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Abstract - Future Road transportation is primarily reliant on connected vehicles. Moreover, the Intelligent Transportation 

Systems support road users through the utilization of Vehicular Ad hoc Networks (VANETs). The rogue node, termed a sybil 

node, transmits bogus signals to interrupt the system, impacting its security. However, the detection of a Sybil attack is 

complicated due to the dynamic nature of nodes and stability issues. Adaptive Ship Rescue Optimization-based Deep Kronecker 

Network (ASRO_DKN)-based Sybil attack detection is proposed to solve such an issue. The VANET simulation is initially carried 

out, and the Fractional Glowworm Swarm Optimization for Traffic Aware Routing (FGWSO-TAR) is performed. The Sybil attack 

is detected at the Base Station (BS), where the input data packet is applied to feature extraction, and the attack is detected by the 

Deep Kronecker Network (DKN). The hyperparameters of the DKN are tuned using the ASRO. The Precision, recall, and F-

measure metrics are utilized to validate the ASRO_DKN-based Sybil attack detection in VANET, and the optimum values of 

90.84%, 90.48%, and 90.13% are achieved. 

 

Keywords - Vehicular Adhoc Networks, Sybil attack, Fractional Glowworm Swarm Optimization, Deep Kronecker Network, Ship 

Rescue Optimization. 

1. Introduction 
Intelligent vehicles are revolutionizing modern 

transportation systems, offering increased safety, efficiency, 

and automation. These advancements rely heavily on real-

time data exchange between vehicles and infrastructure, 

enabled by Vehicular Ad Hoc Networks (VANETs). VANETs 

are a crucial component of Intelligent Transportation Systems 

(ITS), supporting key applications such as dynamic route 

planning, information dissemination, safety alerts, and 

telemetry data sharing. 

VANETs enable vehicles to communicate with one 

another and with Road Side Units (RSUs), enhancing road 

safety and traffic efficiency by broadcasting relevant 

contextual information. This interconnectivity contributes 

significantly to reducing traffic accidents and congestion. 

However, evaluating the performance of VANET routing and 

security protocols in real-world environments is often 

prohibitively expensive. As a result, most research depends on 

simulation-based evaluations to assess protocol effectiveness 

under various traffic and attack scenarios. 

Despite their benefits, VANETs remain vulnerable to 

numerous security threats. The Sybil attack poses a serious 

risk, where a malicious vehicle generates multiple fake 

identities to mislead other vehicles or infrastructure systems. 

Such attacks can compromise safety-critical applications by 

creating false congestion reports, blocking traffic flow, or 

disrupting routing decisions. 

Several conventional Machine Learning (ML) methods 

have been applied for Sybil attack detection. However, these 

approaches often fall short in handling high-dimensional and 

non-linear data patterns, which are common in real-time 

vehicular communication systems. Recent advances in Deep 

Learning (DL) show promise in overcoming these limitations, 

offering superior pattern recognition capabilities and 

improved detection accuracy. Specifically, models like 

Convolutional Neural Networks (CNNs) are well-suited for 

identifying complex patterns associated with security threats 

in VANETs. 

Despite this, existing deep learning-based methods lack 

adaptive mechanisms to optimize model parameters 
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efficiently, often resulting in sub-optimal performance or 

requiring significant manual tuning. Therefore, there is a 

pressing need for an intelligent, adaptive, and optimized deep 

learning method for Sybil attack detection in VANETs. 

The research gap mentioned above is addressed in this 

study with a novel ASRO_DKN-based framework for Sybil 

attack detection, which integrates: Dynamic Kernel-based 

Network (DKN) for high-accuracy detection, and Adaptive 

Ship Rescue Optimization (ASRO) to fine-tune the DKN’s 

hyperparameters for optimal performance. The key 

contributions of this paper are: 

1.1. Development of ASRO_DKN Framework 

A novel approach that combines Adaptive Ship Rescue 

Optimization (ASRO) with Dynamic Kernel-based Network 

(DKN) to detect Sybil attacks in VANETs. 

1.2. Simulation and Validation 

The VANET environment is simulated, and the proposed 

FGWSO-TAR method is used for traffic-aware routing, 

followed by ASRO_DKN-based attack detection. 

1.3. Performance Improvement 

The proposed method aims to enhance detection 

accuracy, reduce false positives, and achieve efficient 

parameter tuning in dynamic vehicular environments. 

The remaining section of the paper is organized as  

follows: Sections 2 and 3 discuss the motivation and review 

existing works on attack detection in VANETs. Section 4 

provides the design and implementation part of the 

ASRO_DKN model. Section 5 presents the experimental-

based results and performance metrics, and the paper is 

concluded in Section 6 with future directions.  

