
SSRG International Journal of Electronics and Communication Engineering                                  Volume 12 Issue 8, 40-50, August 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I8P104                                                  © 2025 Seventh Sense Research Group® 
  

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 
 

Full Custom Design and Implementation of 12-Bit 

Complex Multiplier 
A. Lakshmi1, P. Chandrasekhar Reddy2, Esther Rani Thuraka3   

 

1,2Department of ECE, JNTUH University, Hyderabad, India. 
3Department of ECE, CVR College of Engineering, Hyderabad, India .  

 
1Corresponding Author : lakshmi_sk11@yahoo.co.in 

 
Received: 02 June 2025 Revised: 04 July 2025 Accepted: 03 August 2025 Published: 30 August 2025 

 

Abstract - The complex multiplier is an important module used in co-processors, especially designed for signal processing 

in Graphical Processing Units (GPUs), Digital Signal Processors (DSPs), and certain Artificial Intelligence (AI) 

accelerators. These applications require a low area and low power. This work presents a novel strategy for complex number 

multiplication. The design is full custom and utilizes a circuit optimization technique. The complex multi plier is designed 

using the Bottom-up approach. It uses a radix-4 modified Booth encoder. These concepts are used for performance 

improvement. The process of multiplication is sped up as the radix-4 modified Booth encoder can decrease the rows of partial 

products to n/2, and carry-save adders are designed to add the partial products by using a smaller number of transistors to 

improve the speed of the addition process. Finally, an increase in speed, low power, and low area is achieved by the 

utilization of a smaller number of transistors overall. Hence, less silicon area is utilized. The design is implemented using 

Cadence tools for 12x12-bit signed and unsigned numbers and is simulated using ADE with Spectre simulator for both pre -

layout and post-layout complex multiplier using 0.18µm technology. Novelty stems from its integrated approach of a new 

full-custom design strategy, meticulous circuit-level optimization, and the effective application of radix-4 Booth encoding to 
achieve a highly efficient 12-bit complex multiplier in terms of power, area, and speed. 

Keywords - Booth encoder, Circuit optimization, Complex multiplier, Full custom design, Low power, Silicon area. 

 

1. Introduction 
  High-performance computing tasks like scientific 

computing, graphics, and signal processing utilize complex 

multipliers. Complex multiplication is used to compute 

rotations and scaling in 2D complex space. Complex 

multipliers are used in co-processors, especially in digital 

signal processors, GPUs, and certain AI accelerators , to 

efficiently handle operations involving complex numbers. 

They are commonly used in general digital signal processing 

applications and today’s intelligent DSPs, neural networks, 

image processing with complex-valued applications of 

communication engineering, different types of data 

frequency domain analysis, and computer vision 

applications. Co-processors use complex multipliers , such 

as FFTs, to accelerate signal processing. The Fast Fourier 

Transform (FFT), which is computed using complex 

number arithmetic, is used in many of these applications. 

Every area of engineering and study uses the Fourier 

methods. In the past, Very Large-Scale Integration 

designers prioritized cost, performance, power, area, and 

reliability; power consideration was usually of secondary 

significance. This has begun to change in recent years, 

though, as power issues are being given the same 

consideration as area and speed problems. 

   

  The primary contributing factor has been the 

remarkable success and growth of the field of wireless 

communication systems (personal communicators and 

assistants) and personal computing devices (portable 

desktop computers, multimedia products based on audio and 

video) that require complex functionality and high-speed 

computation with low power consumption. In many 

situations, average power usage becomes an important 

design factor [1, 2]. 

   

  If low-power design solutions are not employed, the 

current and future portable gadgets will either have a pack 

with a large battery or a battery with limited life. Inbuilt 

cooling systems become costly during packing and moving. 

Another significant motivation is the fact that excessive 

power usage is becoming a barrier more and more. From an 

environmental point of view, the less electricity is utilized, 

the less of an impact it has on the environment; the less 

stringent the environmental standards are for heat removal 

or power delivery. Improving complex multipliers leads to 

a better design of FFT architecture [14], as the large data 

FFT architecture of today’s generation requires hundreds of 

multipliers.  

 

  The article describes the “full custom design and 

implementation of 12-bit complex multiplier”. It makes use 

of circuit optimization techniques, radix-4 modified Booth 

encoding, and a bottom-up methodology. The main claims 

are that employing fewer transistors and decreasing partial 

product rows results in low power, speeding up 

multiplication, performance improvement, and low area. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Background  
  The importance of complex multipliers in high-

performance computing and the changing objectives in 

VLSI design, especially regarding power consumption and 

space efficiency, provide the foundation for this work. One 

essential component for carrying out the multiplication of 

two complex numbers is a complex multiplier. For many 

algorithms, notably Fast Fourier Transforms (FFTs), this 

procedure is essential.  

