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Abstract - Directional Sensor Networks (DSNs) are a vital advancement in sensor technology, offering targeted, efficient  and 

precise data collection as compared to traditional omnidirectional sensors. Sensing area overlapping problem in DSNs arises 

due to factors such as improper sensor placement, environmental changes, fixed orientations and high sensor density. This 

problem results in inefficiencies in data collection, energy consumption and communication. Optimizing sensor orientation can 

help mitigate these issues and improve overall network performance. This paper presents a three-dimensional mathematical 

model designed to detect various overlapping types among sensor nodes in the DSNs using Computational Geometry. The 

proposed model aims to optimize the sensing coverage area, mainly applied in fields where coverage is a primary concern, such 

as with cameras or infrared detectors. Coverage overlap can lead to redundant data collection, unnecessary energy depletion 

and potential communication interference; all these factors can significantly affect the network ’s overall efficiency. A Genetic 

Algorithm (GA)-based approach has been introduced for maximizing area coverage. By selecting the most effective cover set 

from numerous possible combinations, the approach emphasizes directional sensing while minimizing coverage overlap. A fitness 

function is developed to assess the degree of overlap and maximize the covered area to reduce coverage overlap. Comprehensive  

simulations have been carried out to validate the efficiency of our proposed method. Results indicate that the degree of overlap 

decreases and the coverage fraction improves as the algorithm iterates through more generations. Moreover, the proposed GA -

based optimization method outperforms existing state-of-the-art approaches. 

Keywords - Directional Sensor Network, Genetic Algorithm, Computational geometry, Angle of view, Coverage maximization, 

Connectivity preservation. 

 

1. Introduction 
In the past few years, coverage optimization has been the 

main research area in Wireless Sensor Networks (WSNs). 

WSNs are generally divided into two kinds of models, i.e., 

omnidirectional models and directional models. The use of 

omnidirectional sensor networks makes the process of data 

collection from the surroundings very easy, especially in areas 

such as humidity, temperature, and forest fires. Under the 

complicated and varying environmental conditions, 

Directional Sensor Networks (DSNs) have emerged with [1] 

powerful communication and management capabilities. In the 

case of omnidirectional sensors, the sensing field is a complete 

sphere with radius ‘r’, while in the case of a directional model, 

the sensor has a fixed angle of view. In DSNs, every sensor 

can rotate about its axis with a limited angle of sensing range, 

i.e. work in a specified direction [2]. Due to their lower energy 

consumption and rotation flexibility, DSNs have become an 

important field of research. In addition, each sensor possesses 

the capability to alter its sensing direction and subsequently 

communicate with other directional sensors in the network [3].  

Due to the distinctive qualities of DSNs, like rotatable sensing 

direction and limited sensing range, certain challenges are 

envisaged, such as coverage and energy optimization. 

Coverage of sensors reflects the capability of how effectively 

the defined region is observed by sensors, which is a very 

basic issue in WSNs [4]. In random deployment scenarios, a 

directional sensor’s detection range is determined by its 

position, sensing radius and orientation angle, and all these 

factors define the sensor’s Angle Of View (AOV). Coverage 

issues can be divided into three types depending on the nature 

of the target: barrier coverage, target coverage and area 

coverage. The main impetus of area coverage is on the 

challenge of monitoring many points within a specified 

region. Its purpose is to enhance coverage with a minimum 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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number of sensors so that the whole area is covered 

completely. Target coverage focuses on monitoring specific, 

limited points inside a defined region. Barrier coverage aims 

to minimize the risk of unauthorized intrusion by detecting 

potential invaders attempting to breach a secure perimeter. 
Despite the increasing interest in DSNs due to their energy 

efficiency and targeted monitoring capabilities, several 

challenges remain insufficiently explored.  
 

Methods for detecting overlapping sensing regions  and 

strategies for optimizing sensor nodes ’ movement to minimize 

such overlap have received limited attention. Most existing 

solutions rely on heuristics or simplified models, which often 

result in inaccurate coverage estimations in complex 

environments. Although Computational Geometry offers a 

promising avenue for accurately and efficiently identifying 

overlapping areas within DSNs, its application is still in its 

early stages. Notably, the integration of Genetic Algorithms 

presents a captivating approach for dynamically adjusting the 

orientation of directional sensors, enabling reduced overlap 

with minimal sensor rotation. 
 

In this paper, a three-dimensional mathematical model is 

presented to characterize and analyze various scenarios in the 

case of overlapping sensing areas in a DSN. This model will 

help to understand the communication among nodes to find 

overlapping and rotation of working direction with some angle 

using Computational Geometry.  

 

Mathematical modelling of different cases of overlapping 

provides a structured way to define how the sensing range of 

nodes intersects in each area. A Genetic Algorithm (GA)-

based approach has been suggested to recognize the optimal 

cover set from multiple possible sets for overlapping 

minimization. To reduce coverage overlapping, a fitness 

function is designed to assess the degree of overlapping. The 

key offerings of this work can be outlined as mentioned below: 

 

 A three-dimensional model is developed to identify some 

special cases of overlapping for DSNs. The study 

formulates a coverage optimization problem to maximize 

coverage area with minimum rotation of the sensor node’s 

working direction using Computational Geometry. 

 A coverage overlapping detection algorithm for 3D DSNs 

is presented to identify sensors whose coverage overlaps 

and suggest movement of their directional antenna.   

 To find an optimal cover set from multiple possible sets 

for enhancing the network’s coverage, GA is applied to 

select an optimal cover set to reduce coverage 

overlapping by defining chromosome, selection, 

crossover and mutation operators.  

 Analytical derivation of coverage, connectivity and 

energy consumption in 3D- DSN is presented.  

 Comparative performance of the proposed approach with 

state-of-the-art approaches is presented. 

