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Abstract - The rapid growth of biological sequence data necessitates efficient computational methods for sequence alignment, 

a fundamental task in bioinformatics. In this study, we provide a thorough overview of the literature on the topic of employing 

Dynamic Programming (DP) to speed up methods for biological sequence alignment using Field -Programmable Gate Arrays 

(FPGAs). Needleman-Wunsch and Smith-Waterman are two examples of DP algorithms that ensure optimum alignment; 

nonetheless, they are computationally demanding. FPGAs offer a promising platform for accelerating these algorithms by 

exploiting parallelism and hardware customization. This survey reviews existing re search and methodologies employed to 

implement sequence alignment algorithms on FPGAs, comparing their performance, scalability, and energy efficiency against 

traditional CPU-based approaches. We also discuss the challenges and opportunities associated wit h FPGA-based acceleration, 

including data dependencies, reconfigurability, and optimization techniques. Hardware -software co-design and advancements 

in FPGA architectures can further enhance performance and scalability in biological sequence alignment task s. Alignment 

accuracy may be improved by using Machine Learning (ML) models like Convolutional Neural Networks (CNNs) to extract 

features from raw sequence data. In order to facilitate future developments in this dynamic area, the study seeks to enlighte n 

scholars and practitioners on the cutting-edge acceleration methods for biological sequence alignment that are based on FPGAs. 

Keywords - Dynamic Programming, FPGA accelerator, Needleman-Wunsch Algorithm, Sequence alignment, Smith-Waterman 

Algorithm. 

1. Introduction  
Sequence alignments serve as a robust method for 

assessing similarities between related DNA or protein 

sequences. These alignments serve to encapsulate diverse 

insights regarding the aligned sequences, such as shared 

evolutionary lineage or analogous structural roles . Aligning 

letters from two or more sequences implies the hypothesis of 

a shared ancestral origin.  

DNA is like a twisted ladder made up of two long strings, 

and each string is composed of basic elements referred to as 

nucleotides. The four nucleotides are Adenine (A), Guanine 

(G), Thymine (T), and Cytosine (C). The two strings of DNA 

run in opposite directions, like a zipper. Each nucleotide in 

one string pairs up with a matching one in the other string. 

They stick together because of specific chemical attractions. 

A always pairs with T, and C with G. This pairing is important 

because the sequence of nucleotides in one string determines 

the sequence in the other. So usually, we only need to know 

the sequence of one string, and the other one can be figured 

out from it. The building blocks of proteins are amino acids, 

which chain together and interact to give proteins their unique 

properties. A single chain of amino acids is like a line, with 

each amino acid arranged in a specific order. There are twenty 

common amino acids, which we represent with letters like A, 

C, D, and so on. Each amino acid is defined by a triplet 

sequence of DNA building blocks known as nucleotides, 

termed a codon. For instance, the codon UGG means the 

amino acid Tryptophan, abbreviated as W. Some amino acids 

have just one codon, while others have up to six. RNA is a 

vital cellular molecule with many jobs, including building  

proteins and regulating which genes are turned on or off, as 

well as genetic expression. While RNA and DNA share a 

similar design, there are some important distinctions. Like 

DNA, RNA is made up of recurring building blocks , i.e. 

nucleotides. In addition to A, C, and G, RNA incorporates 

Uracil (U) instead of Thymine (T), which is found in DNA. 

DNA sequences, and the proteins they make, change over 

time through mutation and natural selection. Mutations can 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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happen in different ways, but usually, they involve replacing 

one building block, i.e. a nucleotide, with another, or adding 

or removing one or more nearby building blocks. Similarly, in 

proteins, mutations often involve swapping one amino acid for 

another, or adding or removing one or more nearby amino 

acids. Unlike shuffling a deck of cards, there is no easy way 

to switch the order of building blocks in DNA or proteins. So, 

when we compare two DNA or protein sequences to see if they 

come from a common ancestor, the matching parts line up 

directly, without any mixing or swapping. 

Basecalling is an essential computational stage in 

nanopore sequencing that converts complex electrical signals 

into a recognizable DNA base sequence or reads. Sequence 

alignment helps to identify similarities between sequences; 

therefore, it is possible to know the function of newly 

basecalled sequences by comparing them with sequences 

already present in the database. Additionally, it allows 

scientists to create phylogenetic trees, which are diagrams that 

depict the evolutionary relationships between the analysed 

sequences. Thus, it helps in determining evolutionary 

similarity, especially in closely related species. It becomes 

possible to predict the presence of more members within gene 

families due to sequence alignment. It allows researchers to 

predict the functions of the unknown sequences by identifying 

conserved sequence patterns and motifs. Thus, it helps 

identify regions within DNA/proteins that have structural and 

functional similarity. 

Field-Programmable Gate Arrays (FPGAs) are versatile, 

programmable hardware devices made up of configurable 

logic blocks such as Look-Up Tables (LUTs), memory, and 

DSPs, connected via a programmable routing fabric. FPGAs 

are widely used for prototyping and accelerating applications 

due to their reconfigurability and parallel processing 

capabilities. This makes them suitable for tasks like DNA 

sequence alignment, which involve irregular parallelism. By 

mapping alignment algorithms onto FPGAs, researchers 

achieve faster and more efficient processing compared to 

traditional CPU-based systems. Substantial advancements 

have been made in utilizing FPGAs for accelerating DNA 

sequence alignment algorithms based on Dynamic 

Programming, but most of the existing FPGA designs are 

optimized for specific sequence lengths or fixed scoring 

schemes. There is a lack of adaptive, scalable architectures 

that can efficiently handle varying read lengths and alignment 

configurations, which are common in real-world genomic 

datasets. When dealing with real-world datasets, FPGA 

implementations often suffer from inefficient memory 

management. Again, it is observed that there is limited 

exploration of hardware-aware optimization techniques to 

reduce LUT, BRAM, and power usage while maintaining 

alignment accuracy. Many FPGA-based implementations 

oversimplify alignment by neglecting biologically relevant 

features such as affine gap penalties, ambiguous bases, or 

multiple sequence alignment. This limits their applicability in 

comprehensive genomic analysis. To overcome these gaps in 

research, it is expected from researchers to design more 

scalable, biologically accurate, and resource-optimized FPGA 

architectures. 