 

  They are widely employed in high-performance 

computer applications like signal processing, graphics, and 

scientific computing. Complex multipliers are essential 

components of GPUs, DSPs, and accelerators for Artificial 

Intelligence (AI). Their uses include data frequency domain 

analysis, communication engineering, neural networks, 

intelligent DSPs, general digital signal processing, and 

image processing with complex-valued applications.  

   

  Complex multipliers are commonly used by co-

processors to speed up signal processing, such as in FFTs, 

which are calculated using complex number arithmetic. 

Hundreds of multipliers are needed for the huge data FFT 

structures found in contemporary systems. Changing 

priorities for VLSI Design, power consumption was 

frequently a secondary consideration for VLSI designers in 

the past, who gave priority to cost, performance, area, and 

reliability. This has altered dramatically, though, with power 

considerations now being given the same weight as speed 

and area difficulties.  

   

  Complex functionality and high-speed computation 

with low power consumption are required due to the 

explosive rise of wireless communication systems and 

personal computing devices. Current and future portable 

devices might need larger batteries or have shorter battery 

lives if low-power design alternatives were not available. 

  

  Overuse of power generates a lot of heat, which makes 

it difficult to package and operate VLSI circuits and systems 

realistically. Less use of electricity has a smaller 

environmental impact, according to environmental experts. 

Two adders and four multipliers are normally needed for a 

traditional complicated multiplier. A generator of Partial 

Products (PP), an adder for the produced partial products , 

typically make up its architecture. Decreasing the partial 

product count and improving the method for combining 

them are usually ways to increase the Power, Performance, 

and Area (PPA) efficiency of multipliers. 

 

  Prior research has investigated several methods for 

implementing complicated multiplication with lower PPA 

complexity, including the use of vector-merging adders, 

Booth encoders, and CSA trees. Compressors for partial 

product decrease and Vedic mathematics are two more 

methods. Although some previous methods resulted in 

severe latency and large resource utilization, the research 

points out that complicated multipliers have been optimized 

in silicon for DSP applications. In recent years, multiplier 

design has also focused on modified Booth encoding. 

  This background lays the groundwork for the 

innovative design described in this work by highlighting the 

growing need for effective complex multipliers in a variety 

of applications, as well as the industry’s move towards 

giving low power and small area in VLSI design priority. 

 

3. Related Works 
  A traditional Complex multiplier requires 4 multipliers 

[1-4] and 2 adders. A general multiplier architecture consists 

of two parts: (i) a partial products generator, and (ii) 

generated partial products addition. Multiplier Power 

Performance Area (PPA) efficiency is generally enhanced 

by decreasing the partial product number and adding partial 

products. In [5], two Booth encoders, four carry-save adder 

trees, four vector-merging adders, and a pair of 

adders/subtractors are used to implement the complex 

multiplication. The power performance area complexity is 

less than [3, 6]. Using Vedic mathematics, the real multiplier 

architecture shown in Figure 1 was used to implement 

complex multiplication and is proposed in [8, 10].   

 
Fig. 1 Multiplier architecture using Vedic mathematics  

  Signed numbers of real and imaginary parts of complex 

operands cannot be utilized directly with this. In [9], it is 

suggested that compressors be used for low-power, high–

performance partial products reduction. Complex 

multiplication is optimized in the hardware for DSP 

applications [7], and it takes more space than conventional 

[5]. Implementing a directly general complex multiplier, as 

is typical in [11-13], results in very high latency, 10416 

look-up tables,187mW, and more space taken up by the 

hardware used for DSP applications. The suggested 

complex multipliers have lower performance. Output value 

is represented with 32 bits. The multiplier is the main block 

in the complex multiplier. Over recent years, the multiplier 

using modified Booth encoding by using different 

techniques [15-18] has been developed. They used different 

circuit-level realizations and implemented them on an 

FPGA or semi-custom designs. 

 

  The investigation was done carefully for the best-

related works to design complex multipliers with high 

performance using circuit optimization techniques for the 

radix-4 Booth technique, multipliers, and adders. The 

proposed 12-bit complex multiplier is designed for 0.18 µm 

CMOS technology using Cadence tools in full custom 

design. Since systems with low power are in great need for 
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the current situation, the results after post-simulation show 

that the proposed complex multiplier offers low area and 

power when compared to reported literature [5, 15- 18]. This 

is basically due to the circuit optimization technique in the 

architecture. The architecture is optimized to reduce the 

number of transistors  at every stage. Thus, low power and 

low area were achieved when compared to the above 

proposed designs. 