 Analytical results of the coverage are validated with the 

simulation results. 

This paper comprises eight parts , and the rest of this paper 

is structured as follows: Section 2 consists of two parts, i.e. 

relevant literature of Computational Geometry-based two-

dimensional and three-dimensional algorithms for coverage 

enhancement in DSNs. The metaheuristic approach-based 

area coverage model is highlighted in Section 3, and Section 

4 describes the overlapping detection algorithm. Section 5 

presents the design of GA to create a cover set for the coverage 

overlapping problem. Section 6 presents an analytical study, 

followed by a comparison of the proposed algorithm’s 

simulation results with existing methods in Section 7. The 

conclusions of the study are summarized in Section 8. 

 

2. Related Work 
In the ongoing section, we are providing previous works 

related to coverage enhancement in DSNs. Coverage of DSNs 

not only depends on the location of a node but also on the 

direction of the angle of view. So, DSNs cannot use the 

solution used for standard wireless sensor networks. 

Adjustment of the working direction of a sensor is an effective 

way to improve coverage in DSNs [2-4].  

 

2.1. Computational Geometry-Based Two-Dimensional 

Algorithms for Coverage Enhancement in DSNs 

Research on DSNs has mostly been conducted on 2D 

planes. The Prioritized Geometric Area Coverage approach, 

which is based on Voronoi, has been proposed in [5]. This 

approach is used to reduce overlapping and maximize network 

life span. Authors in [6] proposed a distributed greedy 

algorithm that is based on the Voronoi Diagram. To implement 

this algorithm, they have used the concept of Direction 

Adjustable DSNs with the help of the Voronoi Diagram. They 

used three principles: Intra and Inter-cell Working Direction 

Selection and Out of Field Coverage Avoidance to select the 

working direction of sensors , which is based on Voronoi 

vertices. This algorithm removes overlapping and provides 

better sensing quality. A method in [7] is used for the 

redeployment of sensors. To improve the network coverage, 

the authors used the Distributed Voronoi-Based Self-

Redeployment Approach (DVSA), which uses  directional 

sensors. Their work did not use any GPS support to change the 

sensor’s location. With the help of the Voronoi Diagram, they 

found the largest included angle of the Voronoi Vertex and 

then moved the sensor to that node. They compared their 

approach with other methods and proved that their work is 

better in coverage enhancement. Liang [8] presented two 

distributed greedy approaches , i.e. least overlapping area first, 

then updated priority with rotatable sensor to enhance 

coverage in DSNs. In case two sensors overlapped, they 

defined the intersection point and tangency point. Based on 

the distance between two sensors, the authors explained how 

to find the candidate point of rotation. 
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In [9], the authors proposed a coverage hole detection 

algorithm that is based on Delaunay Triangulation. They used 

the LEACH protocol for node communication. They divided 

their approach into Coverage Hole Detection and estimation 

of these holes for Wireless Underground Sensor Networks. 

Basically, the authors have provided a mathematical model 

that saves energy and finds all existing coverage holes in each 

region of interest. The work in [10] projected a concept of 

sensing connected subgraph for DSNs to improve the 

coverage of a given area. In this approach, the sensing area is 

partitioned into different groups using a sensing-connected 

subgraph. A multi-layered convex hull is formed for every 

sensing-connected subgraph, and then they rotated the sensing 

direction of directional nodes. Their work provided a reduced 

overlap in a two-dimensional sensing network. Authors in [11] 

considered the problem of connectivity of directional antennas 

in wireless sensor networks. They considered the beam width 

ϕ and radius r to study the problem of connectivity in WSNs. 

They further provided an approximate algorithm for a 

different range of ϕ and fixed r to achieve connectivity. 

However, there are still some coverage holes that can only be 

tackled through node movement as proposed by the authors in 

[12]. They developed a system for event monitoring to cover 

targets that projected a concentrated coverage distribution 

heuristic repetition to deploy sensor nodes. To enable efficient 

deployment, it is necessary to consider that a sensor’s position 

can be repositioned to eliminate coverage holes in the 

designated area. Authors in [13] suggested two-stage node 

deployment schemes for static and mobile sensor nodes to 

reduce total network cost. They used an enhanced particle 

swarm algorithm to determine the effective working direction 

of a static directional sensor. In the case of mobile nodes, they 

used the Sparrow search algorithm to optimize energy. The 

study in [14] introduced a cluster-based greedy algorithm for 

heterogeneous DSNs, where sensors are different in rotation 

speed, radius and field of view. By prioritizing cost-

effectiveness in sensor deployment and orientation, the 

proposed method achieves an improvement in target coverage 

over traditional distributed approaches. An improved Genetic 

Algorithm is used in [15] to address the maximal exposure 

path problem in heterogeneous directional WSNs. By 

redefining the problem through sensing field intensity rather 

than traditional Euclidean metrics, they enhanced the accuracy 

and scalability of the solution. The proposed improved 

Genetic Algorithm demonstrated polynomial complexity and 

reliable convergence. Experimental evaluations confirmed 

effectiveness in optimizing coverage paths while maintaining 

energy efficiency and minimizing traversal distance. 
 

2.2. Computational Geometry-based Three-Dimensional 

Algorithms for Coverage Enhancement in DSNs 

In the existing research, most of the work is done on two-

dimensional sensor networks and uses the concept of mobility; 

only a few papers are available that are related to three-

dimensional sensor networks. In [16], the authors proposed an 

approach that is based on Dynamic Adjustment Optimization 

in three-dimensional DSNs. They enhanced network lifetime 

and improved coverage by using a spherical sector model. 