2. Motivation  
Sybil attacks create more security threats in VANETs, in 

which malicious nodes create multiple identities to manipulate 

the performance of the network and disrupt communication. 

Thus, the detection of Sybil attacks is needed to provide 

VANETs with reliability.  

3. Literature Survey 
Rakhi, S. and Shobha, K.R., [1] devised the Longest 

Common Subsequence (LCS)-based Sybil attack detection in 

VANET. This model significantly improved the detection rate 

for variable vehicle counts. However, this model failed to 

integrate a mean-based change point finding to validate any 

rapid variations occurring in the Received Signal Strength 

Indicator (RSSI). Zhang, Z., et al. [2] developed the Basic 

Security Message (BSM) packets for detecting the Sybil 

attack. This model attained high detection accuracy and 

minimized the deployment cost. Still, it failed to include 

simpler and more effective detection approaches for attaining 

more precise outcomes. Azam, S., et al. [3] devised the 

Ensemble-based Majority Voting technique for the Sybil 

attack detection in VANET. It enabled multiple vehicles to 

share information and learning from each other. Still, the 

communication overhead leads to network congestion. Zhu, 

Y., et al. [4] developed the Beacon Packet-based Traceability 

mechanism for detecting the Sybil attack in VANET. It 

enhanced trust among vehicles and led to better coordination. 

Nevertheless, the detection and traceability were 

resource-intensive and complex. Recent studies have taken 

varied approaches to enhance the security of VANETs, 

focusing on intelligent clustering, deep learning models, and 

trust-based mechanisms. Dalal et al. [16] proposed an 

integrated framework that combines the Self-Improved 

Kookaburra Optimization Algorithm with an enhanced LSTM 

model for intrusion detection, alongside Blowfish encryption 

to secure data transmission. Ajin et al. [17] developed a 

method using Adaptive Bald Eagle Search Optimization in 

conjunction with a multi-agent Deep Q Network, applying 

BIRCH clustering and an efficient cluster head selection 

strategy to improve detection of Sybil attacks. Kirubakaran et 

al. [18] introduced a secure communication model that 

incorporates Spatial Bayesian Neural Networks, optimized 

using a Fractional Order Water Flow algorithm, and protected 

by advanced encryption methods. Aledhari et al. [19] offered 

a comprehensive review of communication security in 

connected autonomous vehicles, outlining key attack types 

and proposing practical countermeasures. In a related effort, 

Balakumar et al. [20] designed a Multi-Dimensional Trust-

based Data Dissemination mechanism aimed at addressing 

blackhole attacks by assessing multiple trust metrics within a 

DSR routing context. Collectively, these works reflect a 

growing shift toward adaptive, multi-layered security 

frameworks, aligning with the direction and contribution of 

the ASRO_DKN approach presented in this study. 

3.1. Challenges 

The challenges of existing techniques for Sybil attack 

detection in VANET are described below: 

 The LCSS-based Sybil attack detection in [1] was 

computationally intensive, particularly in real-time 

utilization. Moreover, the execution of LCSS may lead to 

delays in detection.  

 In [4], the Beacon Packet-based Traceability mechanism 

was complex because the mechanism failed as the count 

of connected vehicles was increased. 

 VANETs are considered a dynamic topology with high 

mobility. Vehicles often move quickly in and out of 

communication ranges; hence, creating stable 

connections over time was difficult. 
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4. Proposed Adaptive Ship Rescue Optimization-

based Deep Kronecker Network for Attack 

Detection in VANET 
VANETs are considered a significant part of ITSs, 

increasing road safety and transport efficiency. VANETs 

facilitate rapid communication and information sharing. This 

capability is helpful for making roads safer for passengers. 

Still, vehicle communication is susceptible to many threats, 

which require robust safety measures for deploying the 

VANETs in ITS. The major threat to VANET is the Sybil 

attack. The Sybil attacks in VANETs reduce the 

trustworthiness of communications and disturb the traffic 

management systems. To tackle such complexity, an 

ASRO_DKN-based Sybil attack detection is developed. The 

VANET simulation is performed, and the FGWSO-TAR 

protocol [11] is employed for routing. The attack detection is 

done in the BS, where the required features are extracted. 

Sybil attack detection is implemented using the DKN [12], and 

its hyperparameters are trained using the ASRO. Figure 1 

shows the block diagram of the proposed model. 
 

4.1. Simulation in VANET 
The simulation model [9] for VANET is shown in Figure 

2. The entities, such as vehicles, Roadside Units (RSUs), and 

servers, are presented in the model. The primary component 

of the VANET is vehicles, which are linked to an Onboard 

Unit (OBU) to transmit and receive data by wireless links. 