  Designing digital circuits is challenging when dealing 

with the trade-off between power area and performance. 

Few designs are based only on high throughput, and to 

achieve the target applications’ maximum performance is 

expected. Common Subexpression Elimination (CSE) 

techniques are used to optimize the coefficients of CSD 

encoded to minimize the adders/subtractors count [20]. A 

unique multiple-bit counter for effective binary 

multiplication is presented in this study. Three methods are 

used to propose, modify, and optimize a 7:3 counter: first, 

group-wise parallel addition; second, removing unnecessary 

carry-generators; and third, hardware optimization. 

Standard static-CMOS is used in the circuit’s design and 

optimization [21, 22]. 

 

4. Concepts of Complex Multiplier 
 Complex multipliers are essential parts of the co-

processors found in AI accelerators, GPUs, and DSPs. The 

suggested design aims to accelerate the multiplication 

process by using circuit optimization techniques and a radix-

4 modified Booth encoder. This immediately results in these 

specialized hardware units being able to execute complex 

algorithms more quickly. A crucial technique in many 

scientific and technical domains, the Fast Fourier Transform 

(FFT) mainly depends on complex number arithmetic. The 

design can speed up FFT calculations by enhancing the 

complex multiplier, communication engineering, and other 

data frequency domain analyses. Power consumption used 

to be a minor consideration in VLSI design, but it is now a 

fundamental factor along with reliability, performance, and 

area. For present and future portable devices, the design 

places a high priority on low power and low area, 

eliminating the need for expensive cooling systems or huge 

batteries. 

   

  By using circuit optimization techniques that minimize 

the number of transistors at each level, the design achieves 

low power and minimal area. For large data FFT systems, 

which need hundreds of multipliers, this is very crucial. This 

is further aided by the utilization of radix-4 Booth encoding, 

which lowers partial product rows. The study proposes that 

scaling down to smaller technology nodes like 90nm, 45nm, 

and 28nm can further improve the design and possibly result 

in even larger space and power reductions. The architecture 

is built using 0.18µm CMOS technology. A complex 

multiplier plays an important role and is a fundamental 

building block used to perform multiplication, which is  a 

basic operation. This operation is crucial for algorithms like 

fast Fourier transforms and other signal processing 

operations. The complex number multiplication concept is 

as follows. 

Two complex numbers (𝐴𝑟 + 𝑗𝐴𝑖)  and (𝐵𝑟 + 𝑗𝐵𝑖) are 

multiplied as, 

 (𝐴𝑟 + 𝑗𝐴𝑖). (𝐵𝑟 + 𝑗𝐵𝑖) = (𝐴𝑟 . 𝐵𝑟 − 𝐴𝑖. 𝐵𝑖) + 𝑗(𝐴𝑟. 𝐵𝑖 +
𝐴𝑖. 𝐵𝑟)                              (1) 

The imaginary part is,  

     𝑃𝑖 = (𝐴𝑟. 𝐵𝑟 −𝐴𝑖 . 𝐵𝑖)               (2) 

and the real part is,  

   𝑃𝑟 = (𝐴𝑟 . 𝐵𝑖 + 𝐴𝑖. 𝐵𝑟)                (3) 

 Where Pr and Pi are products of real numbers and 

imaginary numbers. The direct computation requires 4real 

multipliers, 2 adders or subtractors. Figure 2 represents the 

complex multiplier. 

 
Fig. 2 Direct computation of complex multiplier 

 

 When a complex multiplier multiplies two complex 

numbers, these are often implemented, in fixed-point or 

floating-point, depending on the system’s performance, 

area, and precision requirements, either in an FPGA, DSP, 

ASIC, or any other special processor like GPUs.  

4.1. Fixed Point Complex Multipliers 

 The number of bits for integers and parts of a fraction 

is fixed, and the arithmetic used is fixed-point. Scaling and 

saturation are required to handle overflow and maintain 

precision. They are good for hardware implementation. 

They are fast and resource-efficient. Dynamic range and 

precision are limited. Scaling is needed to avoid overflow, 

which can reduce accuracy. They are used in DSPs and 

embedded systems. In real systems, such as embedded 

devices, fixed-point is used to save memory and CPU, often 

used in embedded systems, microcontrollers, DSP, etc., 

where memory or speed is limited. If they are stored as 

integers and scaled, it is a fixed-point complex multiplier. 

