the subsequent round. For the following round, use the 

revised weights to create a new dataset.  

If there are a lot of misclassified cases, the algorithm 

will prioritize the ones with the highest weights. The next 

step is to repeat the process as many times as necessary to 

train additional weak learners and update the weights until 

the required number of iterations has been reached. This 

method enables AdaBoost to construct a robust classifier by 

focusing on challenging data points, thereby improving the 

model's performance over time. The modified Adaboost 

criteria are that the learning rate is increased to 1.5, and the 

alpha value is also set to 0.5. 
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Fig. 1 Server with Machine Learning (weather prediction) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Adaboost algorithm flowchart 
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3.2. Implementation 

Python packages such as scikit-learn, pandas, and 

NumPy are required for the machine learning aspects of 

implementing the AdaBoost algorithm for weather 

prediction. The AdaBoost technique for classification tasks 

is available in sklearn. Ensemble.AdaBoostClassifier 

module. It is well-suited for predicting weather conditions, 

such as the range of possible temperatures or the presence 

or absence of rain. Separate the weather data into training 

and testing sets using 

sklearn.model_selection.train_test_split. Then, a test can be 

done on the model's accuracy with new data. sklearn. The 

metrics package provides metrics to measure the 

performance of your AdaBoost model, including MAE, 

RMSE, R-Square, Training time, and accuracy. Python's 

numpy library includes numpy.ndarray, which is excellent 

for doing calculations and feature scaling efficiently on data. 

For data visualization and model performance, optional 

libraries include Matplotlib and Seaborn. The Plotly 

platform is terrific for creating dynamic data visualizations.  

4. Results and Discussion 
The historical data, derived from Chennai's weather 

data from 2009 to 2024, is sourced from Kaggle and historic 

weather data. The Chennai Weather Dataset has a 

Comprehensive Record of Climate Variations from 2009 to 

2024. Here, we have taken a comprehensive dataset that 

shows the weather patterns in Chennai, India, from 2009-

09-09 to 2024-07-29. A wealth of weather data is available 

for analysis, comprising 6,488 distinct entries. Standout 

characteristics of data are time-sensitive. Nearly 25,000 data 

points are available in the historical weather data. A 

timestamp that includes the day, month, and year. Varying 

temperature, surface pressure, wind speed, and humidity are 

parameters. Overall, 26,000 data points have been taken as 

input data for the modeling. Changing the learning rate, 

utilizing various base learners, or altering the weight update 

rule are common modifications to AdaBoost. One 

alternative is to include a regularization term in the weights 

to avoid overfitting. 

Next, a data set is split for training at the rate of 80 

percent and testing at the rate of 20 percent. AdaBoost is an 

ML ensemble model that uses shallow trees as single-level 

"stumps" to generate a series of weighted decision trees. 

Every tree learns from the full dataset, but some have 

adaptive sample weights that prioritize instances incorrectly 

classified in the past. Train the Adaboost and modify the 

Adaboost models. The performance evaluation has been 

completed, and the values mentioned in Tables 1 and 2 are 

for season-wise predictions, while Table 3 provides month-

wise predictions, accompanied by respective graphs. These 

graphs are shown in Figures 3(a), 3(b), 3(c), and 3(d) for 

season-wise predictions and Figures 4(a), 4(b), 4(c), and 

4(d) for month-wise predictions. Day-wise predictions are 

shown in Table 4, with the respective graphs presented in 

Figures 5(a), 5(b,) 5(c), and 5(d).  

 

4.1. Weather Parameters Predictions Season-Wise 

Weather parameters have been predicted for the twelve 

months as prescribed, including months 1 and 2 for winter, 

months 3, 4, and 5 for spring, months 6 and 8 for summer, 

and months 9, 10, and 11 for autumn. Weather Parameters 

predictions are season-wise, as shown in Tables 1 and 2, and 

corresponding graphs in 3a, 3b, 3c, and 3d. 

 

Table 1. Weather parameters predictions season-wise 

 

 
Fig. 3(a). Temperature prediction season-wise 
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Table 2. Weather parameters predictions season-wise 

Season 

AdaBoost 

Wind speed 

m/s 

Modified_AdaBoost 

Wind speed m/s 

AdaBoost 

Pressure 

bar 

Modified_AdaBoost 

Pressure 

bar 

Summer 12.47233 

 

13.25593 

 

1008.057 

 

1004.558 

 Winter 13.73194 

 

13.25593 

 

1012.162 

 

1012.003 

 Autumn 14.84173 

 

14.32589 

 

1008.784 

 

1009.411 

 Spring 14.90017 

 

14.30567 

 

1009.028 

 

1010.113 

 

 
 

 
Fig. 3(b) Humidity prediction season-wise 

 

 
Fig. 3(c) Wind speed prediction season-wise 

 

 
Fig. 3(d) Pressure prediction season-wise 
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4.2. Weather Parameters Predictions, Month-Wise 

Weather parameters have been predicted for the next 

twelve months, as shown in Table 3, and the 

corresponding graphs are presented in Figures 4(a), 4(b), 

4(c), and 4(d). 