Vehicle-to-Infrastructure (V2I) and Vehicle-To-Vehicle 

(V2V) are the major ways of communication. The RSU is 

connected alongside the roadside and is utilized as a medium 

between the vehicles and servers.  

 

The server controls the movements of vehicles , and the 

environmental details are gathered from the vehicles. 

Afterwards, the vehicle details are transmitted to the 

application server to distribute a specific operation to the 

vehicles.  Moreover, the OBU is used to capture the latitude 

and longitude of the Global Position Sensor (GPS). Lastly, the 

service providers are used to aggregate the data and control 

the driving instructions.  
 

4.2. Routing Based on FGWSO-TAR 

Routing is utilized to find the way data packets are 

transmitted across the V2V and V2I. In VANETs, the network 

topology varies quickly; hence, the data transmission is 

complex. Therefore, routing protocols are designed to adjust 

to the dynamic environment and effectively deliver the data. 

Here, the FGWSO-TAR system effectively carried out the 

routing.  
 

4.2.1. Algorithmic steps for FGWSO 

Step 1: Initialization 

The parameters such as population member 𝑈, initial 

luciferin, radial range of search agents, the iteration  𝑄, and 

the present iteration 𝑞 ,  are initialized. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 

 
 
 
 

Fig. 1  Block diagram of ASRO _DKN for sybil attack detection in 
VANET 

 
Fig. 2 Simulation model for VANET 

Hence, the solution vector is given as, 

𝑈 = {𝑢1,𝑢2 , … . 𝑢𝑎 ,… . . 𝑢𝐵}   (1) 
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The overall solution is specified as 𝑢𝐵and 𝑎𝑡ℎ  The 

solution is indicated as , 𝑢𝑎.  

 
Step 2: Fitness Estimation 

The fitness for each agent with the dimension of 

population B is computed. Moreover, it is estimated by the 

distance traveled and the delay of the vehicle. Hence, the 

fitness function is computed as follows, 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = [∑ 𝐿𝑒𝑟

𝑃𝐴𝑤
𝑟 (𝑆𝑝)

+ 𝐻𝐷
𝐶𝑉𝑟
𝑟=1

𝑤=1

] ∗
1

𝑁𝑓
  (2) 

Where the road segment ID is indicated as 𝑟, and 𝑁𝑓 

Specifies the normalizing factor. The count of vehicles is 

denoted as 𝐶𝑉𝑟 .  Moreover, the predicted average speed during 

the period 𝑤 is denoted as  𝑃𝐴𝑤
𝑟 , and the hop distance is 

specified as 𝐻𝐷 . The term 𝐿𝑒𝑟  shows the road segment length 

and 𝑆𝑝Indicates the vehicle’s speed. 

 

Step 3: Fractional Movement Stage 

The search agent is moved to the adjacent glowworm 

based on the probabilistic approach for the fractional 

movement. Hence, the upgraded expression  𝑡𝑑 (𝑞 + 1) for 

FGWSO is given as, 

𝑡𝑑
(𝑞 + 1) = 𝑛𝑡𝑑

(𝑞) +
1

2
𝑡𝑑

(𝑞 − 1) + 𝐵 [
𝑡𝜆(𝑞) −𝑡𝑑(𝑞)

‖𝑡𝜆
(𝑞) −𝑡𝑑(𝑞)‖

]     (3) 

Where 𝐵 is indicated as the step size, 𝑛 specifies a 

constant, 𝑡𝜆
(𝑞) denotes the 𝜆𝑡ℎ glowworm on the iteration 𝑞  , 

and the Euclidean norm operation is indicated as ‖ ‖. 

 
Step 4: Re-Computation of Fitness  

This step is followed until the maximum count of 

iterations is reached.  

 
Step 5: Termination 

The algorithm reaches the termination stage when the 

optimal solution is obtained, and the highest count of iterations 

is performed. 

4.3. Detection of Sybil Attack at the Base Station 
In the BS for attack detection, steps like data acquisition 

and feature extraction are performed, and the DKN detects  the 

Sybil attack in VANET. 

 
4.3.1. Data Acquisition 

The input data is collected from the KDD Cup 1999 

Dataset [14]. The competition process is formed with network 

intrusion detection, and a predictive model dis tinguishes the 

``good'' connections as normal, and ``bad'' connections as 

attacks or intrusions. The data is given as, 

 

𝐶 = {𝐶1,𝐶2,… . 𝐶𝑏, … . . 𝐶𝑦 }                                        (4) 

The term 𝐶  specifies the dataset in which the whole data 

is symbolized by 𝑦, and the 𝑏𝑡ℎ Data is denoted by 𝐶𝑏. 