Example 4.5 + i5.5 for fixed point format, 45 and 55 by 

multiplying with 10, and once the result is obtained, it is 

divided by 10, and for floating, it can be the same given data. 

Also, the q1.15 format is used to convert decimals into 

integers for fixed-point complex multipliers. 



A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025 
 

43 

4.2. Floating Point Complex Multipliers 

 Figure 2 consists of four multipliers, and multiplier 

blocks play an important role here. A general multiplier is 

represented in Figure 3 below. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 General multiplier architecture  

 It consists of five sections. In the first stage, registers 

are required to store the bits, next is the generator of the 

partial product, and then the register is used for shifting the 

products when they are generated, then added with carry 

save adder to get carry and sum and finally added with ripple 

carry adder to get the result [19-22, 4]. In the second stage, 

the Radix-4 booth algorithm is utilized, in which partial 

product rows can be reduced to exactly half of the multiplier 

bits taken.  

 

 Time complexity also plays  an important role in VLSI. 

For basic Booth encoding, the time complexity is O(n), 

where n represents several multiplier bits; the time 

complexity for modified Booth encoding is O(n/log2(r)), 

where r is radix-4 encoding. Here, a higher radix indicates a 

reduction in the number of operations because it can process 

a large number of bits per cycle. For radix-4, the complexity 

is O(n/2), and for radix-8, it is O(n/3). The time complexity 

of a complex multiplier depends on how the complex 

numbers are represented and the algorithm used for 

multiplication. In standard complex multiplication, if the 

real numbers have size n (for example, n-bit integers or 

floating point), each multiplication is O (n2). Similarly, the 

complexity of time for adders also plays a crucial role.  

 

5. Complex Multiplier Design Architecture  

 The Architecture of a complex multiplier circuit that 

applies Radix-4 modified Booth encoding, which is utilized 

in the study, is shown in Figure 4. All the blocks required 

for design are optimized using the circuit optimization 

technique, i.e. by reducing the number. 

  The transistors in the leaf cells are designed especially 

for a multiplexer designed with two transmission gates, 

adders designed with transmission gates,10T D-flip-flops, 

and an XOR gate. 

 
Table  1. Radix-4 modified booth encoding 

A2i+1 A2i A2i-1 
Generated Partial 

Products 

0 0 0 0*Multiplicand 

0 0 1 1*Multiplicand 

0 1 0 1*Multiplicand 

0 1 1 2*Multiplicand 

1 0 0 -2*Multiplicand 

1 0 1 -1*Multiplicand 

1 1 0 -1*Multiplicand 

1 1 1 0*Multiplicand 

 

  Architecture can be studied in two parts : the imaginary 

part and the real part. It uses two 12-bit registers as inputs , 

each of which is designed with a 10-transistor D flip flop 

and a 24-bit register for outputs that store the real and 

imaginary parts. A, B, C, and D are 12-bit numbers, based 

on the architecture. The imaginary part is (BC + AD) and 

the real part is (AC- BD). MBE, a generator that generates 

partial products, CSA trees, CPA, and ripple carry adder are 

other blocks used to get the final product. In the 

conventional method, four separate multipliers are required, 

that is, for AC, BD, AD, and BC to produce real part and 

imaginary part numbers , which will use four different 

modified Booth encoders. 

 

  For each multiplier with modified Booth encoding, the 

architecture is shown in Figure 5 below. The architecture 

clearly picturizes MBE separately for all four products, that 

is, AC, BD, BC, and AD, the chip area, power consumption 

increases, and speed decreases. 

 
Fig. 4 Architecture of a complex multiplier 

 The architecture of complex multipliers is shown in 

Figure 4; only two modified Booth encoders are used to 

execute the process for multiplication of complex numbers. 

12 bits of A and 12 bits of B are always set as multiplier bits , 

which are applied to modified Booth encoding and 12-bit C 

and 12-bit D are considered as multiplicand bits. With this 

approach, the number of transistors in the design is  reduced. 

Product 

Multiplier bits Multiplicand bits 

Partial Product Generator 

Register with shift logic 

Carry save Addition Array 

Ripple Carry Adder 

General architecture of Multiplier 

X Y 



A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025 
 

44 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 
 

 

 
 
 

 
 
 

Fig. 5 Hierarchy of multiplier with booth encoding principle  
 

5.1. Modified Booth Encoding Radix-4 Algorithm 

  In a conventional multiplier, the first shift and then add 

technique is used, but here the multiplier 12 bits are grouped 

into groups of three bits by appending a zero in the LSB. A 

stride of two and a window size of 3 bits is taken. So, the 

multiplier (12+1) bits of A and (12+1) bits of B are 

considered for grouping. Each group will produce the 

signal. Table 1 shows the signals that are generated for the 

group of three bits. The control signals are the inputs to a 
generator, which generates partial products.       

