
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 8, 40-50, August 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I8P104 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Full Custom Design and Implementation of 12-Bit

Complex Multiplier
A. Lakshmi1, P. Chandrasekhar Reddy2, Esther Rani Thuraka3

1,2Department of ECE, JNTUH University, Hyderabad, India.
3Department of ECE, CVR College of Engineering, Hyderabad, India .

1Corresponding Author : lakshmi_sk11@yahoo.co.in

Received: 02 June 2025 Revised: 04 July 2025 Accepted: 03 August 2025 Published: 30 August 2025

Abstract - The complex multiplier is an important module used in co-processors, especially designed for signal processing

in Graphical Processing Units (GPUs), Digital Signal Processors (DSPs), and certain Artificial Intelligence (AI)

accelerators. These applications require a low area and low power. This work presents a novel strategy for complex number

multiplication. The design is full custom and utilizes a circuit optimization technique. The complex multi plier is designed

using the Bottom-up approach. It uses a radix-4 modified Booth encoder. These concepts are used for performance

improvement. The process of multiplication is sped up as the radix-4 modified Booth encoder can decrease the rows of partial

products to n/2, and carry-save adders are designed to add the partial products by using a smaller number of transistors to

improve the speed of the addition process. Finally, an increase in speed, low power, and low area is achieved by the

utilization of a smaller number of transistors overall. Hence, less silicon area is utilized. The design is implemented using

Cadence tools for 12x12-bit signed and unsigned numbers and is simulated using ADE with Spectre simulator for both pre -

layout and post-layout complex multiplier using 0.18µm technology. Novelty stems from its integrated approach of a new

full-custom design strategy, meticulous circuit-level optimization, and the effective application of radix-4 Booth encoding to
achieve a highly efficient 12-bit complex multiplier in terms of power, area, and speed.

Keywords - Booth encoder, Circuit optimization, Complex multiplier, Full custom design, Low power, Silicon area.

1. Introduction
 High-performance computing tasks like scientific

computing, graphics, and signal processing utilize complex

multipliers. Complex multiplication is used to compute

rotations and scaling in 2D complex space. Complex

multipliers are used in co-processors, especially in digital

signal processors, GPUs, and certain AI accelerators , to

efficiently handle operations involving complex numbers.

They are commonly used in general digital signal processing

applications and today’s intelligent DSPs, neural networks,

image processing with complex-valued applications of

communication engineering, different types of data

frequency domain analysis, and computer vision

applications. Co-processors use complex multipliers , such

as FFTs, to accelerate signal processing. The Fast Fourier

Transform (FFT), which is computed using complex

number arithmetic, is used in many of these applications.

Every area of engineering and study uses the Fourier

methods. In the past, Very Large-Scale Integration

designers prioritized cost, performance, power, area, and

reliability; power consideration was usually of secondary

significance. This has begun to change in recent years,

though, as power issues are being given the same

consideration as area and speed problems.

 The primary contributing factor has been the

remarkable success and growth of the field of wireless

communication systems (personal communicators and

assistants) and personal computing devices (portable

desktop computers, multimedia products based on audio and

video) that require complex functionality and high-speed

computation with low power consumption. In many

situations, average power usage becomes an important

design factor [1, 2].

 If low-power design solutions are not employed, the

current and future portable gadgets will either have a pack

with a large battery or a battery with limited life. Inbuilt

cooling systems become costly during packing and moving.

Another significant motivation is the fact that excessive

power usage is becoming a barrier more and more. From an

environmental point of view, the less electricity is utilized,

the less of an impact it has on the environment; the less

stringent the environmental standards are for heat removal

or power delivery. Improving complex multipliers leads to

a better design of FFT architecture [14], as the large data

FFT architecture of today’s generation requires hundreds of

multipliers.

 The article describes the “full custom design and

implementation of 12-bit complex multiplier”. It makes use

of circuit optimization techniques, radix-4 modified Booth

encoding, and a bottom-up methodology. The main claims

are that employing fewer transistors and decreasing partial

product rows results in low power, speeding up

multiplication, performance improvement, and low area.

http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

41

2. Background
 The importance of complex multipliers in high-

performance computing and the changing objectives in

VLSI design, especially regarding power consumption and

space efficiency, provide the foundation for this work. One

essential component for carrying out the multiplication of

two complex numbers is a complex multiplier. For many

algorithms, notably Fast Fourier Transforms (FFTs), this

procedure is essential.

 They are widely employed in high-performance

computer applications like signal processing, graphics, and

scientific computing. Complex multipliers are essential

components of GPUs, DSPs, and accelerators for Artificial

Intelligence (AI). Their uses include data frequency domain

analysis, communication engineering, neural networks,

intelligent DSPs, general digital signal processing, and

image processing with complex-valued applications.

 Complex multipliers are commonly used by co-

processors to speed up signal processing, such as in FFTs,

which are calculated using complex number arithmetic.

Hundreds of multipliers are needed for the huge data FFT

structures found in contemporary systems. Changing

priorities for VLSI Design, power consumption was

frequently a secondary consideration for VLSI designers in

the past, who gave priority to cost, performance, area, and

reliability. This has altered dramatically, though, with power

considerations now being given the same weight as speed

and area difficulties.

 Complex functionality and high-speed computation

with low power consumption are required due to the

explosive rise of wireless communication systems and

personal computing devices. Current and future portable

devices might need larger batteries or have shorter battery

lives if low-power design alternatives were not available.

 Overuse of power generates a lot of heat, which makes

it difficult to package and operate VLSI circuits and systems

realistically. Less use of electricity has a smaller

environmental impact, according to environmental experts.