Based on an improved Voronoi Diagram, they designed the 

approach to adjust the direction of the sensor. Their work 

improves the traditional virtual force algorithm to gain node 

utilization and enhance network coverage. Authors in [17] 

presented a three-dimensional coverage model with tunable 

orientations in directional sensors. They used directional 

sensor ability and designed a rotatable three-dimensional 

model to describe a target-detecting scenario. This study 

focuses on enhancing coverage through the deployment of 

rotatable sensors. It applies a virtual force analysis technique 

to improve initial coverage following random sensor 

placement. For global optimization, the Simulated Annealing 

(SA) algorithm is being utilized. Additionally, research cited 

in [18] introduces a probabilistic 3D directional sensor model 

that overcomes limitations found in conventional virtual 

potential field algorithms. To optimize rotation, a coverage 

impact factor is calculated to discard ineffective movements  

and a cross-set test is implemented to detect overlaps in 

sensing regions. The proposed method significantly improves 

coverage compared to standard virtual potential field 

approaches and achieves better energy efficiency. In [19], 

deployment issues related to heterogeneous wireless DSNs are 

considered to optimize coverage in 3-dimensional urban 

terrain on uneven ground. They used two types of nodes , i.e., 

sensor and relay nodes, to monitor and store data, respectively. 

They deployed relay nodes and placed them near the sink node 

in a relatively small area to avoid the path loss problem. They 

mainly focused on relay nodes rather than sensor nodes. 

Modified differential evolution algorithm and polynomial-

based mutation have been defined in [20]. They chose parents 

for crossover and mutation from the whole generation to avoid 

premature convergence or local optima. They used message 

passing interface parallelism to enhance the operation speed. 

For efficiency purposes, they used the fixed grouping concept 

and assigned variables with the same property by using an 

evolutionary technique. The research in [21] demonstrated 

that the proposed Reinforcement Learning-driven Hunter-

Prey Optimization algorithm is used for coverage performance 

enhancement in three-dimensional underwater sensor 

networks. By using Q-learning with a nonlinear convergence 

factor, they effectively balanced exploration and exploitation 

phases. The addition of the Nelder-Mead simplex strategy 

enhanced adaptability and prevented premature convergence.  

  

3. Meta-Heuristic Approach Based on Area 

Coverage 
Maximizing coverage area with minimum rotation of the 

sensor node’s working direction is an NP-complete problem 

[22, 23]. As a result, in recent years , researchers have focused 

primarily on metaheuristic-based solutions to solve these 

problems. Most of the traditional algorithms get stuck in the 

local optima trap in the early iterations and provide a solution 

that is far away from the optimum value. Authors in [22, 24] 
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proposed the Particle Swarm Optimization (PSO) technique to 

optimize area coverage and minimize energy usage for DSNs. 

An area coverage optimization model was developed to 

enhance coverage efficiency, and a cluster head selection 

optimization framework was introduced. The proposed study 

also focuses on determining the minimum degree of overlap 

using a Metaheuristic Genetic Algorithm. 
 

3.1. System Model 
This section presents a three-dimensional directional 

sensor model designed to cover a specific region of interest. 

Each node is assumed to sense within its field of view, defined 

as a spherical sector area. The directional model illustrated in 

Figure 1 can be represented using four-tuples 

(Si(xi,yi,zi),θ,α,β,γ, r) where  Si(xi, yi, zi) represents location 

coordinates of a nodes, 2θ is the angle of view, (α,β,γ) 

represent the angles formed with (x, y, z) axis respectively, r 

is the radius of sensing range, ϕ is the angle of sensing 

direction with positive x-axis, all these notations are also 

defined in Table 1. For simplicity in the design of DSNs, 

certain properties of the nodes are assumed: 

 Nodes are isomorphic, i.e., every sensor is of the same 

radius and angle of view. 

 Sensor nodes are distributed randomly across the 

designated area.  

 The locations of all nodes are known with the help of 

existing Global Positioning System (GPS) technology.  

 Every node can rotate in any direction.  

 

 
Fig. 1 Three -dimensional directional sensor model

 
Table 1. Notations used 

 

3.2. Theoretical Analysis of the Proposed Problem 

When sensor nodes are deployed randomly, there may be 

an overlap in the sensing area of two or more sensors. Our 

main aim is to escalate the coverage by reducing overlaps with 

the help of rotation. There are different types of overlapping 

in the case of three-dimensional DSNs. In this research, we are 

considering some specific cases of overlap between two 

nodes, S1 and S2. To validate the problem analytically, we are 

suggesting five lemmas as follows.  

 

Lemma 1: If both sensors are outside the sensing area of 

one another and the distance between these two sensors is 

r<ds<S1S1’ or r<ds<S2S2’, then there is an overlap. 

 

Proof: Let two sensor nodes S1 and S2 with some 

overlapping area as shown in Figure 2. ϕ1, ϕ2 are the angles 

made by nodes S1 and S2 with the axes. The distance between 

two sensor nodes is ds=S1S2. To clearly understand Lemma 

1, we are using Figure 3. The larger angle from (ϕ1-θ, 180-ϕ2-

θ) is λ, which is selected to make an isosceles triangle and to 

find the distance, i.e. if ϕ1-θ>180-ϕ2-θ then λ = ϕ1-θ; 

otherwise λ =180-ϕ2-θ. The larger angle should be less than 

π/2.  

 S1O=S2O'=r   

 S1 S1'=2rcosλ 

 S2 S2'=2rcosλ 

By implementing the Genetic Algorithm technique, the 

degree of overlap between sensor coverage areas can be 

effectively minimized, as shown in Figure 4. 