4.3.2. Feature Extraction 

After collecting the data from the dataset, the essential 

features are extracted to detect the Sybil attack. Moreover, the 

extracted features are specified as 𝐶𝑏. 

4.3.3. ASRO_DKN-based Sybil Attack Detection  

Attack detection is needed to identify the presence of 

attacks in the VANET. Here, the DKN is used to find the 

attack, and its hyperparameters are trained by the proposed 

ASRO. 

 
Fig. 3 Structure of DKN 

Structure of DKN 

The networking functionality of DKN [12] depends on 

the Kronecker product. Figure 3 portrays the structure of 

DKN, where the input, hidden, and output layers are presented 

in DKN. The feature 𝐹𝑏  It is fed to DKN, and the resulting 

matrix is reshaped and flattened after the creation of the 

Kronecker product. The DKN resolves the complex 

interaction of features without any additional parameters. The 

output of the DKN is indicated by the term. 𝑊𝑏 . 

Wb = ψ(σb )Exp{σb
〈Fb ,A〉 − ξ(〈Fb ,A〉)}  (5) 

Here, ψ(. )and ξ(. ) symbolizes the known univariate. The 

following expression indicates a certain known link function 

 ϑ(D(σb
)) = 〈Fb ,A〉    (6) 

Furthermore, the decomposition for the Kronecker 

L(≥ 2) with the rank L, and the coefficient 𝐴 is given as 

A = ∑ TH
1 ⊗L

l=1 TH−1
1 ⊗ … ⊗ T1

1  (7) 

Where, h = 1, … . , H  and 1 = 1, … . , L  denotes the 

component of Kronecker product, in which  

υ = Πh=1
H υh  and g = Πh=1

H gh ; hence, it is simplified by, 

Th′ ⊗ Th′−1 ⊗ … ⊗ Th′′ =⊗h=h′
h" T0  (8) 

The decomposition for each matrix is specified as 

A=∑ ⊗ℎ=𝐻
1L

l =1 Th
1. 
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Training of DKN by ASRO 

ASRO is formed by merging SRO [13] with an adaptive 

concept.  SRO is based on the ship's manoeuvring motion and 

the rescue approach. SRO is employed to resolve the complex 

optimization issues. The ship rescue is split up into two 

classes: wide area rescue (delayed rescue) and small rescue 

(immediate rescue), which are based on the searched 

individual. Furthermore, these two rescue behaviors are 

correlated with exploration and exploitation. To diminish the 

complexity of computation, the adaptive concept has been 

added to ASRO. 

Step 1: Initialization 
The count of ships is considered as a population member, 

and the location of the ship is expressed as, 

 Ak
(h + 1) = Amin + c ×  (𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛 )       (9) 

The current iteration is specified as h, and c represents the 

random number between 0 and 1. At the iteration ℎ, the 

location of ship 𝑘 is denoted as Ak
(h) . The terms 𝐴𝑚𝑎𝑥  and 

𝐴𝑚𝑖𝑛  Indicate the bounds. 

Step 2: Computation of Fitness 

The fitness function indicates the way of attaining the 

ideal solution, and is expressed as, 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑦
∑ [𝑊𝑏

∗ − 𝑊𝑏
]2𝑦

𝑏=1    (10) 

Where, 𝑊𝑏  indicates the outcome of DKN, and 
𝑊𝑏

∗  Portrays the expected output. 

Grouping of Ships 

Isolating every ship into 𝐼 groups, in which the count of 

ships in every group is denoted as  
𝐽

𝐼
⁄ . Moreover, the location 

of every ship is specified as 𝐴𝑏
𝑖 , 𝑖 ∈ {1, … . , 𝐼},𝑘 ∈ {1, …

𝐽
𝐼

⁄ } 

Step 3: Compute the Ideal Value in Every Group and the 

Global Ideal Overall Ships  

The ideal ship location of every cluster is termed as 𝐴𝑏𝑒 𝑠𝑡
𝑖 , 

and globally, the best location of the ship is stated as 𝐴𝑏𝑒𝑠𝑡  . 

Step 4: Upgrade the Manoeuvring Function of the Ship 

For ship manoeuvring purposes, the coefficient 𝐻  

indicates the highest count of iterations. Moreover, the 

maximum count of iterations is denoted as 𝐻𝑚𝑎𝑥 . 