Two adders and four multipliers are normally needed for a

traditional complicated multiplier. A generator of Partial

Products (PP), an adder for the produced partial products ,

typically make up its architecture. Decreasing the partial

product count and improving the method for combining

them are usually ways to increase the Power, Performance,

and Area (PPA) efficiency of multipliers.

 Prior research has investigated several methods for

implementing complicated multiplication with lower PPA

complexity, including the use of vector-merging adders,

Booth encoders, and CSA trees. Compressors for partial

product decrease and Vedic mathematics are two more

methods. Although some previous methods resulted in

severe latency and large resource utilization, the research

points out that complicated multipliers have been optimized

in silicon for DSP applications. In recent years, multiplier

design has also focused on modified Booth encoding.

 This background lays the groundwork for the

innovative design described in this work by highlighting the

growing need for effective complex multipliers in a variety

of applications, as well as the industry’s move towards

giving low power and small area in VLSI design priority.

3. Related Works
 A traditional Complex multiplier requires 4 multipliers

[1-4] and 2 adders. A general multiplier architecture consists

of two parts: (i) a partial products generator, and (ii)

generated partial products addition. Multiplier Power

Performance Area (PPA) efficiency is generally enhanced

by decreasing the partial product number and adding partial

products. In [5], two Booth encoders, four carry-save adder

trees, four vector-merging adders, and a pair of

adders/subtractors are used to implement the complex

multiplication. The power performance area complexity is

less than [3, 6]. Using Vedic mathematics, the real multiplier

architecture shown in Figure 1 was used to implement

complex multiplication and is proposed in [8, 10].

Fig. 1 Multiplier architecture using Vedic mathematics

 Signed numbers of real and imaginary parts of complex

operands cannot be utilized directly with this. In [9], it is

suggested that compressors be used for low-power, high–

performance partial products reduction. Complex

multiplication is optimized in the hardware for DSP

applications [7], and it takes more space than conventional

[5]. Implementing a directly general complex multiplier, as

is typical in [11-13], results in very high latency, 10416

look-up tables,187mW, and more space taken up by the

hardware used for DSP applications. The suggested

complex multipliers have lower performance. Output value

is represented with 32 bits. The multiplier is the main block

in the complex multiplier. Over recent years, the multiplier

using modified Booth encoding by using different

techniques [15-18] has been developed. They used different

circuit-level realizations and implemented them on an

FPGA or semi-custom designs.

 The investigation was done carefully for the best-

related works to design complex multipliers with high

performance using circuit optimization techniques for the

radix-4 Booth technique, multipliers, and adders. The

proposed 12-bit complex multiplier is designed for 0.18 µm

CMOS technology using Cadence tools in full custom

design. Since systems with low power are in great need for

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

42

the current situation, the results after post-simulation show

that the proposed complex multiplier offers low area and

power when compared to reported literature [5, 15- 18]. This

is basically due to the circuit optimization technique in the

architecture. The architecture is optimized to reduce the

number of transistors at every stage. Thus, low power and

low area were achieved when compared to the above

proposed designs.

 Designing digital circuits is challenging when dealing

with the trade-off between power area and performance.

Few designs are based only on high throughput, and to

achieve the target applications’ maximum performance is

expected. Common Subexpression Elimination (CSE)

techniques are used to optimize the coefficients of CSD

encoded to minimize the adders/subtractors count [20]. A

unique multiple-bit counter for effective binary

multiplication is presented in this study. Three methods are

used to propose, modify, and optimize a 7:3 counter: first,

group-wise parallel addition; second, removing unnecessary

carry-generators; and third, hardware optimization.

Standard static-CMOS is used in the circuit’s design and

optimization [21, 22].

4. Concepts of Complex Multiplier
 Complex multipliers are essential parts of the co-

processors found in AI accelerators, GPUs, and DSPs. The

suggested design aims to accelerate the multiplication

process by using circuit optimization techniques and a radix-

4 modified Booth encoder. This immediately results in these

specialized hardware units being able to execute complex

algorithms more quickly. A crucial technique in many

scientific and technical domains, the Fast Fourier Transform

(FFT) mainly depends on complex number arithmetic. The

design can speed up FFT calculations by enhancing the

complex multiplier, communication engineering, and other

data frequency domain analyses. Power consumption used

to be a minor consideration in VLSI design, but it is now a

fundamental factor along with reliability, performance, and

area. For present and future portable devices, the design

places a high priority on low power and low area,

eliminating the need for expensive cooling systems or huge

batteries.

 By using circuit optimization techniques that minimize

the number of transistors at each level, the design achieves

low power and minimal area. For large data FFT systems,

which need hundreds of multipliers, this is very crucial. This

is further aided by the utilization of radix-4 Booth encoding,

which lowers partial product rows. The study proposes that

scaling down to smaller technology nodes like 90nm, 45nm,

and 28nm can further improve the design and possibly result

in even larger space and power reductions. The architecture

is built using 0.18µm CMOS technology. A complex

multiplier plays an important role and is a fundamental

building block used to perform multiplication, which is a

basic operation. This operation is crucial for algorithms like

fast Fourier transforms and other signal processing

operations. The complex number multiplication concept is

as follows.