 

Table 3. Weather parameters predictions month-wise 

Year Month Season Model 
Temperature 

°C 

Humidity 

%rh 

Wind Speed 

m/s 

Pressure 

bar 

2025 1 Winter AdaBoost 28.58638 86.2847 13.73194 1012.162 

2025 1 Winter Modified_AdaBoost 27.35704 83.86158 13.25593 1012.003 

2025 2 Winter AdaBoost 28.58638 86.2847 13.73194 1012.162 

2025 2 Winter Modified_AdaBoost 27.35704 83.86158 13.25593 1012.003 

2025 3 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

2025 3 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

2025 5 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

2025 5 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

2025 6 Summer AdaBoost 29.31058 88.53721 12.47233 1008.057 

2025 6 Summer Modified_AdaBoost 30.01595 84.32383 13.25593 1004.558 

2025 7 Summer AdaBoost 29.31058 88.53721 12.47233 1008.057 

2025 7 Summer Modified_AdaBoost 30.01595 84.32383 13.25593 1004.558 

2025 8 Summer AdaBoost 29.31058 88.53721 12.47233 1008.057 

2025 8 Summer Modified_AdaBoost 30.01595 84.32383 13.25593 1004.558 

2025 9 Autumn AdaBoost 29.02642 88.53721 14.84173 1008.784 

2025 9 Autumn Modified_AdaBoost 29.80777 84.14164 14.32589 1009.411 

2025 10 Autumn AdaBoost 29.02642 88.53721 14.84173 1008.784 

2025 10 Autumn Modified_AdaBoost 29.80777 84.14164 14.32589 1009.411 

2025 11 Autumn AdaBoost 29.02642 88.53721 14.84173 1008.784 

2025 11 Autumn Modified_AdaBoost 29.80777 84.14164 14.32589 1009.411 

2025 12 Winter AdaBoost 28.58638 86.2847 13.73194 1012.162 

2025 12 Winter Modified_AdaBoost 27.35704 83.86158 13.25593 1012.003 

 

 
Fig. 4(a) Temperature prediction month-wise 
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Fig. 4(b) Humidity prediction month-wise 

 

 
Fig. 4(c) Wind speed prediction month-wise 

 

 
Fig. 4(d) Pressure prediction month-wise 
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4.3. Weather Parameters Predictions Day-Wise 
The day-wise weather parameter prediction is done 

within 365 days. Here, the sample output is shown in 

Table 4, and the corresponding graphs are shown in 

Figures 5(a), 5(b), 5(c), and 5(d). 

 

Table 4. Weather parameters predictions day-wise 

 

 
Fig. 5(a) Temperature prediction day-wise 

 

 
Fig. 5(b) Humidity prediction day-wise 

Date Month Season Model 
Temperature 

°C 

Humidity 

%rh 

Wind 

Speed m/s 

Pressure 

bar 

17-04-2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

17-04-2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

18-04-2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

18-04-2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

19-04-2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

19-04-2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

20-04-2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

20-04-2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

21-04-2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

21-04-2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 

22-04-2025 4 Spring AdaBoost 30.52046 88.53859 14.90017 1009.028 

22-04-2025 4 Spring Modified_AdaBoost 30.32 87.33566 14.30567 1010.113 
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Fig. 5(c) Wind speed prediction day-wise 

 

 
Fig. 5(d) Pressure prediction day-wise 

 
4.4. Metrics of Adaboost and Modified Adaboost 

Algorithm 
The Mean Absolute Error (MAE) is a metric for 

evaluating regression models that estimates the average 

magnitude of mistakes without taking their direction into 

consideration. The Mean Absolute Error (MAE) between 

the predicted and actual values is calculated. Calculated by 

averaging the squared discrepancies between the actual and 

anticipated values, the root-mean-squared (RMSquared) 

value is the result. The statistical measure of a model's fit to 

the data is R-squared (R²), which indicates the percentage of 

the dependent variable's variance that can be explained by 

the model. A better fit, where the model explains more of 

the data's variability, is indicated by an R² value that is 

higher (closer to 1). Training with AdaBoost is typically 

computationally efficient, particularly when basis learners 

are shallow decision trees (stumps). However, the time it 

takes can grow depending on the complexity of the base 

learners and the number of repeats. The metrics for both 

models are presented in Tables 5 and 6. The AdaBoost 

approach compares the model's predictions on a test set to 

the actual values to verify correctness. Then, it splits the 

forecasts by the number of correct predictions. The accuracy 

and false rates of both algorithms are shown in Table 7.  

Table 5. Metrics for the Adaboost algorithm's performance 

 

 

 

 

Target MAE RMSE R² Score Training Time (s) 

Temperature 1.265938 1.577845 0.744814 2.911027 

Humidity 6.660391 7.880355 0.661919 3.106177 

Wind Speed 3.758738 4.718315 0.174841 1.652328 

Pressure 2.145465 2.696918 0.536688 2.192713 
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Table 6. Metrics for the modified Adaboost algorithm's performance 

 

 

 

 

Table 7. Accuracy and false rate of models 

 

 

 

5. Conclusion 
Developments in artificial intelligence and machine 

learning are creating new technological possibilities in 

agriculture. These technologies enable more accurate 

weather forecasts and environmentally friendly farming 

practices by continuously monitoring environmental 

factors, soil conditions, and crop development. Large data 

sets will be generated quickly due to the increased efficiency 

and accuracy of weather monitoring. Additionally, modified 

Adaboost yields better metrics than existing algorithms, 

including SVM and DT. In addition, weather stations 

connected to the Internet that update weather reports using 

real-time data collected by sensors have become crucial 

resources in various fields, including agriculture, disaster 

management, and climate research. Potentially actionable 

early warning of abrupt climate change could be attainable 

using AI-powered approaches. Connected devices that 

provide precise weather forecasts in real-time are a step in 

the right direction. This article investigates how to integrate 

AI-ML with IoT for weather prediction activities that 

farmers rely on. Here, the weather prediction is performed 

using both AdaBoost and a modified version of AdaBoost. 

The performance metrics of both models are derived and 

compared. This technology could help develop a local 

weather forecasting system, providing farmers with access 

to current local climate data. There would be a lower chance 

of economic losses, and farmers might complete their 

agricultural tasks more quickly if this happened. The future 

work will involve combining this weather monitoring node 

with smart farming to simplify irrigation and fertilisation 

processes.
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