The aim of this paper is to provide a detailed and 

systematic review of how FPGAs have been utilised to 

accelerate biological sequence alignment algorithms based on 

dynamic programming techniques. It seeks to analyse and 

compare various FPGA architectures and implementation 

strategies, discuss design challenges and trade-offs, and 

identify potential areas for future research and improvement 

in the field of hardware-accelerated bioinformatics. The 

paper's structure is as follows: Section 2 focuses on the 

biological and computational materials used for sequence 

alignment and compares and contrasts the different methods 

used for this process. Section 3 describes the scoring system 

used for the dynamic programming approach of sequence 

alignment. Section 4 reviews studies focused on FPGA 

acceleration to improve Dynamic Programming (DP) 

approaches. In Section 5, the difficulties in employing FPGA 

acceleration for sequence alignment are discussed, followed 

by a brief overview of the entire work in Section 6. 

2. Materials and Methods 
The key biological material required for DNA sequence 

alignment is DNA extracted from biological samples, which 

can be sourced from humans, animals, plants, bacteria, 

viruses, or any organism under study. Technical materials 

include DNA extraction kits to isolate DNA, PCR reagents to 

amplify DNA segments before sequencing, and sequencing 

technologies such as Illumina, PacBio, and Oxford Nanopore. 

Illumina is a widely used sequencing technology, known for 

producing short reads with high accuracy and throughput. It 

utilizes a Sequencing-By-Synthesis (SBS) method, where 

nucleotides are added one by one, and fluorescently labeled 

nucleotides are detected as the DNA strand is synthesized. 

However, Illumina's read lengths (100–300 base pairs) limit 

its ability to resolve complex genomic regions , such as large 

structural variants and repetitive sequences. Pacific 

Biosciences (PacBio) offers Single Molecule Real-Time 

(SMRT) sequencing, a long-read technology that generates 

sequences thousands of base pairs long, which is 

advantageous for resolving complex genomic regions. 

However, PacBio has a lower throughput compared to 

Illumina, making it more expensive for large-scale projects. 

Oxford Nanopore Technologies (ONT) uses nanopore 

sequencing, which is capable of real-time, ultra-long reads by 

passing DNA through tiny pores. ONT stands out for its ability 

to generate real-time data and its portability, with devices like 

the MinION. However, ONT has a higher raw error rate (~5-

15%) compared to Illumina and PacBio, though 

improvements in software have s ignificantly enhanced 

accuracy. Each technology has specific strengths and 

weaknesses, and the choice of sequencing platform depends 

on the goals of the research project. Once DNA is extracted 
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and sequenced, the raw sequence data (comprising nucleotides 

A, T, C, G) is aligned. Computational materials for DNA 

sequence alignment include input sequences (query 

sequences) and reference genomes. DNA sequences are stored 

in formats like FASTA (which contains only the sequences) 

and FASTQ (which includes sequence quality scores). 

Alignment tools like BLAST, Burrows-Wheeler Aligner 

(BWA), Bowtie, and tools for multiple sequence alignment, 

such as MAFFT, ClustalW, and MUSCLE, are commonly 

used for sequence comparison and analysis. Aligning large 

datasets often requires significant computational power. Some 

modern sequence aligners leverage GPUs for faster 

processing, FPGAs to accelerate alignment, and cloud 

platforms like Amazon Web Services or Google Cloud to 

manage large-scale projects. Databases such as GenBank 

(NCBI), ENSEMBL, RefSeq, European Nucleotide Archive 

(ENA), and DNA Data Bank of Japan (DDBJ) store vast 

collections of nucleotide sequences and are frequently used as 

reference points for DNA sequence alignment. 

Fig. 1 Dot Plot Matrix[3] 

 
Aligning sequences to find similarities can be done in 

different ways. Two common methods are Dynamic 

Programming (DP) and heuristics. The easiest way to check 

the similarity of two sequences is a dot plot [3]. This is a kind 

of grid (Matrix) where the sequences are placed along the 

sides. A dot is positioned at each matrix intersection where the 

respective elements from both sequences match (i.e., where 

rows and columns display the same letter). Diagonal lines of 

dots indicate areas of similarity between the two sequences, as 

illustrated in Figure 1. The time and space complexity of the 

Dot plot Matrix approach is O(mn), where m and n are the 

lengths of the two sequences being compared. DP algorithms 

determine the best solution by considering all potential 

approaches to address a problem. This approach is used to 

determine the best solution for complex problems by dividing 

them into more manageable subproblems. This method is 

applicable to problems where these subproblems overlap. By 

merging the solutions of these smaller subproblems, we can 

derive the final solution. After solving a particular 

subproblem, its solution is stored in memory to avoid 

redundant computations of the same subproblem. DP 

algorithms discover the optimal solution by reviewing all 

potential methods to tackle a problem [13]. Some examples of 

DP algorithms used for sequence alignment include the 

Needleman-Wunsch (N-W) Algorithm, the Smith-Waterman 

(S-W) Algorithm, Hirschberg, and Miller-Myers. 

Problem-solving through a heuristic approach relies on 

past experiences, observations, and insights. While this 

method offers a solution, it does  not guarantee optimal results 

as it makes assumptions about where or how to find the best 

solution. However, this approach can expedite the original 

problem-solving process. Unlike DP algorithms that explore 

all potential solutions, which can be time-intensive, focusing 

on the most likely methods to solve a problem can 

significantly reduce computation time. Examples of a 

heuristic approach for sequence alignment are the Basic Local 

Alignment Tool (BLAST) [4], FASTA, etc. 

Sequence alignment techniques are grouped into global 

and local categories based on the scope of the alignment 

(entire sequences vs. subsequences) and the specific 

objectives or criteria used to evaluate and optimize the 

alignment (maximizing overall similarity vs. identifying local 

similarities). One goal of global approaches is to align the 

reference and the search/query sequences, or as many 

characters as feasible, from the beginning to the end of both 

sequences. The Dot plot, the N-W algorithm, and the 

Hirschberg method are all examples of global alignment 

techniques. Dot plot uses a basic search algorithm, but 

Hirschberg and N-W use dynamic programming [3]. Aiming 

to identify brief portions of similarity between two sequences , 

specifically the query and database sequences, local 

approaches differ from global methods. S-W and Miller-

Myers are two examples of DP approaches; FASTA and 

BLAST are two examples of heuristic-based approximation 

procedures. 