𝑥𝑘
𝑖 (ℎ + 1) = 𝑍𝑘

𝑖 (ℎ). 𝑒
−

ℎ

𝑀𝑎𝑥 _𝐼𝑡𝑒𝑟 + 𝑙. 𝛼𝑘
𝑖 (ℎ) (11) 

Here, the present iteration is indicated as ℎ, the regular 

constant is specified as 𝑙, and 𝑀𝑎𝑥 _𝐼𝑡𝑒𝑟  implies the 

maximum count of iterations. Furthermore, 𝑍𝑘
𝑖 (ℎ) implies the 

constant for the 𝑖𝑡ℎ group of ships 𝑘, and the rudder angle for 

𝑖𝑡ℎ group at the ℎ𝑡ℎ  iteration is symbolized as 𝛼𝑘
𝑖 (ℎ). The term 

𝑥𝑘
𝑖 (ℎ) denotes the rotational angle for 𝑙 group of ships at the 

iteration ℎ. The expression for the rude and rotational angle is 

derived as follows, 

𝑍𝑘
𝑖 (ℎ + 1) =

𝑣𝑘
𝑖 (ℎ)−𝑙.𝛼𝑘

𝑖 (ℎ)

𝑒
−ℎ

𝑀𝑎𝑥 _𝐼𝑡𝑒𝑟

    (12) 

𝛼𝑘
𝑖 (ℎ + 1) = 𝑟𝑛𝑑 . 𝑑𝑐. 𝑎𝑛𝑔𝑙𝑒𝑘

𝑖 (ℎ)  (13) 

Where, 𝑟𝑛𝑑  specifies the random value within (−2, 2). 

Moreover, the coefficient of direction 𝑑𝑐 controls the rudder 

angle and is set as 1 or −1. The rotation angular velocity at the 

iteration ℎ is indicated as. At the iteration 𝑖, the angle between 

two ships is denoted as 𝑎𝑛𝑔𝑙𝑒𝑘
𝑖 (ℎ). 

𝑎𝑛𝑔𝑙𝑒𝑘
𝑖 (ℎ) = 𝑎𝑟𝑐  𝑐𝑜𝑠

𝐴𝑘
𝑖 (ℎ).𝐴𝑏𝑒𝑠𝑡

𝑖

‖𝐴𝑘
𝑖 (ℎ)‖‖𝐴𝑏𝑒𝑠𝑡

𝑖 ‖
   (14) 

Step 5: Exploration Phase 

In exploration, the ideal value does not vary in 10 iterations 

when upgrading the ship location. The updated formula is 

given as, 

𝐴𝑘
𝑖 (ℎ + 1) = 𝐴𝑏𝑒𝑠𝑡

𝑖 (ℎ) + 𝑧1 . 𝜆 𝑘
𝑖 (ℎ). cos (𝐺𝑘

𝑖 (ℎ) ) −

𝑧2. (𝐴𝑏𝑒𝑠𝑡
𝑖 (ℎ) − 𝐴𝑘

𝑖 (ℎ))        (15) 

Where, 𝑧1 and 𝑧2 are the coefficients, in which 𝑧1lies 

between (0,1), and 𝑧2 lies between (-1,1). The terms 𝐺𝑘
𝑖 (ℎ) 

specifies the direction of movement for 𝑖𝑡ℎ A group of ships 

at the ℎ𝑡ℎ  iteration, and the value ranges between(−𝜋, 𝜋). The 

specific computation is expressed as, 

𝐺𝑘
𝑖 (ℎ + 1) = 𝐺𝑘

𝑖 (ℎ) + 𝛼𝑘
𝑖 (ℎ)                                     (16) 

The movement speed of the ship at the ℎ𝑡ℎ  iteration is 

specified as 𝛽𝑘
𝑖 (ℎ). Initially, the value is set as 0. 

𝛽𝑘
𝑖 (ℎ + 1) = 𝛽𝑘

𝑖 (ℎ) + 𝜒𝑘
𝑖 (ℎ)    (17) 

The acceleration is indicated as 𝜒𝑘
𝑖 .  

Step 6: Exploitation Phase 

In exploitation, if any one of the generations varies within 

10 successive iterations at the upgrading of the ship location. 

The trajectory of the ship is classified into three forms : spiral, 

sector, and inward-joining circle-based search approaches. 

Case 1: If the population is [1,
1

2
𝑁] 𝑇ℎ𝑒𝑛 , the spiral 

search approach is used. 