 
Fig. 2 O verlapping in case of r<ds<2r 

Symbolization Explanation Symbolization Explanation 

N Total sensor node deployed m Number of overlapping nodes  

R Sensing range Ok Degree of overlapping 

 Mi Neighboring nodes IP Initial chromosome population 

2θ Angle of view Ci 𝑖𝑡ℎ chromosome 

Φ 
Angle of sensing direction with the 

positive x-axis 
A(O) Area overlap of two nodes 

x, y, z Location coordinates of a node Fj Fitness value of 𝑗 𝑡ℎ chromosome 

Ds Distance between two nodes    
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(a)                                                                             (b)  

Fig. 3 Representing the possibility of overlapping when sensors are 

outside the sensing area of each other and r<ds<2r 

 
Fig. 4 O verlapping re moved after rotation of node S1 

 

Lemma 2:  If both sensors are outside the sensing area of 

one another and the distance between them is ds >=2r, then 

there is no overlapping. 

 

Proof: Let two neighbouring nodes S1 and S2, whose 

distance ds = 2r (this is the special case of Lemma 1 where  

ds=2rcos), as shown in Figure 5. Additionally, as 

illustrated in Figure 6, there is no overlap because there is no 

intersecting edge between sensors S1 and S2 when the 

distance between the two sensors exceeds 2r. 

 

Lemma 3: If sensor S2 lies within the sensing range of 

another sensor S1, then there is an overlap.  

 

Proof: Let sensor S2 be in the sensing area of sensor S1; 

there is an overlap as shown in Figure 7. To check for   

overlapping, we must check two conditions: 

 

1) ϕ1-θ<0 and ϕ1+θ>0 

2) ds<=r 

  

Overlapping exists only if both conditions are satisfied; 

otherwise, there is none. Overlapping can be removed by 

rotating node S1 as shown in Figure 8. 

 

 
Fig. 5 No overlapping when ds=2r

 

Fig. 6 No overlapping when ds>2r
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Fig. 7 O verlapping in the case where sensor S 2 is in S1’s sensing area 

      Fig. 8 O verlapping removed after rotation of node S 1. 

 

 
Fig. 9 O verlapping in the case where sensor S 1 is in S2’s sensing area 
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Fig. 10 O verlapping removed after rotation of node S 2. 

Lemma 4: When sensor S1 falls within the sensing range 

of sensor S2, an overlap may occur. 

 

Proof: Assume that sensor S1 lies within the sensing 

range of sensor S2; there is  an overlap as shown in Figure 9.  
 

Overlapping is determined by verifying two conditions: 

1) ϕ2+θ>180 and ϕ2-θ<180 

2) ds<=r 
 

Using the Genetic Algorithm approach, overlapping can 
be reduced as shown in Figure 10. 

Lemma 5: If both sensors are within the sensing range of 

each other, then there is an overlap. 

 

Proof: Assume that sensor S1 lies within the sensing 

range of sensor S2, and sensor S2 lies within the sensing area 

of sensor S1; there is an overlap as shown in Figure 11. In this 

case, two rotations are required to remove the overlap, as 

shown in Figures 12 and 13. 

 
Fig. 11 O verlapping in the case where both sensors are in the 

sensing range of one another. 

 
Fig. 12 Rotation of node S2 to remove partial overlapping  

4. Overlapping Detection Algorithm  
        The first algorithm, Overlapping Detection using 

Computational Geometry Technique, identifies overlapping 

sensor nodes. A node Si is considered the reference node, 

followed by the identification of its neighboring node set. 

Based on Euclidean distance (ds) between two sensor nodes, 

if ds< 2r, there may or may not be overlapping in case of 

directional sensors, and if ds ≥ 2r, then there is no overlapping.  
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Fig. 13 Rotation of node S1 to remove overlapping 

To determine the overlap between two sensor nodes, five 

distinct lemmas are applied as presented in Algorithm 1. After 

identifying the set of overlapping nodes, the Genetic 

Algorithm is employed to identify the minimum angle of 

rotation. Our primary goal is to eliminate the overlap by 

minimally rotating the sensing direction of the overlapping 

node. 
 

5. Proposed Genetic Algorithm for Coverage 

Optimization Problem  
The current section specifies the design of the Genetic 

Algorithm (GA) based coverage optimization algorithm. The 

proposed algorithm’s design encompasses population 

initialization, fitness functions, selection operations  and 

crossover. The GA identifies optimal solutions to minimize the 

coverage overlapping issue. This process is repeated until the 

desired solution is achieved. Several components of the GA 

will be elaborated in the following sections : 

 

5.1. Minimum Coverage Overlapping Problem (MCP) 

A total of N sensors is randomly distributed in a three-

dimensional sensing environment, each initialized with 

identical energy levels and a uniform transmission range R.  

Coordinates of each sensor are presumed to be available. Two 

nodes 𝑣𝑖 and 𝑣𝑗 establish a link iff  𝑑𝑖,𝑗 ≤ 𝑟, where   𝑑𝑖,𝑗 is the 

distance between two nodes  𝑣𝑖  and  𝑣𝑗. In order to achieve the 

required objective, a systematic and efficient method is 

needed to identify an optimal cover set. 𝐶𝑜𝑝𝑡 such that 𝐶𝑜𝑝𝑡 =

{𝐶𝑘⃓ 𝑂𝑘 = 𝑚𝑖𝑛 (𝑂1, 𝑂2 , … 𝑂𝑛)}   

  

        Where, 𝐶𝑘 ε C and  𝑂𝑘  represents the degree of 

overlapping of n sensors. The set of chromosomes  𝐶 =
{𝐶1,𝐶2,… 𝐶𝑛

}   , n is the number of chromosomes , where 

  𝐶1 = {ϕ1 , ϕ2 , … ϕ𝑚
} ,    ϕ𝑖  are the gene sequence holding 

angle value of overlapping nodes. The degree of overlapping 

of n sensors can be computed by using the ratio of the total 

overlapping area produced by sensors to the total sensing area 

of the network.