Multiple Sequence Alignment (MSA) and Pairwise 

Sequence Alignment (PSA) are two other ways that sequence 

alignment techniques are categorized according to the number 

of sequences that need to be aligned, the particular goals that 

need to be achieved, and the applications that need to be 

implemented. PSA compares two biological sequences (like 

proteins or DNA) to find matching regions. These matches 

might mean the sequences are related in function, structure, or 

how they evolved.  

The dot-plot method, DP methods like    S-W and N-W, 

and heuristic methods like FASTA and BLAST are examples 

of PSA. MSA involves aligning three or more biological 

sequences of comparable length. By analyzing the results from 

MSA applications, one can infer homology and examine the 

evolutionary connections between the sequences. MSA can be 

conducted using either exhaustive or heuristic methods. 

Exhaustive alignment entails evaluating all potential 

alignments simultaneously. 
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Fig. 2 Classification of sequence alignment methods  

 

A multidimensional search matrix, resembling the two-

dimensional matrix utilized in dynamic programming for 

pairwise alignment, is necessary for executing multiple 

sequence alignment with the exhaustive algorithm. The 

progressive technique constructs multiple alignments 

gradually, using pairwise similarity as a foundation. It is 

termed "progressive" because it aligns sequences in a 

sequential, step-by-step fashion. The classification is reflected 

in Figure 2. 

3. Scoring System for DP Alignment Process  
By assessing all potential alignments and selecting the DP 

matrix route that has the highest total alignment score, the DP 

alignment technique seeks to identify the ideal alignment. The 

scoring system is crucial for determining the optimal 

alignment by assigning scores to matches, mismatches, and 

gaps based on the similarity or dissimilarity between aligned 

residues or bases. The scoring matrix and scoring calculation 

methods guide the DP algorithm in efficiently exploring the 

solution space and identifying the best alignment between  

sequences.  

 A C G T 

A  1 -1 -1 -1 

C -1  1 -1 -1 

G -1 -1  1 -1 

T -1 -1 -1  1 

Fig. 3 Similarity matrix 

3.1. Similarity Matrix 

When two aligned sequences of nucleotides or amino 

acids are identical, a Match Score is given. Similar residues or 

bases are more likely to align when the match score is positive. 

A mismatch score is given if there is a difference between two 

matched sequences of nucleotides or amino acids. 

Mismatched residues or bases are penalized when their 

mismatch score is negative. A similarity matrix is utilized to 

capture all probable letter pairings along with their respective 

scores. The similarity matrix for the most basic system (for 

which the scores are match = {1}, mismatch = {-1}, indel = {-

1}) is represented as shown in Figure 3. There are many 

substitution matrices, like Blocks Amino Acid Substitution 

Matrices (BLOSUM (50, 62)) or Point Accepted Mutation 

(PAM (80, 250)), available to compare sequences during 

alignment. 

3.2. Gap Penalties 

During sequence alignment, gaps, also known as indels 

(insertions or deletions), frequently occur. Occasionally, these 

gaps can be quite extensive. From a biological perspective, it 

is more plausible for a significant gap to result from a single 

large deletion rather than several individual deletions. 

Therefore, scoring two small indels should be penalized more 

harshly than scoring one large indel. A commonly employed 

method to address this is to assign a higher score for initiating 

a new gap (gap-opening penalty) and a lower score for each 

subsequent nucleotide or amino acid added to extend the 

existing gap (gap-extension penalty). In a system with a linear 

gap penalty, the points for creating and maintaining a gap are 

the same. 

                          𝑊𝑘 = 𝑘𝑊1                                      (1) 

Here in Equation 1, 𝑊𝑘  represents the cost of a single 

gap, with k denoting the gap length. An affine gap penalty 

distinguishes between gap opening and gap extension. 

                                 𝑊𝑘  = 𝑢𝑘 + 𝑣                              (2) 

Here in Equation 2, v > 0 serves as the penalty for gap 

opening, while u > 0 represents the penalty for gap extension. 

Compared to linear gap penalty, affine gap functions enhance 

the applicability of sequence alignment algorithms to 

biological sequences [23]. In the context of biological 

sequences, it's logical to assign a larger penalty for initiating 

Sequence alignment Methods 

Global Local 

Dot plot Hirschberg N-W Algo. S-W Algo. Miller-Myers 
FASTA BLAST 
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gaps while keeping a lesser penalty for extending them, i.e.    v 

> u 

3.3. Scoring Matrix 

The score matrix H is ordered as (n+1) × (m+1), where 

m is the length of the reference sequence and n is the length of 

the query sequence. The elements of the scoring matrix, 𝐻𝑖, 𝑗 
(where i is the row index and j is the column index) of the    S-

W method, taking into account the linear gap penalty, are 

determined by Equation 3.  

                 𝐻𝑖 ,𝑗=𝑚𝑎𝑥

{
 

 
0

𝐻𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝐻𝑖−1,𝑗 + 𝑊(1)

𝐻𝑖,𝑗−1 +𝑊(1)  

                   (3)  

Similarly, the elements of the scoring matrix of the N-W 

method, considering the linear gap penalty, are calculated 

using Equation 4. 

                   𝐻𝑖 ,𝑗=𝑚𝑎𝑥 {

𝐻𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝐻𝑖−1,𝑗 + 𝑊(1)

𝐻𝑖 ,𝑗−1+ 𝑊(1)

                (4) 

Where 𝑠(𝑎𝑖 , 𝑏𝑗)  is the similarity score of comparing 𝑎𝑖    

with   𝑏𝑗 and  W(1) is the penalty for a mismatch. 

The three steps of sequence alignment using the DP 

approach are matrix initialization, matrix filling(scoring) and 

traceback.  

 

3.3.1. Matrix Initialization 

The two-dimensional matrix, with dimensions (m+1) × 

(n+1), is initially populated with zeros. This is followed by the 

first row and column of the matrix being penalized for gaps. 

The top-left cell (0,0) will typically be initialized with a score 

of 0. 

 

3.3.2. Fill the DP Matrix 

Cell values are calculated using the formula given by 

equations (3) or (4) for S-W or N-W respectively. The process 

is iterated through the DP matrix cell by cell, calculating the 

alignment scores based on the recurrence relations using the 

scoring scheme. The completely filled DP matrix for 

alignment using the S-W algorithm is shown in Table 1. 