𝐴𝑘
𝑖 (ℎ + 1) = 𝐴𝑘

𝑖 (ℎ) + (𝑀1
(ℎ) + 𝑀2

(ℎ)                  (18) 
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𝑀1
(ℎ) = 𝑝. 𝑗(ℎ) cos ((𝐴𝑘

𝑖 (ℎ))) . 𝑑𝑖𝑠𝑡𝜒(ℎ)                (19) 

𝑀2
(ℎ) = 𝑝. 𝑗(ℎ) sin ((𝐴𝑘

𝑖 (ℎ) )) . 𝑑𝑖𝑠𝑡𝛿 (ℎ)                 (20) 

 

𝑑𝑖𝑠𝑡𝜒
(ℎ) = 𝐴𝑏𝑒𝑠𝑡

𝑖 (ℎ) − 𝐴𝑘
𝑖 (ℎ)                  (21) 

𝑑𝑖𝑠𝑡𝛿
(ℎ) = 𝐴𝑏𝑒𝑠𝑡

(ℎ) − 𝐴𝑘
𝑖 (ℎ)                 (22) 

𝑗(ℎ) =
−1

2𝜋 .𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
            (23) 

Where 𝑀1
(ℎ)  and 𝑀2

(ℎ)  specifies the group as well as 

the global optimal curves. The present distances are indicated 

as 𝑑𝑖𝑠𝑡𝜒
(ℎ)  and 𝑑𝑖𝑠𝑡𝛿

(ℎ) . The random value 𝑝 lies between 

-1 and 1. 

Case 2: If the count of the population is [
1

2
N,

9

10
N] Then, 

the sector search approach is utilized. Hence, the upgraded 

expression is given as, 

𝐴𝑘
𝑖 (ℎ + 1) = 𝐴𝑘

𝑖 (ℎ) +
𝜋

3
. 𝑝. 𝑑𝑖𝑠𝑡𝛿

(ℎ). 𝐷                  (24) 

The step size 𝐷  attains the Levy flight motion as per the 

following expression, 

𝐷(𝐷𝑖𝑚) = 0.01
𝜀×𝜇

|𝜆|
1
𝜂
                      (25) 

𝜇 = [
Γ(1+𝜂)×𝑠𝑖𝑛 [

𝜋𝜂

2
]

Γ
(1+𝜂)

2
×𝜂×2

𝜂−1
2

]

1

𝜂

                  (26) 

The terms 𝜀 and 𝜇 specify that the random number lies in 

(0, 1), and 𝜂 is set as 1.5. 

Case 3: If the count of the population is [
9

10
N, N] Then, 

the circle search approach is used. Therefore, the upgraded 

expression is given as, 

𝐴𝑘
𝑖 (ℎ + 1) = 𝑝. 𝑂(ℎ) + 𝑐𝑜𝑠(𝐴𝑘

𝑖 (ℎ)) +
𝑑𝑖𝑠𝑡𝛿 (ℎ). 𝑐𝑜𝑠(𝑃(ℎ))        (27) 

The expression for 𝑂(ℎ) and 𝑃(ℎ) are specified as, 

𝑂(ℎ)  = 𝑑𝑖𝑠𝑡𝜒(ℎ) − 𝑑𝑖𝑠𝑡𝛿 (ℎ)                                 (28) 

𝑃(ℎ) = 𝑂(ℎ). 𝐴𝑘
𝑖 (ℎ)                                   (29) 

Step 7: Ship Squad Communication 
In each 20 iterations, the ships are interconnected to each 

other and upgrade the worst 3 ship locations of every group as 

follows, 

𝐴𝑘
𝑖 (ℎ + 1) = 𝐴𝑘

𝑖 (ℎ) + 𝑧1(𝐴𝑏𝑒𝑠𝑡
𝑖 (ℎ) − 𝐴𝑘

𝑖 (ℎ)) +
𝑧2(𝐴𝑏𝑒𝑠𝑡

𝑖 (ℎ) − 𝐴𝑘
𝑖 (ℎ))           (30) 

Where the coefficients 𝑧1lies between (0,2), and 𝑧2 lies 

between (0,2). Moreover, the terms 𝑧1, and 𝑧2 are considered 

adaptive, and it is expressed as, 

𝑧1 , 𝑧2 = 3 − [
𝜂×ℎ×𝐽

𝑒
−1

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟

]                                          (31) 

 

Where 𝜂 is set as 1.5, 𝐽 specifies the population size and 

the maximum count of iteration is represented as 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 . 

Step 8: Re-Estimation of Fitness 

The fitness function is re-estimated after upgrading the 

food source. 

Step 9: Termination 

The aforesaid steps are repeated until the optimum 

solution is attained. 

 

5. Result and Discussion 
The experimental outcome of ASRO_DKN-based Sybil 

attack detection in VANET is illustrated. The measuring 

parameters, dataset, implementation tools, and comparative 

analysis are explained. 
 

5.1. Experimental Setup 

The ASRO_DKN-based Sybil attack detection in 

VANET is implemented in the PYTHON tool.  
 

5.2. Dataset Description 

The data are collected for the KDD Cup 1999 Dataset 

[14]. Here, the predictive model is used to distinguish the 

``bad'' connections as attacks or intrusions, and the ``good'' 

connections as normal.  
 