Two complex numbers (𝐴𝑟 + 𝑗𝐴𝑖) and (𝐵𝑟 + 𝑗𝐵𝑖) are

multiplied as,

 (𝐴𝑟 + 𝑗𝐴𝑖). (𝐵𝑟 + 𝑗𝐵𝑖) = (𝐴𝑟 . 𝐵𝑟 − 𝐴𝑖. 𝐵𝑖) + 𝑗(𝐴𝑟. 𝐵𝑖 +
𝐴𝑖. 𝐵𝑟) (1)

The imaginary part is,

 𝑃𝑖 = (𝐴𝑟. 𝐵𝑟 −𝐴𝑖 . 𝐵𝑖) (2)

and the real part is,

 𝑃𝑟 = (𝐴𝑟 . 𝐵𝑖 + 𝐴𝑖. 𝐵𝑟) (3)

 Where Pr and Pi are products of real numbers and

imaginary numbers. The direct computation requires 4real

multipliers, 2 adders or subtractors. Figure 2 represents the

complex multiplier.

Fig. 2 Direct computation of complex multiplier

 When a complex multiplier multiplies two complex

numbers, these are often implemented, in fixed-point or

floating-point, depending on the system’s performance,

area, and precision requirements, either in an FPGA, DSP,

ASIC, or any other special processor like GPUs.

4.1. Fixed Point Complex Multipliers

 The number of bits for integers and parts of a fraction

is fixed, and the arithmetic used is fixed-point. Scaling and

saturation are required to handle overflow and maintain

precision. They are good for hardware implementation.

They are fast and resource-efficient. Dynamic range and

precision are limited. Scaling is needed to avoid overflow,

which can reduce accuracy. They are used in DSPs and

embedded systems. In real systems, such as embedded

devices, fixed-point is used to save memory and CPU, often

used in embedded systems, microcontrollers, DSP, etc.,

where memory or speed is limited. If they are stored as

integers and scaled, it is a fixed-point complex multiplier.

Example 4.5 + i5.5 for fixed point format, 45 and 55 by

multiplying with 10, and once the result is obtained, it is

divided by 10, and for floating, it can be the same given data.

Also, the q1.15 format is used to convert decimals into

integers for fixed-point complex multipliers.

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

43

4.2. Floating Point Complex Multipliers

 Figure 2 consists of four multipliers, and multiplier

blocks play an important role here. A general multiplier is

represented in Figure 3 below.

Fig. 3 General multiplier architecture

 It consists of five sections. In the first stage, registers

are required to store the bits, next is the generator of the

partial product, and then the register is used for shifting the

products when they are generated, then added with carry

save adder to get carry and sum and finally added with ripple

carry adder to get the result [19-22, 4]. In the second stage,

the Radix-4 booth algorithm is utilized, in which partial

product rows can be reduced to exactly half of the multiplier

bits taken.

 Time complexity also plays an important role in VLSI.

For basic Booth encoding, the time complexity is O(n),

where n represents several multiplier bits; the time

complexity for modified Booth encoding is O(n/log2(r)),

where r is radix-4 encoding. Here, a higher radix indicates a

reduction in the number of operations because it can process

a large number of bits per cycle. For radix-4, the complexity

is O(n/2), and for radix-8, it is O(n/3). The time complexity

of a complex multiplier depends on how the complex

numbers are represented and the algorithm used for

multiplication. In standard complex multiplication, if the

real numbers have size n (for example, n-bit integers or

floating point), each multiplication is O (n2). Similarly, the

complexity of time for adders also plays a crucial role.

5. Complex Multiplier Design Architecture

 The Architecture of a complex multiplier circuit that

applies Radix-4 modified Booth encoding, which is utilized

in the study, is shown in Figure 4. All the blocks required

for design are optimized using the circuit optimization

technique, i.e. by reducing the number.

 The transistors in the leaf cells are designed especially

for a multiplexer designed with two transmission gates,

adders designed with transmission gates,10T D-flip-flops,

and an XOR gate.

Table 1. Radix-4 modified booth encoding

A2i+1 A2i A2i-1
Generated Partial

Products

0 0 0 0*Multiplicand

0 0 1 1*Multiplicand

0 1 0 1*Multiplicand

0 1 1 2*Multiplicand

1 0 0 -2*Multiplicand

1 0 1 -1*Multiplicand

1 1 0 -1*Multiplicand

1 1 1 0*Multiplicand

 Architecture can be studied in two parts : the imaginary

part and the real part. It uses two 12-bit registers as inputs ,

each of which is designed with a 10-transistor D flip flop

and a 24-bit register for outputs that store the real and

imaginary parts. A, B, C, and D are 12-bit numbers, based

on the architecture. The imaginary part is (BC + AD) and

the real part is (AC- BD). MBE, a generator that generates

partial products, CSA trees, CPA, and ripple carry adder are

other blocks used to get the final product. In the

conventional method, four separate multipliers are required,

that is, for AC, BD, AD, and BC to produce real part and

imaginary part numbers , which will use four different

modified Booth encoders.

 For each multiplier with modified Booth encoding, the

architecture is shown in Figure 5 below. The architecture

clearly picturizes MBE separately for all four products, that

is, AC, BD, BC, and AD, the chip area, power consumption

increases, and speed decreases.

Fig. 4 Architecture of a complex multiplier

 The architecture of complex multipliers is shown in

Figure 4; only two modified Booth encoders are used to

execute the process for multiplication of complex numbers.

12 bits of A and 12 bits of B are always set as multiplier bits ,

which are applied to modified Booth encoding and 12-bit C

and 12-bit D are considered as multiplicand bits. With this

approach, the number of transistors in the design is reduced.