 

3.3.3. Traceback 

To find the optimal alignment path, begin with the cell or 

cells with the highest score in the DP matrix and use traceback 

to move across the matrix. Based on the traceback path, 

construct the aligned sequences by inserting gaps where 

necessary to align the sequences optimally. As S-W is a local 

alignment (interested in short patches of similarity), the 

traceback process starts with the cell having the highest score 

and stops when zero is encountered [1], whereas N-W is a 

global alignment method, so the traceback starts from the 

bottom rightmost cell and stops when zero is encountered [2]. 

 
Table 1. DP Matrix for S-W Algorithm 

 - A G C G A 

- 0 0 0 0 0 0 

A 0 1 0 0 0 1 

C 0 0 0 1 0 0 

G 0 0 1 0 2 0 

A 0 1 0 0 0 3 

A 0 1 0 0 0 1 

 

Table 1 shows the results of calculating the dynamic 

programming matrix H and the tracing back route, which is 

shown in bold. The scoring scheme defined here is match = 1, 

mismatch -1 and gap = -1. Table 2 lists the methods for 

sequence alignment along with their respective time and space 

complexity. Assuming a Reference sequence length of m and 

a Query sequence length of n, the temporal complexity of each 

of these methods is O(mn). 

4. FPGA Acceleration of DNA Sequence 

Alignment Methods 
The DP method calculates items inside the scoring matrix 

for about 98.6% of its execution time when executed on a 

Central Processing Unit (CPU) [3]. So, to get better results 

than what can be achieved with software on a regular CPU. It 

is necessary to speed things up using dedicated hardware. 

Separate from the CPU, a hardware accelerator is a piece of 

hardware that is purpose-built to increase this acceleration.  

 

Deploying it on multiple platforms , including Graphical 

Processing Units (GPUs), CPUs, and FPGAs , has been the 

focus of efforts to speed up the method or its computationally 

heavy components. FPGAs are reconfigurable computing 

devices where algorithms are mapped directly onto 

fundamental processing logic components, such as NAND 

gates. While CPUs and GPUs are versatile and commonly 

utilized for a range of computing functions . 
 

Table 2. Comparisons of sequence alignment algorithms 

Method Type 
Search 

method 

Time 

complexity 

Space 

complexity 

Dot matrix global Basic O(mn) O(mn) 

Needleman 
Wunsch 

global DP O(mn) O(mn) 

Hirschberg global DP O(mn) O(m+n) 

Smith 

Waterman 
local DP O(mn) O(mn) 

Miller-
Myers 

local DP O(mn) O(m+n) 

Fasta Local Heuristic O(mn) O(mn) 

Blast Local Heuristic O(mn) O(20w+mn). 
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FPGAs provide a distinct blend of features, including 

reconfigurability, parallelism, low latency, high throughput, 

energy efficiency, scalability, and real-time processing, 

making them exceptionally suitable for enhancing sequence 

alignment algorithms' speed. By harnessing FPGAs' inherent 

parallelism and customization capabilities, substantial 

performance enhancements and computational efficiency can 

be achieved compared to conventional CPU and GPU-centric 

methods for sequence alignment [5]. To reduce the O(mn) 

complexity usually associated with the matrix filling step, it is 

helpful to compute several elements of the H matrix 

simultaneously. Nevertheless, this method becomes more 

complicated due to data dependencies. Each 𝐻𝑖, 𝑗 value relies 

on the values of three adjacent entries 𝐻𝑖−1,−1, 𝐻𝑖−1,𝑗 , and 

𝐻𝑖,𝑗−1. In addition, there are three nearby values that are 

dependent on each of these neighboring entries. This pattern 

of reliance is essentially applicable to all other entries in the 

area. Due to their placement outside of each other's data 

dependence zones, all items inside each anti-diagonal may be 

computed concurrently. Figure 4 displays an example of an H 

matrix for two sequences, where the cells along the anti-

diagonal bands (highlighted in the same color) represent 

elements that can be calculated concurrently. The greatest 

number of elements that can be calculated simultaneously is 

determined by the length of the longest anti-diagonal. The 

bold diagonal arrow signifies the direction of computation 

advancement. With a maximum of 5 cells that may be 

calculated simultaneously, this calculation requires at least 9 

cycles due to the 9 anti-diagonals [6]. 

 - A G C G A 

- 0 0 0 0 0 0 

A 0 1 0 0 0 1 

C 0 0 0 1 0 0 

G 0 0 1 0 2 0 

A 0 1 0 0 0 3 

A 0 1 0 0 0 1 

Fig. 4 Sample H matrix where the elements in the antidiagonal band are 
computed in paralle l  

The authors of [7] looked at how using bespoke 

instructions on an FPGA board may improve the 

computational processing time of the SW method. For the sake 

of comparison, the S-W algorithm is first implemented in the 

C language. Based on the current letters being compared, the 

scores and gaps from nearby cells, and the assessment model 

in the C code, each cell in the S-W matrix is given a score. The 

most computationally intensive part of the program, the 

evaluation module, is replaced by an FPGA Custom 

Instructions (CI) created in Verilog by the FPGA accelerator. 

The Nios II microprocessor, known as Altera, is used to 

instantiate these CI on the FPGA. After that, the hardware-

accelerated version's runtime was evaluated and compared to 

that of the pure software version to find out how much faster 

the processing was. The results showed that the average 

processing time was cut by 287% using the hardware-

accelerated approach. Thus, it seems that using FPGA-specific 

instructions might be a great way to further genomic sequence 

searching research. 

An approach to fast sequence alignment using Run Time 

Reconfiguration (RTR) is presented in [8]. RTR is the capacity 

to change the hardware configuration of an FPGA while the 

system is running. Unlike traditional hardware design, where 

the logic and connections are fixed after the design is 

synthesized and implemented, RTR allows for dynamic 

changes to the FPGA's configuration. In an RTR-enabled 

FPGA system, the design is partitioned into multiple 

configurations or "tiles." Each tile represents a specific 

function or operation within the application or algorithm. 

During system operation, the FPGA can switch between these 

configurations based on the requirements of the task at hand. 