       

Fig. 6 Multiplier bits of A grouped according to booth encoding 

 
Fig. 7 Multiplier bits of B grouped according to booth encoding 

  By implementing this modified booth technique, for 

each product, partial product rows to be stored can be 

reduced from 12 to 6, i.e. for AC, BD, AD, and BC. When 

the circuit design runs, power consumption and propagation 

delay play an important role. In circuit optimization 

techniques and MBE, both power and area can be lowered. 

5.2. Partial Product Generator 

 
Fig. 8 Block diagram to generate partial products  

  Keeping in view the low power and low area of the 

design, many techniques to generate partial products were 

used in [19, 20]. Partial product rows go with 2’s 

complement error correction and negation signal circuits. 

But in the design, this approach is not followed; therefore, 

multiplication uses fewer paths , which increases speed, 

utilizes less power, and uses less area. Using the Booth 

encoding technique, when signed numbers are multiplied , 

the operation requires two complements as the Booth 
encoder generates negative signals.  

  An integer’s two’s complement is typically created by 

adding one to the number after every bit is complemented. 

Six multiplexers are employed to handle the 12-bit complex 

multiplication process. Figure 8 above shows a partial 

product generator. Modified Radix-4, the main way that 

Booth encoding speeds up multiplication is by lowering the 

partial products that must be created and then added. Faster 

computing and increased efficiency in digital multiplier 

designs are directly correlated with this reduction.  

  Reducing partial product rows to half of the multiplier 

bits is the main advantage. In a traditional multiplier, a 

partial product row is produced by each multiplier bit . This 

would normally result in N rows of partial products for an 

N-bit multiplier. Partial products to N/2 are cut in half by 

using radix-4 encoding, which groups the multiplier bits so 

that each group processes two bits simultaneously. 

Register Register 

Booth Encoder 

Hierarchy of multiplier with Booth Encoding 
Principle 

X Y 

Partial Product 

Generator 

Register with shift  
logic 

Carry save Addition 

Array 

Ripple Carry Adder 
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5.3. Carry Save Adder  

  A simpler and quicker partial product addition stage 

results from fewer partial product rows. Radix-4 Booth 

encoding reduces the partial product rows for each product 

(AC, BD, AD, and BC) from 12 to 6. This is for a 12-bit 

complex multiplier. The whole multiplication procedure is 

sped up as a direct result of this decrease in the number of 

elements to be added together. It consists of an array of full 

adders. It adds three or more partial products without 

propagating carry. The design generates six rows of partial 

products. All six rows of partial products are added using a 

ripple carry adder. Since the ripple carries adder is too slow 

and latency is also important in design, carry-save adders 

are used for better speed. Four CSA trees are considered in 

the design, one for each product. Each CSA tree will 

compress a vector of partial products for its respective input 
products. 

  Carry-save adders, which are made especially to add 

partial products with fewer transistors, are also incorporated 

into the design to speed up the addition process. This is 

important because the efficiency of their summing has a 

major impact on the overall speed of multiplication, even 

though Booth encoding decreases the number of partial 

products. As each partial product of every product will be 

up to 24 bits, each CSA tree needs to handle partial products 

of up to 24 bits wide since the design is of a 12x12 complex 

multiplier. Each CSA tree takes six inputs and compresses 

them using 3:2 compressors that are full adders in layers. 

Sum and carry each up to 24 bits are the outputs. Figure 9 

represents the blocks of the carry save adder tree. Therefore, 

each CSA tree outputs a sum of 24 bits and carry bits of 24, 

which are not the final product. 

 
Fig. 9 Carry save adder tree  block diagram  

 

  Figure 9 represents blocks of a carry save adder tree. 

Therefore, each CSA tree outputs a sum of 24 bits and carry 
bits of 24, which are not the final product.  

5.4. Carry Propagate Adder (CPA) 

  Sum of 24 bits and carry of 24 bits of each CSA use 

CPA to get the final 24-bit products. For digital addition, 

Carry Propagate Adders  (CPAs) provide a fair trade-off 

between speed and complexity, especially when contrasted 

with more straightforward ripple carry adders. Despite not 

being the fastest adder, CPAs are frequently utilized 

because of their reasonable hardware complexity and 

comparatively low latency when compared to other adder 

types. 