Product

Multiplier bits Multiplicand bits

Partial Product Generator

Register with shift logic

Carry save Addition Array

Ripple Carry Adder

General architecture of Multiplier

X Y

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

44

Fig. 5 Hierarchy of multiplier with booth encoding principle

5.1. Modified Booth Encoding Radix-4 Algorithm

 In a conventional multiplier, the first shift and then add

technique is used, but here the multiplier 12 bits are grouped

into groups of three bits by appending a zero in the LSB. A

stride of two and a window size of 3 bits is taken. So, the

multiplier (12+1) bits of A and (12+1) bits of B are

considered for grouping. Each group will produce the

signal. Table 1 shows the signals that are generated for the

group of three bits. The control signals are the inputs to a
generator, which generates partial products.

Fig. 6 Multiplier bits of A grouped according to booth encoding

Fig. 7 Multiplier bits of B grouped according to booth encoding

 By implementing this modified booth technique, for

each product, partial product rows to be stored can be

reduced from 12 to 6, i.e. for AC, BD, AD, and BC. When

the circuit design runs, power consumption and propagation

delay play an important role. In circuit optimization

techniques and MBE, both power and area can be lowered.

5.2. Partial Product Generator

Fig. 8 Block diagram to generate partial products

 Keeping in view the low power and low area of the

design, many techniques to generate partial products were

used in [19, 20]. Partial product rows go with 2’s

complement error correction and negation signal circuits.

But in the design, this approach is not followed; therefore,

multiplication uses fewer paths , which increases speed,

utilizes less power, and uses less area. Using the Booth

encoding technique, when signed numbers are multiplied ,

the operation requires two complements as the Booth
encoder generates negative signals.

 An integer’s two’s complement is typically created by

adding one to the number after every bit is complemented.

Six multiplexers are employed to handle the 12-bit complex

multiplication process. Figure 8 above shows a partial

product generator. Modified Radix-4, the main way that

Booth encoding speeds up multiplication is by lowering the

partial products that must be created and then added. Faster

computing and increased efficiency in digital multiplier

designs are directly correlated with this reduction.

 Reducing partial product rows to half of the multiplier

bits is the main advantage. In a traditional multiplier, a

partial product row is produced by each multiplier bit . This

would normally result in N rows of partial products for an

N-bit multiplier. Partial products to N/2 are cut in half by

using radix-4 encoding, which groups the multiplier bits so

that each group processes two bits simultaneously.

Register Register

Booth Encoder

Hierarchy of multiplier with Booth Encoding
Principle

X Y

Partial Product

Generator

Register with shift
logic

Carry save Addition

Array

Ripple Carry Adder

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

45

5.3. Carry Save Adder

 A simpler and quicker partial product addition stage

results from fewer partial product rows. Radix-4 Booth

encoding reduces the partial product rows for each product

(AC, BD, AD, and BC) from 12 to 6. This is for a 12-bit

complex multiplier. The whole multiplication procedure is

sped up as a direct result of this decrease in the number of

elements to be added together. It consists of an array of full

adders. It adds three or more partial products without

propagating carry. The design generates six rows of partial

products. All six rows of partial products are added using a

ripple carry adder. Since the ripple carries adder is too slow

and latency is also important in design, carry-save adders

are used for better speed. Four CSA trees are considered in

the design, one for each product. Each CSA tree will

compress a vector of partial products for its respective input
products.

 Carry-save adders, which are made especially to add

partial products with fewer transistors, are also incorporated

into the design to speed up the addition process. This is

important because the efficiency of their summing has a

major impact on the overall speed of multiplication, even

though Booth encoding decreases the number of partial

products. As each partial product of every product will be

up to 24 bits, each CSA tree needs to handle partial products

of up to 24 bits wide since the design is of a 12x12 complex

multiplier. Each CSA tree takes six inputs and compresses

them using 3:2 compressors that are full adders in layers.

Sum and carry each up to 24 bits are the outputs. Figure 9

represents the blocks of the carry save adder tree. Therefore,

each CSA tree outputs a sum of 24 bits and carry bits of 24,

which are not the final product.

Fig. 9 Carry save adder tree block diagram

 Figure 9 represents blocks of a carry save adder tree.

Therefore, each CSA tree outputs a sum of 24 bits and carry
bits of 24, which are not the final product.

5.4. Carry Propagate Adder (CPA)

 Sum of 24 bits and carry of 24 bits of each CSA use

CPA to get the final 24-bit products. For digital addition,

Carry Propagate Adders (CPAs) provide a fair trade-off

between speed and complexity, especially when contrasted

with more straightforward ripple carry adders. Despite not

being the fastest adder, CPAs are frequently utilized

because of their reasonable hardware complexity and

comparatively low latency when compared to other adder

types.

5.5. Combination of Real Products and Imaginary

Products

 Here, an addition of (BC+AD) is performed to get the

imaginary part and a subtraction of (AC-BD) to get the real

part; therefore, the Ripple carry adder is used. It takes output

from the CPA and finally generates the real part and

imaginary part. Two’s complement adders are used for the

real part. Figure 10 shows how the outputs of the CPA are

fed to the Ripple carry adder.

Fig. 10 Ripple carry adder block diagram

6. Implementation of Complex Multiplier
 The sophisticated multiplier is constructed using a

bottom-up methodology in this fully customized design.

Unlike semi-custom or FPGA-based designs, this full

custom methodology enables fine-grained circuit-level

optimization.

 The use of the “circuit optimization technique”

throughout the design is a key component of the originality.

To do this, the design must be optimized to use fewer

transistors at each step, which will result in a smaller silicon

area and reduced overall power consumption. These

increases in power and area efficiency are a result of this

careful transistor-level optimization.