According to [9], using run-time reconfiguration significantly 

enhanced the performance of the S-W algorithm. The overall 

time it took to run the method went down from 6,461 seconds 

to just over 100 seconds, and the time allotted for calculating 

the 𝐻i,j matrix elements was down by about a third. This 

signifies a speed enhancement of around 64 times compared 

to the implementation relying solely on software.   

 
Fig. 5 Systolic array [6] 

FPGAs use custom hardware building blocks named 

Processing Elements (PEs). Each PE can compare a pair of 

sequence elements in a single clock cycle. By connecting these 

PEs in a special grid or line (systolic arrays), FPGAs can 

perform many comparisons in parallel, making sequence 

alignment much faster. In each stage, data is received by one 

or more nearby elements (e.g., North and West), processed, 

and then sent in the opposite direction (e.g., South and East) 

by each Processing Element (PE). Matrix multiplication and 
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other systolic array operations work by taking one matrix at a 

time and sending it down the array row by row. Another 

matrix is simultaneously added to the array, starting from the 

left side and working its way to the right, column by column. 

Each processor processes a whole row and column before 

moving on to the next set of fake data. After this is done, the 

array is used to hold the result of the multiplication, which 

allows it to process the array row by row or column by 

column, depending on the user's preference. Figure 5 shows 

the fundamental configuration of a systolic array. M and N are 

the two input vector arrays here. In most cases, a preset 

procedure is used to extract the value Uij from inside the 

processing cells. Giga Cell Updates Per Second (GCUPS) is a 

common metric measuring DP algorithm performance. Here, 

a “cell" typically refers to an element in a DP matrix used to 

score the alignment. Each cell update involves calculating a 

new value based on the alignment score of neighboring cells, 

considering possible matches, mismatches, and gaps. In 

sequence alignment using a systolic array, GCUPS measures 

the system’s performance and efficiency. This proves that the 

systolic array can update the dynamic programming matrix 

with one billion cells per second. 

The formula to get GCUPS is GCUPS = (n × m /t) × 

10^9, where n and m are the sequence lengths and t is the 

calculation time. When working with huge biological datasets, 

this parameter becomes even more important for determining 

the system's computing capability. High-throughput 

processing is vital in these cases. The systolic array might be 

fed several data sets all at once, according to the authors of 

[10]. A high-speed linear systolic array was used to implement 

the S-W algorithm. The goal was to find a way around the 

limitations caused by the I/O bus. The scoring matrix, which 

is the edit-distance matrix, was divided into four-element 

clusters so that each systolic cell could analyze two data points 

at the same time. As a result, the data is sent over the bus with 

two nucleotides packed together, which makes the processing 

speed twice as fast. 

An improved linear systolic array is used to construct the 

S-W method in [11]. The method of generating PE included 

merging two processing units into a compact cell. To 

determine the edit distance between the reference and test 

sequences, the compact cell that is so generated is used. This 

cell utilizes 3 Xilinx Vertex slices. It enables loading both 

sequences into the system, avoiding the need for the runtime 

configuration. Successful verification of the implementation 

was achieved with the assistance of the Pilchard platform, 

which offers a memory-mapped bus that is 64 bits in width 

and operates at 133 MHz. 

A new approach to meeting the need for high-throughput 

processing with minimal FPGA board resources is detailed in 

[12]. Alignment Pointer Generation Unit (APGU), Accurate 

Memory Address Generator (AMAG), Weight Matrix (WM), 

and Alignment Matrix (AM) are the components of the 

hardware circuitry. In order to make the method more 

compact, we modify the NW technique and use a dynamic 

WM. After the WM is built, the AMAG will allocate the 

direction pointers to the AM at a certain location. Ultimately, 

alignment is performed utilizing the values stored in the AM 

cells. Simulation outcomes have demonstrated that this 

method utilizes FPGA resources quite conservatively. 

Parallel implementations on GPU and FPGA platforms 

compared to a sequential CPU-based version of the NW 

algorithm in terms of execution times, in [14]. Focusing on 

tree-based transformation on CUDA-enabled GPUs, the study 

aimed to parallelize the N-W technique. A tree-based 

approach is used to sort out dependencies and get everything 

in sync. This method eliminates interdependence by 

coordinating various tasks. If the computer needs to do the 

same thing multiple times, instead of doing it over and over 

again, it does it once and then uses that result for all the similar 

tasks at the same time. This way, tasks with different needs 

work together better because they communicate more 

efficiently. The implementation of this method emerges as 

highly efficient, employing block synchronization with a lock-

free approach, enabling the aggregation of numerous threads 

compared to conventional sequential algorithms. Despite this, 

data movement presented challenges for GPUs, prompting the 

adoption of FPGA-based implementation. Data movement 

presents no concerns in FPGA setups, as all components, 

including RAM and Flash cells, are linked via horizontal and 

vertical channels on the same board, unlike in CPUs. Both 

methodologies demonstrated notable advancements over the 

sequential CPU-based implementation. Specifically, the 

FPGA implementation showcased consistent execution times 

for small sequences, whereas for larger sequences, there was 

a considerable improvement. 

The S-W algorithm, outlined in [15], is renowned for its 

computational demands in large database sequencing tasks. 

To address this, the algorithm is accelerated by implementing 

it on an FPGA board using 2D systolic arrays. However, due 

to the limited hardware resources on the FPGA, only a 

constrained number of processing elements (PE) can be 

deployed. Consequently, the similarity/score matrix is 

partitioned into sub-matrices for computation. The PE array 

calculates a single sub-matrix during each cycle and keeps the 

intermediate results in memory for the next cycle. With a top 

performance of 78 GCUPS, this method considerably 

improves performance, reaching a speedup of up to 625x when 

compared to a software-only solution. 

In [16], the banded Smith-Waterman method is 

implemented on an FPGA using a two-stage pipeline 

topology. This structure enables scoring and backtracking to 

be performed simultaneously. A lookahead calculation 

technique is employed for the scoring matrix, resulting in a 

reduction in LUT consumption and improved throughput. 