5.3. Performance Metrics 

The Precision, recall, and F1-measure metrics are 

employed to validate the ASRO_DKN-based Sybil attack 

detection in VANET. 

 

5.3.1. Precision  

The quantity of true positives to the total positive is 

defined as Precision [15]. The mathematical form of Precision 

is given by, 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑝𝑜𝑠

𝑅𝑝𝑜𝑠 +𝑆𝑝𝑜𝑠                (32)  

 

Where, 𝑅𝑝𝑜𝑠  shows the true positive, and 𝑆𝑝𝑜𝑠 Implies a 

false positive. 

5.3.2. Recall 

The percentage of true positives to the precise positive is 

termed as recall [15]. Furthermore, the recall is given as, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑝𝑜𝑠

𝑅𝑝𝑜𝑠 +𝑆𝑛𝑒𝑔    (33) 
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Where the false negative is symbolized as 𝑆𝑛𝑒𝑔 . 

 5.3.3. F1-Measure 

The F1-score [15] is a weighted portion of Precision and 

recall. The F1-score [20] is given as, 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × [
𝑅𝑒𝑐𝑎𝑙𝑙  ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙  ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
]   (34)  

5.4. Simulation Results 

Figure 4 shows the simulation outcome for ASRO_DKN-

based Sybil attack detection in VANET, where Figures 4 (a), 

(b), (c), and (d) show the simulated result at the intervals 5.9 

Sec, 15.9 Sec, 20.9 Sec, and 25.9 Sec. Here, the blue square 

represents the vehicle, the yellow square represents the attack, 

and the green circle indicates the RSU.

 
(a)                                                                                                                (b)  

 
(c)                                                                                                                (d) 

Fig. 4 Simulation results for the interval,  (a) 5.9 sec, (b) 15.9 sec, (c) 20.9 sec, and (d) 25.9 sec. 
 

5.5. Comparative Methods 

Methods like LCSS [1], BSM [2], Ensemble Majority 

Voting [3], Beacon Packet-based Traceability mechanism [4], 

and CDEO-Based Deep Residual Network are considered as 

the comparative approaches to compute the effectiveness of 

ASRO_DKN-based Sybil attack detection in VANET.  

 

5.5.1. Assessment using Training Data 

Figure 5 deliberates the evaluation of ASRO_DKN-based 

Sybil attack detection in VANET. Figure 5 (a) exhibits the 

Assessment regarding Precision. The Precision attained by the 

ASRO_DKN is 82.77%, in which the existing models like 

LCSS, BSM, Ensemble Majority Voting, Beacon Packet-

based Traceability mechanism, and CDEO-Based Deep 

Residual Network attained the Precision of 75.08%, 77.13%, 

77.17%, 79.13%, and 80.20% for the training data=50%. The 

Assessment regarding recall is exhibited in Figure 5 (b). For 

the training data of 50%, the recall achieved by the 

ASRO_DKN is 81.79%, whereas the LCSS, BSM, Ensemble 

Majority Voting, Beacon Packet-based Traceability 

mechanism, and CDEO-Based Deep Residual Network 

achieved the recall of 74.36%, 765.38%, 79.28%, 79.73%, and 

79.83%. Moreover, the analysis concerning the F-measure is 

depicted in Figure 5(c). The existing approaches attain the F-

measure of 74.72%, 76.25%, 78.21%, 79.43%, 80.01%, and 

80.09%, and the ASRO_DKN under 60% of training data.
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Fig. 5(a) Comparative assessment in terms of training data vs Precision  

 
Fig. 5(b) Comparative assessment in terms of training data vs Recall  

 
Fig. 5(c) Comparative assessment in terms of training data vs F-Measure  
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5.5.2. Assessment based on K-Value 

Figure 6 displays the Assessment of ASRO_DKN-based 

Sybil attack detection in VANET with respect to K-Value. The 

evaluation with respect to Precision is exhibited in Figure 6(a). 

With the K-Value =5, the Precision achieved by the 

ASRO_DKN is 82.74%. In contrast, the Precision of 77.88%, 

78.40%, 79.81%, 80.02%, and 80.14% is attained by the 

LCSS, BSM, Ensemble Majority Voting, Beacon Packet-

based Traceability mechanism, and CDEO-Based Deep 

Residual Network. Figure 6(b) exhibits the analysis regarding 

Precision. For the K-Value=6, the Precision of ASRO_DKN 

is 82.79%, in which the Precisions of 76.21%, 76.46%, 

76.87%, 79.34%, and 79.573% are achieved by the LCSS, 

BSM, Ensemble Majority Voting, Beacon Packet-based 

Traceability mechanism, and CDEO-Based Deep Residual 

Network. The Assessment related to F-measure is shown in 

Figure 6(c). Here, the existing methods, and the ASRO_DKN 

attained the F-measure of 74.72%, 76.25%, 78.21%, 79.43%, 

80.01%, and 82.28% for the K-Value of 5. 
 