 

Algorithm 1:  Overlapping Detection using Computational Geometry Technique 

  

Input: N number of directional sensor nodes with radius r and view angle 2θ  

Phase I (Find neighboring nodes) 

1. For each i, do 

2. For each j (𝑗 ≠ 𝑖) 

3. Calculating the distance   𝑑𝑖 ,𝑗 with neighboring nodes  

    𝑑𝑖 ,𝑗 = √(𝑥𝑗 − 𝑥 𝑖)
2

+ (𝑦𝑗 − 𝑦𝑖 )
2

+ (𝑧𝑗 − 𝑧𝑖)
2
                                                                                            

4. Mi is the set of neighboring nodes whose distance    𝑑𝑖,𝑗 < 2𝑟 

5. Find overlapping (i, j)  

6. End 

Phase II (Find Overlapping) 

Find overlapping (i, j) 

1.  If   𝑟 < 𝑑𝑖 ,𝑗 < 2𝑟  

2.      If ϕ1-θ>180-ϕ2-θ then, 

3.           λ= ϕ1-θ otherwise λ=180-ϕ2-θ 

4.           S1 S1'=2rcosλ 
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5.           S2 S2'=2rcosλ 

6.           Overlapping sensing nodes             //explained in Lemma 1     

7.           Add to the set of overlapping nodes  

8.      Else                                                                                                                             

9.           There is no overlapping 

10.           Go to step 35 

11.     End if  

12.     Else If d<r 

13.          If ϕ1-θ<0 and ϕ1+θ>0  

14.               Overlapping sensing nodes          //explained in Lemma 3 

15.               Add to the set of overlapping nodes  

16.           Else  

17.              There is no overlapping 

18.              Go to step 35  

19.          End if 

20.          Else If ϕ2+θ> π and ϕ2-θ< π  

21.             Overlapping sensing nodes         // explained in Lemma 4    

22.            Add to the set of overlapping nodes       

23.       Else  

24.           There is no overlapping 

25.          Go to step 35 

26.     End if  

27.     Else If ϕ1-θ<0 and ϕ1+θ>0 && ϕ2+θ> π and ϕ2-θ< π  

28.          Overlapping sensing nodes           // explained in Lemma 5 

29.          Add to the set of overlapping nodes      

30.      Else  

31.          There is no overlapping             //explained in Lemma 2 

32.       End if  

33.     End if     

34.   End if 

35.  End  

Output: Set of Overlapped Nodes  

 
5.2. Formulating MCP as an Optimization Problem  

       The current section presents the issue of determining an 

optimal overlapping cover set to minimize the degree of 

overlap. Note that, depending on the requirements of WSN 

applications, the degree of overlapping is bound to a 

threshold.  𝑂𝑇𝐻  . According to the proposed optimization 

algorithm, the degree of overlapping of a cover set is 

computed by   𝑂𝑖 = ∑   𝑂𝑖(𝑆𝑖 , 𝑆𝑗)𝑛
𝑖=1    where   𝑂𝑖(𝑆𝑖 , 𝑆𝑗) 

denotes the overlapping area between the sensor 𝑆𝑖 , 𝑆𝑗. To 

simplify the calculation of the overlapping area, we consider 

the coverage area of each sensor to be approximately an 

isosceles triangle.  

 

To find the common area of two overlapping triangles, the 

Sutherland - Hodgman polygon clipping algorithm [25] is 

used. This algorithm is applied to clip a triangle against 

another triangle, where one triangle is the clipping window. 

After clipping, the area of the polygon is found using the 

Shoelace method. This mathematical process calculates the 

area of a basic polygon by cross-multiplying its vertices’ 

coordinates [26]. 

 

𝐴(𝑂) =
1

2
[ 𝑥1𝑦2 − 𝑥2𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 + 𝑥3𝑦4 −

𝑥4𝑦3 +  … … … . + 𝑥𝑛−1𝑦𝑛 −             𝑥𝑛𝑦𝑛−1 +
𝑥𝑛𝑦1 − 𝑥1𝑦𝑛 ]                      (1)        

                                                                                             

Thus, the problem of finding an optimal overlapping 

cover set to minimize the degree of overlapping can be 

formulated as -  

 

𝑚𝑖𝑛 𝑂𝑘                                                                          (2)                                                                                                                                                                            

 

Subject to 

  

𝑂𝑘 = ∑ 𝑂𝑖(𝑆𝑖 ,   𝑆𝑗)𝑛
𝑖=1 ≥  𝑂𝑇𝐻                                         (3) 

                                                                               
5.3. Overlapping Cover Set Formulation using Genetic 

Algorithm    

To find the optimal solution of our problem using Genetic 

Algorithm, we will follow these steps:  initializing the 

population, evaluating the fitness function, performing 

selection, applying crossover and executing mutation. 
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5.4. Population Initialization 

In the given approach, chromosomes , which are thought 

to represent potential solutions, are the gene sequence where 

each gene represents the angle of overlapping nodes. 

Chromosomes’ length may be of variable size, i.e., it depends 

on the quantity of overlapping nodes. A chromosome’s 

maximum length is N, where N represents the total number of 

sensing nodes. As shown in Figure 14, there are some 

overlapping nodes. Initially, several chromosomes are 

generated randomly after changing the angle values of 

overlapping nodes. After iterating the chromosome formation 

progression numerous times, the initial population   𝐼𝑃 =
[𝐶1, 𝐶2,𝐶3 … . .𝐶𝑣

] can be found. 