Instead of using larger bit-widths to represent increasing 
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scores, the scoring matrix is replaced by a direction matrix, 

which uses only two bits to represent match, mismatch, 

insertion, and deletion, effectively compressing data and 

conserving resources. An error-counting mechanism, 

executed concurrently with scoring, filters out reads with 

excessive errors, thereby skipping the backtracking step and 

saving computational time. The backtracking module is fully 

implemented in hardware to address potential bandwidth 

issues encountered when sending the scoring matrix to a CPU 

for backtracking. Reading the direction matrix buffer is 

initiated by this module upon score completion. When the 

clock cycles, the backtracking module receives 2-bit direction 

information at each position, starting with the last entry and 

working its way to the first. The alignment route is then 

updated with these bits , and the final alignment information is 

generated by combining the alignment path with the read and 

reference sequences. However, a limitation of this technique 

is that it can only backtrack along a single alignment path. 

The Adaptively Banded Smith-Waterman method 

(ABSW), developed by Y. Liao et al. [19], is designed to align 

long genomic sequences and is compatible with many types of 

hardware. Given the computational intensity of the Smith-

Waterman algorithm, computing entire score matrices during 

read-to-reference genome alignment is unfeasible. Hence, the 

search space is minimized using seed-and-extend paradigms. 

In this initial phase, the algorithm identifies small, highly 

similar subsequences (called seeds) between the read and the 

reference genome. Seeds are short, exact or nearly exact 

matches that serve as anchor points for further alignment. 

Once the seeds are identified, the algorithm extends the 

alignment outwards from these anchor points. In order to 

determine the best local alignment, this extension step 

calculates the alignment score in the areas around each seed. 

To make sure the end result is correct and takes gaps and 

mismatches into consideration, the S-W algorithm is used to 

improve the alignment. However, because this calculation is 

limited to the seeds' immediate vicinity, it is more efficient. 

To address the significant time difference between the seeding 

and extension phases, an FPGA Accelerator is created. The 

Banded Smith-Waterman method with constant memory is 

used to align fixed-length subsequences during the extension 

phase, when the best alignment pathways of the subsequences 

are concentrated in diagonal bands. Heuristic techniques and 

dynamic overlapping are proposed to further improve 

accuracy by band overlapping in subsequences . 

The author showed a digital version of the S-W and N-W 

algorithms that was optimized in terms of both software and 

hardware in [21]. For hardware implementation, a 

combinational circuit is built using Look-Up Tables (LUT) 

and then implemented on an FPGA platform. A Convolutional 

Neural Network (CNN) model that has been specifically 

tailored is used for the software implementation. The use of 

ML in a sequence alignment method has never been done 

before. With a minimum value of four, N denotes the length 

of each sequence, and this approach runs in O(N/4) 

computation steps. The N-W method achieves a 98.3% 

accuracy in its implementation. The author presented a new 

application of classical ML for global sequence Alignment 

using the N-W algorithm in [20].  Building a lookup table or 

dataset is important to this solution. The category of the 

alignment array is the goal, and the two DNA sequences 

expressed in binary or decimal form are the dataset's input 

(features or characteristics). With just a handful of possible 

output classes or alignment patterns, the N-W method is 

implemented using ML techniques. On two real-life, 4.1-

million-nucleotide-long DNA sequences, an astonishing 99.7 

percent accuracy was achieved by combining a multilayer 

perceptron with the ADAM optimizer, leading to up to 2912 

CGUPS. However, the drawback of these two approaches is 

that the length of the two sequences to be compared must be 

the same and a multiple of four. 

5. Challenges in FPGA-Accelerated Biological 

Sequence Alignment 
The survey highlights the challenges encountered by 

researchers when utilizing FPGA accelerators for biological 

sequence alignment. The challenges are as follows: 1) Fitting 

resource-hungry dynamic programming algorithms onto 

FPGAs requires a careful balancing act due to limited logic, 

memory, and interconnect availability; 2) Limited resources 

of FPGAs create a bottleneck when dealing with massive 

datasets like whole genomes. 3) The inherently sequential 

nature of DP algorithms clashes with the parallel processing 

power of FPGAs, creating a challenge in optimizing resource 

usage and maximizing throughput. 4) Although FPGAs excel 

at parallel processing, fully utilizing this strength for sequence 

alignment algorithms requires careful optimization. The key 

challenge lies in partitioning the DP algorithm and mapping it 

onto the FPGA architecture in a way that minimizes 

communication between processing units and maximizes 

parallel execution. 5) Effectively transferring data between the 

FPGA and external memory, including RAM or storage 

devices, is essential for achieving optimal performance. The 

challenges lie in reducing data movement and enhancing data 

transfer speeds, especially when dealing with extensive 
datasets. 

6. Conclusion 
Within this paper, a classification scheme for diverse 

sequence alignment algorithms documented in existing 

literature has been outlined. DP algorithms offer accurate but 

computationally intensive solutions suitable for scenarios 

where precision is crucial, whereas heuristic approaches 

provide faster, approximate solutions that are more scalable 

for large datasets but may sacrifice some level of accuracy. 

Through this paper, the key challenges faced by researchers 

up to the present have been outlined. Therefore, the survey has 

shown that FPGA is the most appropriate hardware to 

accelerate the DP algorithms. Flexible and adaptable designs, 
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hardware-software co-design, and advanced FPGA 

architectures can be used further to enhance performance and 

scalability in biological sequence alignment tasks.  

There is a need for future work to implement AI 

algorithms for the optimization of hardware and software. ML 

models like CNNs and RNNs can be used to identify important 

features from raw sequence data that help to improve 

alignment accuracy. Embedding techniques like Word2Vec, 

Doc2Vec, and others can be adapted to generate dense vector 

representations of biological sequences, which capture 

semantic similarities and can be used to improve alignment 

algorithms using ML. 

References 
[1] T.F. Smith, and M.S. Waterman, “Identification of Common Molecular Subsequences,” Journal of Molecular Biology, vol. 147, no. 1, 

pp. 195-197, 1981. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Saul B. Needleman, and Christian D. Wunsch, “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence 

of Two Proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Robert Giegerich, “A Systematic Approach to Dynamic Programming in Bioinformatics,” Bioinformatics, vol. 16, no. 8, pp. 665-677, 

2000. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Stephen F. Altschul et al., “Basic Local Alignment Search Tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403-410, 1990. 