 
5.5. Combination of Real Products and Imaginary 

Products 

  Here, an addition of (BC+AD) is performed to get the 

imaginary part and a subtraction of (AC-BD) to get the real 

part; therefore, the Ripple carry adder is used. It takes output 

from the CPA and finally generates the real part and 

imaginary part. Two’s complement adders are used for the 

real part. Figure 10 shows how the outputs of the CPA are 

fed to the Ripple carry adder. 

 

 
Fig. 10 Ripple  carry adder block diagram   

 

6. Implementation of Complex Multiplier 
  The sophisticated multiplier is constructed using a 

bottom-up methodology in this fully customized design. 

Unlike semi-custom or FPGA-based designs, this full 

custom methodology enables fine-grained circuit-level 

optimization.  

 

  The use of the “circuit optimization technique” 

throughout the design is a key component of the originality. 

To do this, the design must be optimized to use fewer 

transistors at each step, which will result in a smaller silicon 

area and reduced overall power consumption. These 

increases in power and area efficiency are a result of this 

careful transistor-level optimization.  
 

  Complex multipliers are implemented using Cadence 

tools in full custom design. The approach used is a bottom-

up approach. The increase in speed, low power, and 

reduction of chip area are achieved by using radix-4 Booth 

encoding and reducing the number of transistors using the 

circuit optimization technique during the design of leaf cells 

[23, 24]. 
 

  First, the leaf cells are designed. The leaf cells used in 

the implementation of the complex multiplier are an 

inverter, an input NOR gate, an XOR gate designed with 

only 4-T, a transmission gate designed with 2T, a 

multiplexer with two transmission gates, and a D-flip flop 

with 10-T, which is used in registers. Then using these leaf 

cells the next level blocks are designed like half adder, full 

adder, 12-bit registers, 24-bit registers, booth encoder, 

partial product generator (which generates the least 

significant bit, and P1 generating the remaining bits), carry-

save adders, ripple carry adder and finally, multipliers and 

integrated all the blocks to obtain the final implementation 
of the complex multiplier. 
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  The “radix-4 modified Booth encoder” is incorporated 

into the design. Because it efficiently reduces the number of 

partial product rows (to n/2), this method is essential for 

performance enhancement because it expedites the 

multiplication process. The study emphasizes that lowering 

the total number of transistors helps  improve speed, low 

power, and low space. 

 

  The utilization of a “smaller number of transistors 

overall” is made possible by the combination of circuit 

optimization and radix-4 Booth encoding. This decrease in 

the number of transistors indicates “less silicon area” and 

helps the design achieve its “low power” and “increase in 

speed” goals. The suggested design provides “low power 

and less area as compared to reported literature” because of 

these optimization techniques; the article makes this clear.  

 

6.1. Booth Encoder Radix-4 Block 

Using the design rules, the leaf cells are designed. They 

are an inverter, three input gates, and a 2x1 multiplexer. 

When employing simple Booth encoding, a multiplier’s 

temporal complexity is usually O(n), where ‘n’ is the 

number of multiplier bits. On the other hand, the temporal 

complexity for modified Booth encoding with radix-r is 

O(n/log₂(r)). The complexity is O(n/log₂(4)) = O(n/2) for 

radix-4 (r=4).  A straight increase in speed is indicated by 

this mathematical reduction in complexity. A greater 

number of bits can be processed per cycle with higher radix 

encoding. This results in a faster execution time overall 

since more of the multiplication operation is finished for 

every clock cycle. When used in conjunction with circuit 

optimization approaches, radix-4 modified Booth encoding 

helps lower the overall number of transistors needed in the 

design. Faster operation and less propagation delay can 

result from fewer transistors. 

 

6.1.1. Schematic 

 Using the design rules, the leaf cells are designed. They 

are an inverter, three input gates, and a 2x1 multiplexer. 

When employing simple Booth encoding, a multiplier’s 

temporal complexity is usually O(n), where ‘n’ is the 

number of multiplier bits. On the other hand, the temporal 

complexity for modified Booth encoding with radix-r is 

O(n/log₂(r)). The complexity is O(n/log₂(4)) = O(n/2) for 

radix-4 (r=4).  A straight increase in speed is indicated by 
this mathematical reduction in complexity.   

 A greater number of bits can be processed per cycle with 

higher radix encoding. This results in faster execution time 

overall since more of the multiplication operation is finished 

for every clock cycle. When used in conjunction with circuit 

optimization approaches, radix-4 modified Booth encoding 

helps lower the overall number of transistors needed in the 

design. Faster operation and less propagation delay can result 

from fewer transistors.     