 Complex multipliers are implemented using Cadence

tools in full custom design. The approach used is a bottom-

up approach. The increase in speed, low power, and

reduction of chip area are achieved by using radix-4 Booth

encoding and reducing the number of transistors using the

circuit optimization technique during the design of leaf cells

[23, 24].

 First, the leaf cells are designed. The leaf cells used in

the implementation of the complex multiplier are an

inverter, an input NOR gate, an XOR gate designed with

only 4-T, a transmission gate designed with 2T, a

multiplexer with two transmission gates, and a D-flip flop

with 10-T, which is used in registers. Then using these leaf

cells the next level blocks are designed like half adder, full

adder, 12-bit registers, 24-bit registers, booth encoder,

partial product generator (which generates the least

significant bit, and P1 generating the remaining bits), carry-

save adders, ripple carry adder and finally, multipliers and

integrated all the blocks to obtain the final implementation
of the complex multiplier.

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

46

 The “radix-4 modified Booth encoder” is incorporated

into the design. Because it efficiently reduces the number of

partial product rows (to n/2), this method is essential for

performance enhancement because it expedites the

multiplication process. The study emphasizes that lowering

the total number of transistors helps improve speed, low

power, and low space.

 The utilization of a “smaller number of transistors

overall” is made possible by the combination of circuit

optimization and radix-4 Booth encoding. This decrease in

the number of transistors indicates “less silicon area” and

helps the design achieve its “low power” and “increase in

speed” goals. The suggested design provides “low power

and less area as compared to reported literature” because of

these optimization techniques; the article makes this clear.

6.1. Booth Encoder Radix-4 Block

Using the design rules, the leaf cells are designed. They

are an inverter, three input gates, and a 2x1 multiplexer.

When employing simple Booth encoding, a multiplier’s

temporal complexity is usually O(n), where ‘n’ is the

number of multiplier bits. On the other hand, the temporal

complexity for modified Booth encoding with radix-r is

O(n/log₂(r)). The complexity is O(n/log₂(4)) = O(n/2) for

radix-4 (r=4). A straight increase in speed is indicated by

this mathematical reduction in complexity. A greater

number of bits can be processed per cycle with higher radix

encoding. This results in a faster execution time overall

since more of the multiplication operation is finished for

every clock cycle. When used in conjunction with circuit

optimization approaches, radix-4 modified Booth encoding

helps lower the overall number of transistors needed in the

design. Faster operation and less propagation delay can

result from fewer transistors.

6.1.1. Schematic

 Using the design rules, the leaf cells are designed. They

are an inverter, three input gates, and a 2x1 multiplexer.

When employing simple Booth encoding, a multiplier’s

temporal complexity is usually O(n), where ‘n’ is the

number of multiplier bits. On the other hand, the temporal

complexity for modified Booth encoding with radix-r is

O(n/log₂(r)). The complexity is O(n/log₂(4)) = O(n/2) for

radix-4 (r=4). A straight increase in speed is indicated by
this mathematical reduction in complexity.

 A greater number of bits can be processed per cycle with

higher radix encoding. This results in faster execution time

overall since more of the multiplication operation is finished

for every clock cycle. When used in conjunction with circuit

optimization approaches, radix-4 modified Booth encoding

helps lower the overall number of transistors needed in the

design. Faster operation and less propagation delay can result

from fewer transistors.

6.1.2. Symbol of the Booth Encoder

 Grouping multiplier bits for A and B is shown in

Figures 6 and 7, and these grouped signals are fed to the

inputs. The cadence tool uses a symbol editor to create the

symbol for the schematic drawing, which is shown below.

The next step is the test bench. This step is called pre-layout

simulation. This is done with a specter simulator. Figure 12

shows the symbol of the booth encoder.

Fig. 11 Booth encoder schematic

Fig. 12 Booth encoder symbol

6.1.3. Layout of the Booth Encoder

 Working with the physical layout will be more

challenging for the back-end designer. The design rules

should be followed very carefully, depending on the

technology; the layout should be drawn, and the contacts

and vias should be properly placed. One should think

properly and try to minimize the use of metal layers. The

propagation delay is one of the important factors to be

considered when layouts are drawn physically. By using the

Virtuoso layout editor, a CMOS physical layout is drawn.

Figure 13 shows the layout using 6 different metal layers for

the schematic of Figure 11.

Fig. 13 Booth encoder layout

6.1.4. Layout Extraction

 The Diva / Assura circuit extractor extracts the layout

and clearly shows parasitic resistance and capacitance. The

designer can check the propagation delay of the circuit at

this point using τ=RC.

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

47

6.1.5. Layout vs Schematic

 Using the hierarchy editor, both the layout symbol and

schematic symbol are created, and a test bench is created for

both.

6.1.6. Post Layout Simulation

 Waveforms obtained can be compared with the layout

and the schematic symbol for which the test bench was

created.

 The following individual blocks are used in the

Modified Booth Encoder.

Multiplexer

 The Multiplexer was designed with two transmission

gates. It has two inputs and one select line. Output is

generated based on the selection line.

 The inverter is designed with PMOS and NMOS

transistors. A three-input NOR gate is designed using a

standard concept.

6.2. Registers

 Leaf cells required for input 12-bit registers and output

24-bit registers are one-bit D flip-flops. 12-bit registers use

12-D flip-flops, and 24-bit registers use 24-D flip-flops.

These are designed with only 10 transistors , a D flip-flop.

Schematic symbols and layouts are shown in Figures 14,15,

and 16.