[CrossRef] [Google Scholar] [Publisher Link] 

[5] Licheng Guo et al., “Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race between FPGA and 

GPU,” 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA, 

USA,  pp. 127-135, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Laiq Hasan, and Zaid Al-Ars, “An Overview of Hardware-Based Acceleration of Biological Sequence Alignment,” Computational 

Biology and Applied Bioinformatics, pp. 187-202, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Jason Chiang et al., “Hardware Accelerator for Genomic Sequence Alignment,” 2006 International Conference of the IEEE Engineering 

in Medicine and Biology Society, New York, NY, USA, pp. 5787-5789, 2006. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Yoshiki Yamaguchi et al., “High Speed Homology Search using Run-Time Reconfiguration,” Field-Programmable Logic and 

Applications: Reconfigurable Computing Is Going Mainstream, pp. 281-291, 2002. [CrossRef] [Google Scholar] [Publisher Link] 

[9] S. Margerms, “Reconfigurable Computing in Real-World Applications,” FPGA Structures and ASIC Journal, vol. 10, no. 5, pp. 1-8, 2006. 

[Google Scholar] 

[10] S. Bojanic et al., “High Speed Circuits for Genetics Applications,” 2004 24th International Conference on Microelectronics, Nis, Serbia, 

vol. 2, pp. 517-524, 2004. [CrossRef] [Google Scholar] [Publisher Link] 

[11] C.W. Yu et al., “A Smith-Waterman Systolic Cell,” Proceedings of the 13th International Conference on Field Programmable Logic and 

Applications (FPL), Lisbon, Portugal, pp. 375-384, 2003. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Ardhendu Sarkar, and Som Banerjee, “FPGA Implementation of DNA Sequence Alignment with Traceback,” 2020 4th International 

Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, pp. 47-52, 2020. [CrossRef] [Google 

Scholar] [Publisher Link] 

[13] Yu-Cheng Li, and Yi-Chang Lu, “BLASTP-ACC: Parallel Architecture and Hardware Accelerator Design for BLAST-based Protein 

Sequence Alignment,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1771-1782, 2019. [CrossRef] [Google 

Scholar] [Publisher Link] 

[14] Chirag Kyal, Rishav Kumar, and Adil Zamal, “Performance-based Analogising of Needleman-Wunsch Algorithm to Align DNA 

Sequences using GPU and FPGA,” 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, pp. 1-5, 2020. 

[CrossRef] [Google Scholar] [Publisher Link] 

[15] Anna Hakim et al., “Performance Analysis of DNA Sequencing Using Smith-Waterman Algorithm on FPGA,” Journal of VLSI Design 

Tools & Technology, vol. 9, no. 2, pp. 9-15, 2019. [Google Scholar] [Publisher Link] 

[16] Luyi Li, Jun Lin, and Zhongfeng Wang, “PipeBSW: A Two-Stage Pipeline Structure for Banded Smith-Waterman Algorithm on FPGA,” 

2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, pp. 182-187, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[17] Muhammad Irfan, Kizheppatt Vipin, and Rizwan Qureshi, “Accelerating DNA Sequence Analysis using Content -Addressable Memory 

in FPGAs,” 2023 IEEE 8th International Conference on Smart Cloud (SmartCloud), Tokyo, Japan, pp. 69-72, 2023. [CrossRef] [Google 

Scholar] [Publisher Link] 

[18] Behnam Khaleghi et al., “SALIENT: Ultra-Fast FPGA-based Short Read Alignment,” 2022 International Conference on Field-

Programmable Technology (ICFPT), Hong Kong, pp. 1-10, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Yi-Lun Liao et al., “Adaptively Banded Smith-Waterman Algorithm for Long Reads and its Hardware Accelerator,” 2018 IEEE 29th 

International Conference on Application-Specific Systems, Architectures and Processors (ASAP), Milan, Italy, pp. 1-9, 2018. [CrossRef] 

[Google Scholar] [Publisher Link] 

https://doi.org/10.1016/0022-2836(81)90087-5
https://scholar.google.com/scholar?q=Identification+of+common+molecular+subsequences&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/0022283681900875
https://doi.org/10.1016/0022-2836(70)90057-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+B.+Needleman%2C+A+general+method+applicable+to+the+search+for+similarities+in+the+amino+acid+sequence+of+two+proteins&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0022283670900574
https://doi.org/10.1093/bioinformatics/16.8.665
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+approach+to+dynamic+programming+in+bioinformatics&btnG=
https://academic.oup.com/bioinformatics/article/16/8/665/190161
https://doi.org/10.1016/S0022-2836(05)80360-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+F.+Altschul%2C+Basic+local+alignment+search+tool&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0022283605803602
https://doi.org/10.1109/FCCM.2019.00027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+acceleration+of+long+read+pairwise+overlapping+in+genome+sequencing%3A+a+race+between+FPGA+and+GPU&btnG=
https://ieeexplore.ieee.org/abstract/document/8735515
https://doi.org/10.5772/23044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+overview+of+hardware-based+acceleration+of+biological+sequence+alignment&btnG=
https://www.intechopen.com/chapters/18997
https://doi.org/10.1109/IEMBS.2006.260286
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+accelerator+for+genomic+sequence+alignment&btnG=
https://ieeexplore.ieee.org/abstract/document/4463122
https://doi.org/10.1007/3-540-46117-5_30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+speed+homology+search+using+run-time+reconfiguration&btnG=
https://link.springer.com/chapter/10.1007/3-540-46117-5_30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reconfigurable+computing+in+real-world+applications&btnG=
https://doi.org/10.1109/ICMEL.2004.1314878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+speed+circuits+for+genetics+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/1314878
https://doi.org/10.1007/978-3-540-45234-8_37
https://scholar.google.com/scholar?q=C.+W.+Yu,+A+Smith-Waterman+systolic+cell&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-540-45234-8_37
https://doi.org/10.1109/ICECA49313.2020.9297554
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+DNA+sequence+alignment+with+traceback&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+DNA+sequence+alignment+with+traceback&btnG=
https://ieeexplore.ieee.org/abstract/document/9297554
https://doi.org/10.1109/TBCAS.2019.2943539
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BLASTP-ACC%3A+parallel+architecture+and+hardware+accelerator+design+for+BLAST-based+protein+sequence+alignment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BLASTP-ACC%3A+parallel+architecture+and+hardware+accelerator+design+for+BLAST-based+protein+sequence+alignment&btnG=
https://ieeexplore.ieee.org/abstract/document/8854971
https://doi.org/10.1109/INDICON49873.2020.9342078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance-based+analogising+of+Needleman-Wunsch+algorithm+to+align+DNA+sequences+using+GPU+and+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/9342078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+analysis+of+DNA+sequencing+using+Smith-Waterman+algorithm+on+FPGA&btnG=
https://engineeringjournals.stmjournals.in/index.php/JoVDTT/article/view/2287
https://doi.org/10.1109/ISVLSI51109.2021.00042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PipeBSW%3A+A+two-stage+pipeline+structure+for+banded+Smith-Waterman+algorithm+on+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/9516752
https://doi.org/10.1109/SmartCloud58862.2023.00020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+DNA+sequence+analysis+using+content-addressable+memory+in+FPGAs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+DNA+sequence+analysis+using+content-addressable+memory+in+FPGAs&btnG=
https://ieeexplore.ieee.org/abstract/document/10349148
https://doi.org/10.1109/ICFPT56656.2022.9974548
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Salient%3A+Ultra-fast+FPGA-based+short+read+alignment&btnG=
https://ieeexplore.ieee.org/abstract/document/9974548
https://doi.org/10.1109/ASAP.2018.8445105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptively+banded+Smith-Waterman+algorithm+for+long+reads+and+its+hardware+accelerator&btnG=
https://ieeexplore.ieee.org/abstract/document/8445105