   

6.1.2. Symbol of the Booth Encoder 

 Grouping multiplier bits for A and B is shown in 

Figures 6 and 7, and these grouped signals are fed to the 

inputs. The cadence tool uses a symbol editor to create the 

symbol for the schematic drawing, which is shown below. 

The next step is the test bench. This step is called pre-layout 

simulation. This is done with a specter simulator. Figure 12 

shows the symbol of the booth encoder.             

             

 
Fig. 11  Booth encoder schematic 

 
Fig. 12  Booth encoder symbol  

 

6.1.3. Layout of the Booth Encoder 

 Working with the physical layout will be more 

challenging for the back-end designer. The design rules 

should be followed very carefully, depending on the 

technology; the layout should be drawn, and the contacts 

and vias should be properly placed. One should think 

properly and try to minimize the use of metal layers. The 

propagation delay is one of the important factors to be 

considered when layouts are drawn physically. By using the 

Virtuoso layout editor, a CMOS physical layout is drawn. 

Figure 13 shows the layout using 6 different metal layers for 

the schematic of  Figure 11. 

 
Fig. 13 Booth encoder layout 

 

6.1.4. Layout Extraction 

 The Diva / Assura circuit extractor extracts the layout 

and clearly shows parasitic resistance and capacitance. The 

designer can check the propagation delay of the circuit at 

this point using τ=RC.  
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6.1.5. Layout vs Schematic 

  Using the hierarchy editor, both the layout symbol and 

schematic symbol are created, and a test bench is created for 

both. 

 

6.1.6. Post Layout Simulation 

  Waveforms obtained can be compared with the layout 

and the schematic symbol for which the test bench was 

created. 

 

 The following individual blocks are used in the 

Modified Booth Encoder. 

 

Multiplexer 

 The Multiplexer was designed with two transmission 

gates. It has two inputs and one select line. Output is 

generated based on the selection line. 

 

 The inverter is designed with PMOS and NMOS 

transistors. A three-input NOR gate is designed using a 

standard concept.          

                    
6.2. Registers 

 Leaf cells required for input 12-bit registers and output 

24-bit registers are one-bit D flip-flops. 12-bit registers use 

12-D flip-flops, and 24-bit registers use 24-D flip-flops. 

These are designed with only 10 transistors , a D flip-flop. 

Schematic symbols and layouts are shown in Figures 14,15, 

and 16. 

 
Fig. 14 Schematic of D-FF with 10 transistors 

 

              
Fig. 15 D-FF layout with 10 transistors 

 

 
Fig. 16 12-bit register schematic 

 
Fig. 17 12-bit register layout 

 

6.3. Partial Product Generator 

 It generates six rows of 24-bit partial products. It 

consists of two 12-bit input registers, six Booth encoders, 

six 12-bit partial product generators, and six 24-bit registers 

with shift logic. The symbol was generated, and the layout 

was tested by Cadence tools after integrating all the required 

sub-systems, as shown below in Figure 18.  

 
Fig. 18 Schematic of partial product register 

                              
Fig. 19 Layout of partial product register 

 
6.4. Complex Multiplier   

  The complex multiplier is designed with Radix – 4 

algorithms for partial product rows reduction and 10-T D 

flip flop for registers also multiplexer is designed with two 

transmission gates which are used in the booth encoder and 

four transistor xor gate and transmission gate with two 

transistors which are used in full adders and finally, design 
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utilized less power and low silicon area. Figure 20 shows 

the Schematic of a Complex multiplier.   

 

  The complex multiplier is verified functionally with the 

test bench, and the layout in Figures 21, 22 to 29 represents 

simulation results for the post-layout designs.  

 

                   
Fig. 20 Complex multiplier schematic                        

 
Fig. 21 Layout of complex multiplier 

 This work mentions several specific circuit 

optimization techniques used in the design to achieve less 

area and power consumption. Radix-4 Modified Booth 

Encoding (MBE) was used to reduce the number of partial 

product rows. Reduced the number of Modified Booth 

Encoders and used only two MBEs instead of four, which 

helped reduce the overall transistor count. 

 In the Optimized D flip-flop design, the registers use D 

flip-flops designed using only 10 transistors. Multiplexers 

with reduced transistor count are used in multiplexers 

designed with only two transistors. The 10-transistor D flip-

flop was used as the leaf cell for the registers in the complex 

multiplier design. This suggests the 10-transistor design was 

chosen specifically for its efficiency and optimization. By 

using this optimized D flip-flop design, the design reduces 

the overall transistor count in the complex multiplier 

architecture, which likely contributed to the lower power 

consumption and area reported for the design.  