5.6. Comparative Discussion 

A comparative discussion of ASRO_DKN-based Sybil attack 

detection in VANET is described. Here, the ASRO_DKN 

attains the ideal values in training data-based analysis. The 

ASRO_DKN achieved the finest Precision of 90.84%. In 

contrast, the Precision of the existing models , such as LCSS, 

BSM, Ensemble Majority Voting, Beacon Packet-based 

Traceability mechanism, and CDEO-Based Deep Residual 

Network, are 86.78%, 86.83%, 86.99%,87.88%, and 88.90%. 

The optimal recall attained by the ASRO_DKN is 90.48%, in 

which the LCSS, BSM, Ensemble Majority Voting, Beacon 

Packet-based Traceability mechanism, and CDEO-Based 

Deep Residual Network achieved the recall of 

86.44%,87.52%,88.05%,88.36%, and 88.39%. The better F-

measure of 90.13% is achieved by the ASRO_DKN, whereas 

the F-measure obtained by the existing approaches is 

86.71%,87.68%,88.35%,88.70%, and 89.69%. In addition, the 

superior values of 90.38%, 90.65%, and 90.66% are achieved 

in K-value-based analysis.

 
Fig. 6(a) Comparative assessment in terms of K-Value vs  Precision 

 

 
Fig. 6(b) Comparative assessment in terms of K-Value vs Recall  
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Fig. 6(c) Comparative assessment in terms of K-Value vs F-measure  

 

Table 1. Comparative discussion of ASRO _DKN-based sybil attack detection in VANET 

Variations 
Metrics/ 

Methods 
LCSS BSM 

Ensemble 

majority 

voting 

Beacon Packet-

based Traceability 

mechanism 

CDEO-based 

Deep Residual 

network 

Proposed 

ASRO_ 

DKN 

Training 

data=90% 

Precision (%) 86.78 86.83 86.99 87.88 88.90 90.84 

Recall (%) 86.44 87.52 88.05 88.36 88.39 90.48 

F-measure 

(%) 
86.71 87.68 88.35 88.70 89.69 90.13 

K-Value=9 

Precision (%) 85.86 86.74 86.84 87.34 88.33 90.38 

Recall (%) 85.94 87.82 88.03 88.29 88.79 90.65 

F-measure 

(%) 
86.71 87.15 87.60 87.97 88.63 90.66 

6. Conclusion 
VANETs are employed to exchange information and 

detect and mitigate critical circumstances in transportation. 

Still, VANETs are susceptible to numerous security hazards. 

Sybil attack is one of the severe attacks, wherein a malicious 

node creates a massive number of fake identities to interrupt 

the function of VANET. Moreover, it generates a significant 

threat to the protection of vehicle movement. However, it is 

very complex to identify the Sybil attack due to the real 

scenario, such as attacker density and traffic flow. Hence, this 

work proposes the ASRO_DKN-based Sybil attack detection 

in VANET. The VANET simulation is the initial step, and the 

FGWSO-TAR Protocol is used to perform the routing. The 

Sybil attack is detected at the BS, where the essential features 

are extracted from the data. The DKN is used for Sybil attack 

detection, and the ASRO trains the hyperparameters of 

DKKN. Moreover, metrics like Precision, recall, and F-

measure are used to validate the efficiency of the model, and 

the optimal values of 90.84%, 90.48%, and 90.13% are 

achieved. In the future, the hybrid network will be designed to 

attain more precise outcomes. In conclusion, this study 

presents a novel and comprehensive approach to Sybil attack 

detection in VANETs by combining Adaptive Ship Rescue 

Optimization (ASRO) with a Deep Kronecker Network 

(DKN). Unlike prior methods such as LCSS, basic security 

message analysis, and ensemble-based detection, which are 

often limited by static configurations, high complexity, or 

scalability issues, the proposed framework introduces 

adaptability and efficiency through ASRO-based 

hyperparameter tuning. By incorporating FGWSO-TAR for 

realistic traffic-aware routing and leveraging the DKN’s 

capability to model complex feature interactions, the system 

effectively addresses communication dynamics and security 

threats. The comparative evaluation confirms that the 

proposed ASRO_DKN method achieves superior detection 

performance across all key metrics, establishing its potential 

for enhancing the reliability and security of vehicular 

networks.
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