Fig. 14 Schematic of D-FF with 10 transistors

Fig. 15 D-FF layout with 10 transistors

Fig. 16 12-bit register schematic

Fig. 17 12-bit register layout

6.3. Partial Product Generator

 It generates six rows of 24-bit partial products. It

consists of two 12-bit input registers, six Booth encoders,

six 12-bit partial product generators, and six 24-bit registers

with shift logic. The symbol was generated, and the layout

was tested by Cadence tools after integrating all the required

sub-systems, as shown below in Figure 18.

Fig. 18 Schematic of partial product register

Fig. 19 Layout of partial product register

6.4. Complex Multiplier

 The complex multiplier is designed with Radix – 4

algorithms for partial product rows reduction and 10-T D

flip flop for registers also multiplexer is designed with two

transmission gates which are used in the booth encoder and

four transistor xor gate and transmission gate with two

transistors which are used in full adders and finally, design

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

48

utilized less power and low silicon area. Figure 20 shows

the Schematic of a Complex multiplier.

 The complex multiplier is verified functionally with the

test bench, and the layout in Figures 21, 22 to 29 represents

simulation results for the post-layout designs.

Fig. 20 Complex multiplier schematic

Fig. 21 Layout of complex multiplier

 This work mentions several specific circuit

optimization techniques used in the design to achieve less

area and power consumption. Radix-4 Modified Booth

Encoding (MBE) was used to reduce the number of partial

product rows. Reduced the number of Modified Booth

Encoders and used only two MBEs instead of four, which

helped reduce the overall transistor count.

 In the Optimized D flip-flop design, the registers use D

flip-flops designed using only 10 transistors. Multiplexers

with reduced transistor count are used in multiplexers

designed with only two transistors. The 10-transistor D flip-

flop was used as the leaf cell for the registers in the complex

multiplier design. This suggests the 10-transistor design was

chosen specifically for its efficiency and optimization. By

using this optimized D flip-flop design, the design reduces

the overall transistor count in the complex multiplier

architecture, which likely contributed to the lower power

consumption and area reported for the design.

 Optimized XOR gate and transmission gate designs

used in full adders use four-transistor XOR gates and two-

transistor transmission gates. Carry-save adders are used to

speed up the addition process of partial products. A bottom-

up approach was used in implementing the complex

multiplier, which likely contributed to optimizing the

overall design. Though several techniques exist for low-

power design, this work involves the circuit optimization

method to reduce the power. Circuit optimization

automatically leads to a reduction in area and less power

consumption, which indirectly increases the performance of

the design.

7. Results
 The design is implemented using Cadence tools for

12x12-bit signed and unsigned numbers and is simulated

using ADE with Spectre simulator for both pre-layout and

post-layout complex multiplier using 0.18µm technology.

The following unsigned numbers are given as inputs.

a=5 0000 0000 0101

b=3 0000 0000 0011

c=2 0000 0000 0010

d=4 0000 0000 0101

 The observed outputs of the complex multiplier after

post-simulation waveforms are shown below.

Real Part: -2 1111 1111 1111 1111 1111 1110

imaginary part: 26 0000 0000 0000 0000 0001 1010

Fig. 22 (a), (b) Waveforms for input

Fig. 23 (a), (b) Input waveforms

Fig. 24 O utput waveforms for the real part with

Fig. 25 O utput waveforms for imaginary part

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

49

The following signed numbers are applied as inputs.

a= 5 0000 0000 0101

b= 3 0000 0000 0011

c= -2 1111 1111 1110

d= 4 0000 0000 0100

The observed outputs after post-layout

simulation are as follows.

Real part -22 =1111 1111 1111 1111 1110 1010

imaginary part 14 =0000 0000 0000 0000 1110

 Figure 26 shows the input waveform of a and b, and

Figure 27 shows the input waveform for a and b.

Fig. 26 (a), (b) Waveforms for input

Fig. 27 (a), (b) Input waveforms

 Output waveforms of the Real part are shown in Figure

28, and the output waveforms of the imaginary part are

shown in Figure 28. Table 2 shows the analysis of dynamic,

standby and total power.

Fig. 28 Waveforms for real part imaginary part

Fig. 29 Waveforms for imaginary part

Table 2. Analysis of power

Design

Module

Dynamic

Power

Standby

Power

Total

Power

Booth

Encoder
108.7 µW 3.12 µW 111.82 µW

Multiplier 1828µW 697.4µW 2525.4 µW

Complex

multiplier
6.5mW 3.25mW 9.75 mW

The key performance factors evaluated for the proposed

12-bit complex multiplier design and Quantitative findings
are:

 Power consumption: The paper provides a quantitative

breakdown of the dynamic power, standby power, and

total power consumption for the Booth Encoder,

Multiplier, and overall Complex Multiplier blocks.

 Area/Transistor count: The design approach, including

techniques like using a reduced number of Booth

Encoders, optimized leaf cell designs, and a bottom-up

implementation, helped achieve lower overall transistor

count and area.

 Speed/Latency: The use of Carry-Save Adders helped

speed up the addition process compared to a Ripple

Carry Adder.

 Functional verification: The design was implemented

and functionally verified using Cadence tools,

including pre-layout and post-layout simulations.

8. Conclusion
 A thorough effort has been made to create a 12-bit

complex multiplier with a focus on optimizing for low

power, reduced area, and increased performance, which

makes it distinctive.

 Efficient Radix-4 Modified Booth Encoding, circuit

optimization approaches, design strategy, full custom

implementation, and performance gains through reduced

transistor count are the main innovative components.