 Optimized XOR gate and transmission gate designs 

used in full adders use four-transistor XOR gates and two-

transistor transmission gates. Carry-save adders are used to 

speed up the addition process of partial products. A bottom-

up approach was used in implementing the complex 

multiplier, which likely contributed to optimizing the 

overall design. Though several techniques exist for low-

power design, this work involves the circuit optimization 

method to reduce the power. Circuit optimization 

automatically leads to a reduction in area and less power 

consumption, which indirectly increases the performance of 

the design.   

7. Results 
 The design is implemented using Cadence tools for 

12x12-bit signed and unsigned numbers and is simulated 

using ADE with Spectre simulator for both pre-layout and 

post-layout complex multiplier using 0.18µm technology. 

The following unsigned numbers are given as inputs.  

 

a=5      0000 0000 0101 

b=3      0000 0000 0011 

c=2      0000 0000 0010 

d=4      0000 0000 0101 

  

 The observed outputs of the complex multiplier after 

post-simulation waveforms are shown below. 

 

Real Part: -2 1111 1111 1111 1111 1111  1110 

imaginary part: 26   0000 0000 0000 0000 0001 1010  
     

 
Fig. 22 (a), (b) Waveforms for input     

                                

 
Fig. 23 (a), (b) Input waveforms 

 

 
Fig. 24 O utput waveforms for the real part with 

 

 
Fig. 25 O utput waveforms for imaginary part 
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The following signed numbers are applied as inputs. 

a= 5 0000 0000 0101 

b= 3 0000 0000 0011 

c= -2 1111 1111 1110 

d= 4 0000 0000 0100 

 

The observed outputs after post-layout 

simulation are as follows. 

Real part -22 =1111 1111 1111 1111 1110 1010 

imaginary part 14 =0000 0000 0000 0000 1110                  

 

 Figure 26 shows the input waveform of a and b, and 

Figure 27 shows the input waveform for a and b. 

 

 
Fig. 26 (a), (b) Waveforms for input 

 

 
Fig. 27 (a), (b) Input waveforms 

 

 Output waveforms of the Real part are shown in Figure 

28, and the output waveforms of the imaginary part are 

shown in Figure 28. Table 2 shows the analysis of dynamic, 

standby and total power. 

 

 
Fig. 28 Waveforms for real part imaginary part 

 

 
Fig. 29 Waveforms for imaginary part 

Table 2. Analysis of power 

Design 

Module 

Dynamic 

Power 

Standby 

Power 

Total 

Power 

Booth 

Encoder 
108.7 µW 3.12 µW 111.82 µW 

Multiplier 1828µW 697.4µW 2525.4 µW 

Complex 

multiplier 
6.5mW 3.25mW 9.75 mW 

 

The key performance factors evaluated for the proposed 

12-bit complex multiplier design and Quantitative findings 
are: 

 Power consumption: The paper provides a quantitative 

breakdown of the dynamic power, standby power, and 

total power consumption for the Booth Encoder, 

Multiplier, and overall Complex Multiplier blocks.  

 Area/Transistor count: The design approach, including 

techniques like using a reduced number of Booth 

Encoders, optimized leaf cell designs, and a bottom-up 

implementation, helped achieve lower overall transistor 

count and area.  

 Speed/Latency: The use of Carry-Save Adders helped 

speed up the addition process compared to a Ripple 

Carry Adder.  

 Functional verification: The design was implemented 

and functionally verified using Cadence tools, 

including pre-layout and post-layout simulations.  

 

8. Conclusion 
 A thorough effort has been made to create a 12-bit 

complex multiplier with a focus on optimizing for low 

power, reduced area, and increased performance, which 

makes it distinctive.  

 

 Efficient Radix-4 Modified Booth Encoding, circuit 

optimization approaches, design strategy, full custom 

implementation, and performance gains through reduced 

transistor count are the main innovative components.  

 

 The proposed full custom design of a 12-bit complex 

multiplier is designed using Cadence tools. The need for this  

complex multiplier in digital processors is identified as Fast 

Fourier Transform (FFT), which is capable of handling new 

requirements in signal processing, which has mobilized the 

world of high-performance digital signal processing.  

 

 With the new emerging technologies, special co-

processors are being designed and used for many 

applications where these processors need complex 

multipliers, depending on the applications. 

 

 The complex multiplier was designed with radix-4 by 

using a circuit optimization technique that reduces 

transistors during the design of leaf cells, to achieve less 

area and less power. Further design can be done using 90nm, 

45nm, and 28nm to reduce the area. Optimization 

techniques like inserting sleep circuits in the architecture 

can be used to further reduce power and finally attain low-

power area circuits.  
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