 

5.5. Fitness Functions 

In the genetic algorithm, finding the fitness value is 

essential. The core objective of the fitness function is to 

effectively evaluate how well a proposed solution meets the 

desired criteria. In this approach, fitness functions are 

designed to find the degree of overlapping to enhance 

coverage. The fitness function assesses the performance of 

each chromosome in a solution pool, favoring those with the 

least overlap. The fitness function values in the population 

define whether a chromosome reduces the degree of 

overlapping or not. So, the fitness function is explained as 

follows: 

𝑂(𝐹𝑗 ) = ∑ 𝑂(𝑆𝑗
(𝑖),   𝑆𝑗

(𝑖 + 1))
𝑣𝑗 −1

𝑗=1
  (4) 

 Where and 𝑆𝑗
(𝑖) denotes a node of 𝑖𝑡ℎ  index number in  

𝑗 𝑡ℎ chromosome,  𝐹𝑗  symbolizes the fitness value of 𝑗 𝑡ℎ 

chromosome and 𝑣𝑗 is the size of  𝑗 𝑡ℎ chromosome. 

5.6. Selection 

The selection operation aims to increase population 

quality. It should be highlighted that the selection operator 

plays an important part in producing high-quality solutions. 

Hence, an efficient selection operator is essential for rapid 

convergence to the optimal solution. Selection methods are 

generally categorized into two types: proportionate selection, 

which selects chromosomes based on their relative fitness 

value, while ordinal-based selection chooses chromosomes as 

per their rank rather than their fitness value, as discussed in 

[27]. In our algorithm, the proportionate selection method [20] 

is adopted. Chromosomes with lower fitness values in the 

current population can still be selected for the next generation. 

    
5.7. Crossover and Mutation 

Crossover plays a crucial role in the functioning of 

Genetic Algorithms. During the crossover procedure, two 

chromosomes, CA and CB, are picked from the selected 

population to create more effective chromosomes. In the given 

algorithm, one-point crossover in [28] is used to exchange 

partial chromosomes. In one-point crossover, two parents are 

selected for crossover and then randomly choose any one 

crossover point Pi (i = 1 to n-1) where n is the length of the 

smaller chromosome from the selected chromosomes  for 

crossover operation. At the crossover moment, the parents 

combine to produce two offspring. A basic example, as shown 

in Figure 15, is presented below, which executes one-point 

crossover between CA and CB and produces two new offspring, 

Off1 and Off2. Mutation is a crucial mechanism in Genetic 

Algorithms to ensure genetic diversity and prevent early 

convergence to suboptimal solutions. Introducing minor 

random modifications to chromosomes enables the algorithm 

to broaden its search space, thereby increasing the likelihood 

of discovering an optimal solution [29]. 
  

5.8. Termination  

One feature that controls the creation of 

chromosomes/population is the termination.   After every 

generation, this criterion is evaluated. In our approach, the 

termination condition is based on the fitness function value, 

i.e. threshold value (𝑂𝑇𝐻).

  

 
(a) 
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(b) 

Fig. 14 Example of chromosome formation and encoding  

Fig. 15 Example of one -point crossover operation  

 

5.9. Proposed Algorithm   

Algorithm 2: Coverage Maximizat ion by Reducing Overlap Using Genetic Algorithm 

 

Input: 

 No: Set of overlapping Nodes 

 r: Sensing range 

 ϕ𝑖  : a set of angles of overlapping nodes  

 

Steps: 

1. Find No: set of overlapping nodes with the help of Algorithm 1 

2. Chromosomes creation with the help of overlapping nodes ’ angles 

3. 𝐶 = {𝐶1,𝐶2 ,… 𝐶𝑛
}                    //C is the set of chromosomes 

4. 𝐶1 = {ϕ1, ϕ2 , … ϕ𝑚
}              //ϕ𝑖  are the gene sequence holding angle values of  

overlapping nodes 

5. Fitness function to find the minimum degree of overlapping 

𝑂(𝐹𝑗 ) = ∑ 𝑂(𝑆𝑗
(𝑖),   𝑆𝑗

(𝑖 + 1))
𝑣𝑗 −1

𝑗=1
 

6. Select two parents with a minimum overlapping area for single-point crossover. 

7. Perform a mutation on offspring generated by the crossover operation 

8. Termination condition 𝑂𝑇𝐻  tested after every generation 

 

Output: Set of nodes with minimum overlapping 

 

6. Analytically based Study  
This section of the paper derives the mathematical 

expression for connectivity of the network, coverage 

probability with directional sensing and energy consumption 

in a 3D sensor network.  

6.1. Connectivity Probability  

Let the area of a cube sensing field be 𝐴. Let the number 

of sensors present in the sensing field be 𝑁, and the density of 

nodes 𝜑 can be given by 𝜑 =
𝑁

𝐴
 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑚2⁄ . Let 𝑃𝑐𝑜𝑛(𝑙) is 

the probability of connectivity of all sensors in the network. 
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Let a link 𝑙𝑖 falls within each other’s transmission ranges in all 

directions established between any two consecutive sensors if 

they are forming a sphere. The probability 𝑃𝑐𝑜𝑛(𝑙𝑖)  of links 

present between any two sensors present in a spherical range 

in the network can be computed as  

 

𝑃𝑐𝑜𝑛
(𝑙𝑖

) = 1 − 𝑒
−

4𝜑𝜋𝑅3

3                                         (5) 

 

Where R is the transmission range of the sensors and  
4𝜑 𝜋𝑅3

3
 is the volume of a sphere. We know that the connectivity 

of a sensor with α arbitrary sensors follows a binomial 

distribution. Therefore, the probability of the sensors being 

connected with α sensors is given by 

 

𝑃(𝐷 = 𝛼) = 𝐶(𝑁 − 1, 𝛼) 𝑃𝑐𝑜𝑛
(𝑙𝑖

)𝛼(1 − 𝑃𝑐𝑜𝑛
(𝑙𝑖

))
𝑁−𝛼 −1

 

                                                       (6)

   

The expected connectivity is computed as, 

 𝐸(𝐷) = (𝑁 − 1)(1 − 𝑒
−

4𝜑𝜋𝑅3

3 )                        (7)             

                                             

By using the equality approximation[1 − 𝑥]𝑛 ≈  𝑒−𝑛𝑥 , it 

can be showcased as 

𝐸(𝐷) =  (𝑁 − 1)𝑒
4𝜑𝜋𝑅3

3                           (8)  

 

6.2. Coverage Probability 

Let the sensing region of a sensor be a cone of 

volume 𝑎 = 1
3⁄ 𝜋𝑟3(𝑡𝑎𝑛  θ)2, where r is the sensing radius 

and θ is the angle of view.  