 The proposed full custom design of a 12-bit complex

multiplier is designed using Cadence tools. The need for this

complex multiplier in digital processors is identified as Fast

Fourier Transform (FFT), which is capable of handling new

requirements in signal processing, which has mobilized the

world of high-performance digital signal processing.

 With the new emerging technologies, special co-

processors are being designed and used for many

applications where these processors need complex

multipliers, depending on the applications.

 The complex multiplier was designed with radix-4 by

using a circuit optimization technique that reduces

transistors during the design of leaf cells, to achieve less

area and less power. Further design can be done using 90nm,

45nm, and 28nm to reduce the area. Optimization

techniques like inserting sleep circuits in the architecture

can be used to further reduce power and finally attain low-

power area circuits.

A. Lakshmi et al. / IJECE, 12(8), 40-50, 2025

50

References
[1] Andrew D. Booth, “A Signed Binary Multiplication Technique,” The Quarterly Journal of Mechanics and Applied Mathematics, vol.

4, no. 2, pp. 236-240, 1951. [CrossRef] [Google Scholar] [Publisher Link]
[2] C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on Electronic Computers, vol. 13, no. 1, pp. 14-17, 1964.

[CrossRef] [Google Scholar] [Publisher Link]

[3] Taewhan Kim, William Jao, and Steve Weng Kiang Tjiang, “Arithmetic Optimization using Carry Save Adders,” Proceedings of the

35th Annual Design Automation Conference, pp. 433-438, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[4] Jung-Yup Kang, and J.L. Gaudiot, “A Fast and Well-Structured Multiplier,” Euromicro Symposium on Digital System Design,

Rennes, France, pp. 508-515, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[5] Rizalafande Che Ismail, and Razaidi Hussin, “High Performance Complex Number Multiplier using Booth-Wallace

Algorithm,” 2006 IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, pp. 786-790, 2006.

[CrossRef] [Google Scholar] [Publisher Link]

[6] P.K. Saha, A. Banerjee, and A. Dandapat, “High Speed Low Power Complex Multiplier Design Using Parallel Adders and

Subtractors,” International Journal on Electronic and Electrical Engineering, vol. 7, no. 11, pp. 38-46, 2009. [Google Scholar]

[7] Monika Hemnani et al., “Hardware Optimization of Complex Multiplication Scheme for DSP Application,” 2015 International

Conference on Computer, Communication and Control, Indore, India, pp. 1-4, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[8] K. Deergha Rao, Ch. Gangadhar, and Praveen K. Korrai, “FPGA Implementation of Complex Multiplier using Minimum Delay

Vedic Real Multiplier Architecture,” 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and

Electronics Engineering (UPCON), Varanasi, India, pp. 580-584, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[9] Duy Manh Thi Nguyen et al., “Design and Implementation of Complex Multiplier with Low Power and High Speed,” 2021 15th

International Conference on Advanced Computing and Applications (ACOMP), Ho Chi Minh City, Vietnam, pp. 215-219, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[10] Ansha Noushad, and A.R. Abdul Rajak, “VLSI Implementation of Complex Multiplier using Vedic Mathematics and Study its

Performance,” ARPN Journal of Engineering and Applied Sciences, vol. 16, no. 10, pp. 1058-1061, 2021. [Publisher Link]

[11] Mario Garrido et al., Hardware Architectures for the Fast Fourier Transform, Handbook of Signal Processing Systems, pp. 613-647,

2018. [CrossRef] [Google Scholar] [Publisher Link]

[12] Fahad Qureshi, Jarmo Takala, and Shuvra Bhattacharyya, Rotators in Fast Fourier Transforms, Embedded, Cyber-Physical, and IoT

Systems, pp. 245-262, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[13] Carl Ingemarsson et al., “Efficient FPGA Mapping of Pipeline SDF FFT Cores,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 25, no. 9, pp. 2486-2497, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[14] Jakub Žádník, and Jarmo Takala, “Low-Power Programmable Processor for Fast Fourier Transform based on Transport Triggered

Architecture,” 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, pp. 1423-

1427, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[15] Shiann-Rong Kuang, Jian-Ping Wang, and Cang-Yuan Guo, “Modified Booth Multipliers with a Regular Partial Product Array,”

IEEE Transactions on Circuits and Systems II: Express Briefs , vol. 56, no. 5, pp. 404-408, 2009. [CrossRef] [Google Scholar]

[Publisher Link]

[16] Ravindra P. Rajput, and M.N. Shanmukha Swamy, “High Speed Modified Booth Encoder Multiplier for Signed and Unsigned

Numbers,” 2012 UKSim 14th International Conference on Computer Modelling and Simulation, Cambridge, UK, pp. 649-654, 2012.

[CrossRef] [Google Scholar] [Publisher Link]

[17] Amir Fathi et al., “Low Latency, Glitch-Free Booth Encoder-Decoder for High-Speed Multipliers,” IEICE Electronics Express, vol.