Anita Wagh et al. / IJECE, 12(8), 51-60, 2025 
 

60 

[20] Amr Ezz El-Din Rashed et al., “Sequence Alignment using Machine Learning-based Needleman–Wunsch Algorithm,” IEEE Access, vol. 

9, pp. 109522-109535, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Amr Ezz El-Din Rashed, Marwa Obaya, and Hossam El~Din Moustafa, “Accelerating DNA Pairwise Sequence Alignment using FPGA 

and a Customized Convolutional Neural Network,” Computers & Electrical Engineering, vol. 92, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[22] Osamu Gotoh, “An Improved Algorithm for Matching Biological Sequences,” Journal of Molecular Biology, vol. 162, no. 3, pp. 705-

708, 1982. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Stephen F. Altschul, and Bruce W. Erickson, “Optimal Sequence Alignment using Affine Gap Costs,” Bulletin of Mathematical Biology, 

vol. 48, pp. 603-616, 1986. [CrossRef] [Google Scholar] [Publisher Link] 

[24] T.K. Attwood, and D.J. Parry-Smith, Introduction to Bioinformatics, Pearson PLC, 2003. [Google Scholar] [Publisher Link] 

[25] Peng Chen et al., “Accelerating the Next Generation Long Read Mapping with the FPGA-based System,” IEEE/ACM Transactions on 

Computational Biology and Bioinformatics, vol. 11, no. 5, pp. 840-852, 2014. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Jeff Allred et al., “Smith-Waterman Implementation on a FSB-FPGA Module Using the Intel Accelerator Abstraction Layer,” 2009 IEEE 

International Symposium on Parallel & Distributed Processing, Rome, Italy, pp. 1-4, 2009. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Enzo Rucci et al., “Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA,” Proceedings of the 5th 

International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), Granada, Spain, pp. 500-511, 2017. [CrossRef] 

[Google Scholar] [Publisher Link] 

[28] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Michitaka Kameyama, “FPGA-Accelerator for DNA Sequence Alignment 

based on an Efficient Data-Dependent Memory Access Scheme,” Highly-Efficient Accelerators and Reconfigurable Technologies , pp. 

127-130, 2014. [Google Scholar] [Publisher Link] 

[29] Mostafa Morshedi, and Hamid Noori, “FPGA Implementation of a Short Read Mapping Accelerator,” Proceedings of the 13th 

International Symposium on Applied Reconfigurable Computing (ARC), Delft, The Netherlands, pp. 289-296, 2017. [CrossRef] [Google 

Scholar] [Publisher Link] 

[30] Simone Casale-Brunet, Endri Bezati, and Marco Mattavelli, “Design Space Exploration of Dataflow-Based Smith-Waterman FPGA 

Implementations,” 2017 IEEE International Workshop on Signal Processing Systems (SiPS), Lorient, France, pp. 1-6, 2017. [CrossRef] 

[Google Scholar] [Publisher Link] 

 

https://doi.org/10.1109/ACCESS.2021.3100408
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sequence+alignment+using+machine+learning-based+Needleman%E2%80%93Wunsch+algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/9497110
https://doi.org/10.1016/j.compeleceng.2021.107112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+DNA+pairwise+sequence+alignment+using+FPGA+and+a+customized+convolutional+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790621001178
https://doi.org/10.1016/0022-2836(82)90398-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+algorithm+for+matching+biological+sequences&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0022283682903989
https://doi.org/10.1007/BF02462326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+sequence+alignment+using+affine+gap+costs&btnG=
https://link.springer.com/article/10.1007/BF02462326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T.+K.+Attwood+and+D.+J.+Parry-Smith%2C+Introduction+to+Bioinformatics&btnG=
https://research.manchester.ac.uk/en/publications/introduction-to-bioinformatics
https://doi.org/10.1109/TCBB.2014.2326876
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+the+next+generation+long+read+mapping+with+the+FPGA-based+system&btnG=
https://ieeexplore.ieee.org/abstract/document/6822570
https://doi.org/10.1109/IPDPS.2009.5161214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smith-Waterman+implementation+on+a+FSB-FPGA+module+using+the+Intel+Accelerator+Abstraction+Layer&btnG=
https://ieeexplore.ieee.org/abstract/document/5161214
https://doi.org/10.1007/978-3-319-56154-7_45
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+Smith-Waterman+alignment+of+long+DNA+sequences+with+OpenCL+on+FPGA&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-56154-7_45
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA-accelerator+for+DNA+sequence+alignment+based+on+an+efficient+data-dependent+memory+access+scheme&btnG=
https://www.ecei.tohoku.ac.jp/hariyama/papers/C20140610_HEART_FPGA-Accelerator-for-DNA-Sequence-Alignment.pdf
https://doi.org/10.1007/978-3-319-56258-2_25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+a+short+read+mapping+accelerator&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+a+short+read+mapping+accelerator&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-56258-2_25
https://doi.org/10.1109/SiPS.2017.8109982
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+space+exploration+of+dataflow-based+Smith-Waterman+FPGA+implementations&btnG=
https://ieeexplore.ieee.org/abstract/document/8109982