 

The probability of a sensor coverage can be expressed 

as  𝑎 𝐴⁄ , where A is the area of a 3D network field in which N 

sensors are placed randomly. The coverage probability (𝑃𝑐 ) of 

the network can be expressed as  

 

𝑃𝑐 = 1 − (1 − 𝑎 𝐴⁄ )𝑁                         (9) 

 

By using the equality approximation  [1 − 𝑥] 𝑛 ≈  𝑒 −𝑛𝑥, 

it can be expressed as 

 

𝑃𝑐 = 1 − 𝑒−𝑁(1
3⁄ 𝜋𝑟3(𝑡𝑎𝑛 θ)2 𝐴⁄

                         (10) 

 

 
Fig. 16 Scenarios of a GA-based coverage optimization algorithm for coverage enhancement  

 



Sharmila Devi & Anju Sangwan / IJECE, 12(8), 22-39, 2025 

34 

   
(a) With 100 sensors     (b) With 200 sensors 

 

    
(c) With 300 sensors     (d) With 400 sensors 

Fig. 17 Degree of overlapping minimization versus generations 

 

6.3. Energy Consumption  

The total energy used up (𝑒𝑡) in transmitting, receiving 

and sensing k-bit of data is expressed by 

 

 𝑒𝑡(𝑘) = 𝑒𝑡𝑥 (𝑘) + 𝑒𝑟𝑥(𝑘) + 𝑒𝑠       
𝑒𝑡𝑥 (𝑘) =  𝑒𝑒𝑙𝑘 + 𝑒𝑎𝑚𝑘𝑑 𝜂

𝑒𝑟𝑥(𝑘) =  𝑒𝑒𝑙 𝑘                 

}            (11) 

Where  𝑒𝑡𝑥  and  𝑒𝑟𝑥 denoting the energy used for 1-bit 

data transmission and receiving from two neighboring 

sensors, respectively, where 𝑑 is the distance between them. 

The energy consumed for sensing is denoted by 𝑒𝑠. The  𝑒𝑒𝑙  

and 𝑒𝑎𝑚 represent the energy consumed by the electrical 

circuit and the energy used per bit of amplifier, respectively.  

 

7. Simulation Results and Analysis 
The proposed GA based coverage optimization algorithm 

is simulated, and results are obtained to measure its 

performance against state-of-the-art coverage optimization 

algorithms, IAPSO [22], and SAGA [30]. A custom 

MATLAB script is developed for the Genetic Algorithm-

based coverage algorithm. A square of 500m x 500m is taken 

for simulation, in which 500 sensors are randomly distributed 

and follow a Poisson point process. The sensing range of each 

sensor is 20 meters, and the transmission range is considered 

to be 40 meters. Each simulation is executed 10 times , and the 

average is computed to get the results. It is considered that the 

location of each sensor is known by any localization 

technique. In a randomly generated topology, the coverage 

angle (direction) of each sensor is taken in a random manner 

at the beginning. The connectivity of sensors  can be ensured 

either by deploying more sensors or by extending their 

transmission range. Figure 16 shows the scenarios of GA 

based coverage optimization algorithm to minimize 

overlapping and improve coverage. We considered two 

performance matrices defined as follows:  
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● The degree of overlapping is the ratio of the total 

overlapping area produced by sensors to the total sensing  

area of the network.   

● Coverage fraction is a ratio of the area covered by sensors 

to the total sensing area of the network. 

 
 

     
(a) 200 generations    (b) 400 generations 

    
(c) 600 generations                                                   (d)800 generations 

Fig. 18 Coverage fraction versus sensors 

 
7.1. Converge Overlapping Minimization 

  Figure 17 (a) shows the degree of overlapping for 100 

sensors deployed in an area of 500 meters by 500 meters while 

running the proposed GA based coverage optimization 

algorithm for 100 generations. Initially, around 1%, 1.11% and 

1.11% overlapping are detected for the proposed GA based 

coverage optimization algorithm, IAPSO and SAGA 

algorithms. The same overlapping is continued for 200 

generations. As algorithms proceed, the degree of overlapping 

for all the algorithms considered in this simulation slowly 

reduces between 200 and 400 generations. For example, about 

0.9% overlapping occurred with the proposed GA based 

coverage optimization algorithm, while it is about 1.10% for 

both IAPSO and SAGA algorithms. After 400 generations, the 

overlap in the proposed GA-based coverage optimization 

algorithm drops significantly. By 600 generations, the 

algorithm converges, and the overlap is nearly eliminated. 

Both the IAPSO and SAGA algorithms converge after 700 

generations, and they removed overlapping 800 and 900 

generations, respectively. It is clearly seen that the proposed 

GA based coverage optimization algorithm outperformed both 

IAPSO and SAGA algorithms. Similarly, Figures 17 (b), 17 

(c) and 17 (d) show that the degree of overlapping for 200, 300 

and 400 sensors is deployed in an area of 500 by 500 for 

running the proposed GA based coverage optimization 

algorithm for 1000 generations. Initially, around 1.1%, 1.2% 

and 1.3% overlapping are detected for the proposed GA based 

coverage optimization algorithm, IAPSO and SAGA 

algorithms with 200 sensors. For 300 sensors, 1.3%, 1.4% and 

1.5% overlapping are detected for the proposed GA based 

coverage optimization algorithm, IAPSO and SAGA 

algorithms, respectively and for 400 sensors, 1.4%, 1.6% and 

1.6% overlapping exist for the proposed GA based coverage 

optimization algorithm, IAPSO and SAGA algorithms , 

respectively. As algorithms run for an increasing number of 

generations, all three algorithms converge, but the proposed 
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GA based coverage optimization algorithm converges faster 

and removes overlapping earlier than both IAPSO and SAGA 

algorithms. It is clearly seen that the proposed GA based 

coverage optimization algorithm outperformed both IAPSO 

and SAGA algorithms.  