9, no. 16, pp. 1335-1341, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[18] Amir Fathi et al., “Ultra High Speed Modified Booth Encoding Architecture for High-Speed Parallel Accumulations,” IEICE

Transactions on Electronics, vol. 95, no. 4, pp. 706-709, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[19] Venkata Krishna Odugu, C. Venkata Narasimhulu, and K. Satya Prasad, “Design and Implementation of Low Complexity Circular

Symmetric 2D FIR Filter Architectures,” Multidimensional Systems and Signal Processing, vol. 31, pp. 1385-1410, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[20] Zahra Ebrahimi et al., “Rapid: Approximate Pipelined Soft Multipliers and Dividers for High Throughput and Energy Efficiency,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 3, pp. 712-725, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[21] Aloke Saha et al., “Novel CMOS Multi-Bit Counter for Speed-Power Optimization in Multiplier Design,” AEU - International

Journal of Electronics and Communications, vol. 95, pp. 189-198, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[22] Lakshmanan, M. Othman, and M.A.M. Ali, “High Performance Parallel Multiplier Using Wallace-Booth Algorithm,” Proceedings

of the 9th International Conference on Neural Information Processing. Computational Intelligence for the E-Age, Penang, Malaysia,

pp. 433-436, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[23] S.M. Sait, A.A. Farooqui, and G.F. Beckhoff, “A Novel Technique for Fast Multiplication,” Proceedings International Phoenix

Conference on Computers and Communications, USA, pp. 109-114, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[24] B.P.R. Che Ismail et al., “Performance Enhancement and Reduced Area Parallel Multiplier,” IEEE National Symposium on

Microelectronics, pp. 252-258, 2005. [Google Scholar]

https://doi.org/10.1093/qjmam/4.2.236
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Signed+Binary+Multiplication+Technique&btnG=
https://academic.oup.com/qjmam/article-abstract/4/2/236/1874893
https://doi.org/10.1109/PGEC.1964.263830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.+S.+Wallace%2C+A+Suggestion+for+a+Fast+Multiplier&btnG=
https://ieeexplore.ieee.org/abstract/document/4038071
https://doi.org/10.1145/277044.277166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Arithmetic+Optimization+using+Carry+Save+Adders&btnG=
https://dl.acm.org/doi/abs/10.1145/277044.277166
https://doi.org/10.1109/DSD.2004.1333319
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fast+and+Well-Structured+Multiplier&btnG=
https://ieeexplore.ieee.org/abstract/document/1333319
https://doi.org/10.1109/SMELEC.2006.380744
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+performance+complex+number+mul-tiplier+using+Booth-Wallace+algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/4266727
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+Speed+Low+Power+Complex+Multiplier+Design+Using+Parallel+Adders+and+Subtractors&btnG=
https://doi.org/10.1109/IC4.2015.7375548
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+optimization+of+complex+multiplication+scheme+for+DSP+application&btnG=
https://ieeexplore.ieee.org/abstract/document/7375548
https://doi.org/10.1109/UPCON.2016.7894719
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+complex+multiplier+using+minimum+delay+vedic+real+multiplier+architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/7894719
https://doi.org/10.1109/ACOMP53746.2021.00039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+implementation+of+complex+multiplier+with+low+power+and+high+speed&btnG=
https://ieeexplore.ieee.org/abstract/document/9668228
https://www.arpnjournals.com/jeas/volume_10_2021.htm
https://doi.org/10.1007/978-3-319-91734-4_17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+architectures+for+the+fast+Fourier+transform&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-91734-4_17
https://doi.org/10.1007/978-3-030-16949-7_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Qureshi%2C+F.%2C+Takala%2C+J.%2C+%26+Bhattacharyya%2C+S.+Rotators+in+Fast+Fourier+Transforms&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-16949-7_11
https://doi.org/10.1109/TVLSI.2017.2710479
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+FPGA+mapping+of+pipeline+SDF+FFT+cores&btnG=
https://ieeexplore.ieee.org/document/7959623
https://doi.org/10.1109/ICASSP.2019.8682289
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-power+programmable+processor+for+fast+Fourier+transform+based+on+transport+triggered+architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/8682289
https://doi.org/10.1109/TCSII.2009.2019334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+Booth+Multipliers+with+a+Regular+Partial+Product+Array&btnG=
https://ieeexplore.ieee.org/abstract/document/4912330
https://doi.org/10.1109/UKSim.2012.99
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+speed+Modified+Booth+Encoder+multiplier+for+signed+and+unsigned+numbers&btnG=
https://ieeexplore.ieee.org/abstract/document/6205523
https://doi.org/10.1587/elex.9.1335
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low+latency%2C+glitch-free+booth+encoder-decoder+for+high-speed+multipliers&btnG=
https://www.jstage.jst.go.jp/article/elex/9/16/9_1335/_article/-char/ja/
https://doi.org/10.1587/transele.E95.C.706
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ultra+High+Speed+Modified+Booth+Encoding+Architecture+for+High-Speed+Parallel+Accumulations&btnG=
https://www.jstage.jst.go.jp/article/transele/E95.C/4/E95.C_4_706/_article
https://doi.org/10.1007/s11045-020-00714-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+implementation+of+low+complexity+circular+symmetric+2D+FIR+filter+architectures&btnG=
https://link.springer.com/article/10.1007/s11045-020-00714-3
https://doi.org/10.1109/TCAD.2022.3184928
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rapid%3A+Approximate+pipelined+soft+multipliers+and+dividers+for+high+throughput+and+energy+efficiency&btnG=
https://ieeexplore.ieee.org/abstract/document/9802734
https://doi.org/10.1016/j.aeue.2018.08.015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+CMOS+multi-bit+counter+for+speed-power+optimization+in+multiplier+design&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1434841118308574
https://doi.org/10.1109/SMELEC.2002.1217859
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+Performance+Parallel+Multiplier+Using+Wallace-Booth+Algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/1217859
https://doi.org/10.1109/PCCC.1995.472503
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+F.+Sadiq+M.+Sait%2C+Gerhard+Beckoff%2C+A+Novel+Technique+for+Fast+Multiplication&btnG=
https://ieeexplore.ieee.org/abstract/document/472503
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Enhancement+and+Reduced+Area+Parallel+Multiplier%2C&btnG=