 
7.2. Coverage Fraction Maximization 

Figure 18(a) shows the coverage fraction for different 

numbers of sensors deployed in the sensing area. At 200 

generations, it is observed that for 100 sensors, 22% of the 

sensing area is covered using the proposed GA based coverage 

optimization algorithm while 20% and 21% area is covered by 

both IAPSO and SAGA algorithms, respectively. As the 

number of sensors increases, the coverage fraction also 

increases for all three algorithms. For example, for 300 

sensors, the coverage for the proposed algorithm is about 50% 

area, while IAPSO covers 45% and SAGA covers 40% area 

with the same sensors. When sensors increase to 500, SAGA 

gives 55% coverage, and IAPSO gives 65% coverage, 

whereas the proposed GA based coverage optimization 

algorithm covers 72% of the sensing area. It is clearly seen 

that the proposed GA based coverage optimization algorithm 

outperformed both IAPSO and SAGA algorithms. Similarly,  

 

Figures 18 (b), 18 (c) and 18 (d) show the coverage 

fraction for 400, 600 and 800 generations for different 

numbers of sensors that are deployed in the sensing area for 

the proposed GA based coverage optimization algorithm and 

two state-of-the-art algorithms. It is clearly observed that 

when the number of generations increases from 200 to 400, 

the coverage fraction is improved for 500 sensors. It is about 

100%, 98% and 96% with 500 sensors for the proposed GA 

based coverage optimization algorithm, IAPSO and SAGA 

algorithms, respectively. It is seen from Figure 18 (a), 18 (b), 

18 (c) and Figure 18 (d), that as the quantity of generations 

increases, coverage fraction also surges. But the proposed GA 

based coverage optimization algorithm achieves a higher 

coverage fraction as compared with both IAPSO and SAGA 

algorithms. 

 

 

 

        
(a)With sensors up to 100                                                                                   (b) Sensors between 500 

 

Fig. 19 Connectivity of 3D Directional Sensor Network  

    
                  (a) With an angle  of view of 30 degrees           (b) With an angle  of view of 60 degrees 

Fig. 20 Coverage probability of 3D directional sensor 
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7.3. Connectivity Analysis in 3D Directional Sensor Network   

Figure 19 (a) depicts the connectivity degree of the entire 

3D DWSN with 100 sensors using different transmission 

ranges. It is derived from Equation (8). It is observed that at 

least 70 sensors are needed to maintain 1-connectivity among 

all the sensors using a 20 m transmission range for each 

sensor.  

 

More than 90 sensors are required to maintain 2-

connectivity among sensors using a 20 m transmission range 

for each sensor. From Figure 19 (b), it is observed that if we 

take a 20 m transmission range for each sensor and a number 

of sensors of about 500, 29-connectivity can be achieved. As 

the transmission range increases, the connectivity of the 

network also increases for any given number of sensors. 

 

7.4. Coverage Analysis in 3D Directional Sensor Network  

Figure 20 (a) and Figure 20 (b) depict coverage 

probability with an angle of view of 30 degrees  and 60 

degrees, respectively. It is derived from Equation (10). It is 

noticed that as the number of sensors increases, coverage 

probability also increases. For a sensing radius of 50 m, when 

an angle of view of 30 degree is considered, about 80% of the 

DSN can be covered with 400 sensors. When an angle of view 

of 60 degree is considered, about 100% of the DSN can be 

covered with less than 400 sensors. If we compare the results 

of Figure 19 with the simulation results of Figure 17, both 

show a similar nature and progress as the number of sensors 

increases, using a sensing radius of 20 m. It validates the 

analytical results of Figure 20.  

 
7.5. Energy Consumption Analysis 

Figure 21 shows energy consumption for coverage 

obtained from different numbers of sensors. The values of 

constants used in Equation (11) of the energy model are  

𝑒𝑎𝑚 = 100 (pJ/ (bit m-2)) and = 50 (nJ/bit)  . Path loss 

components are assumed to 𝜂 = 2, 𝑑 between 5m to 50m and 

k=1. Figure 21 (a) shows that as either the sensing radius or 

number of sensors increases, energy consumption for 

coverage also increases. Figure 21 (b) shows the energy 

consumption to obtain a satisfactory coverage level. For 

example, if we wish to obtain 80% coverage, about 60 mJ of 

energy is consumed using a 50m transmission range. 

     
(a) Energy consumption with sensors      (b) Energy consumption for % coverage 

Fig. 21 Energy consumption for coverage

 

8. Conclusion 
This paper proposes a GA-based area coverage 

optimization algorithm using Computational Geometry that 

takes directional sensing into account, aiming to determine the 

optimal cover set from multiple cover sets with minimal 

overlapping requirements. Improved when the algorithm runs 

for a higher number of generations. The proposed GA based 

area coverage optimization algorithm outperformed state-of-

the-art algorithms. To reduce the coverage overlapping and 

maximize the coverage area, a fitness function for the degree 

of overlapping is constructed. It has been observed the degree 

of overlapping is minimized and the coverage fraction is 

Further.  

An analytical study of coverage is conducted, and the 

results of the coverage are validated using simulation results. 

In the future, two objective functions , one for coverage and 

another for connectivity, can be used, and the formulated 

optimization problem can be solved using NSGA-II. 
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