
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 8, 51-60, August 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I8P105 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

 Review Article

FPGA Based Acceleration of Biological Sequence

Alignment Algorithms Based on a Dynamic

Programming Approach: A Survey

Anita Wagh1, Prachi Mukherji2, Seema Rajput3

1,2,3Department of Electronics & Telecommunication Engineering, MKSSS’s Cummins College of Engineering for Women,

Maharashtra, India.

1Corresponding Author : anita.wagh@cumminscollege.in

Received: 03 June 2025 Revised: 04 July 2025 Accepted: 05 August 2025 Published: 30 August 2025

Abstract - The rapid growth of biological sequence data necessitates efficient computational methods for sequence alignment,

a fundamental task in bioinformatics. In this study, we provide a thorough overview of the literature on the topic of employing

Dynamic Programming (DP) to speed up methods for biological sequence alignment using Field -Programmable Gate Arrays

(FPGAs). Needleman-Wunsch and Smith-Waterman are two examples of DP algorithms that ensure optimum alignment;

nonetheless, they are computationally demanding. FPGAs offer a promising platform for accelerating these algorithms by

exploiting parallelism and hardware customization. This survey reviews existing re search and methodologies employed to

implement sequence alignment algorithms on FPGAs, comparing their performance, scalability, and energy efficiency against

traditional CPU-based approaches. We also discuss the challenges and opportunities associated wit h FPGA-based acceleration,

including data dependencies, reconfigurability, and optimization techniques. Hardware -software co-design and advancements

in FPGA architectures can further enhance performance and scalability in biological sequence alignment task s. Alignment

accuracy may be improved by using Machine Learning (ML) models like Convolutional Neural Networks (CNNs) to extract

features from raw sequence data. In order to facilitate future developments in this dynamic area, the study seeks to enlighte n

scholars and practitioners on the cutting-edge acceleration methods for biological sequence alignment that are based on FPGAs.

Keywords - Dynamic Programming, FPGA accelerator, Needleman-Wunsch Algorithm, Sequence alignment, Smith-Waterman

Algorithm.

1. Introduction
Sequence alignments serve as a robust method for

assessing similarities between related DNA or protein

sequences. These alignments serve to encapsulate diverse

insights regarding the aligned sequences, such as shared

evolutionary lineage or analogous structural roles . Aligning

letters from two or more sequences implies the hypothesis of

a shared ancestral origin.

DNA is like a twisted ladder made up of two long strings,

and each string is composed of basic elements referred to as

nucleotides. The four nucleotides are Adenine (A), Guanine

(G), Thymine (T), and Cytosine (C). The two strings of DNA

run in opposite directions, like a zipper. Each nucleotide in

one string pairs up with a matching one in the other string.

They stick together because of specific chemical attractions.

A always pairs with T, and C with G. This pairing is important

because the sequence of nucleotides in one string determines

the sequence in the other. So usually, we only need to know

the sequence of one string, and the other one can be figured

out from it. The building blocks of proteins are amino acids,

which chain together and interact to give proteins their unique

properties. A single chain of amino acids is like a line, with

each amino acid arranged in a specific order. There are twenty

common amino acids, which we represent with letters like A,

C, D, and so on. Each amino acid is defined by a triplet

sequence of DNA building blocks known as nucleotides,

termed a codon. For instance, the codon UGG means the

amino acid Tryptophan, abbreviated as W. Some amino acids

have just one codon, while others have up to six. RNA is a

vital cellular molecule with many jobs, including building

proteins and regulating which genes are turned on or off, as

well as genetic expression. While RNA and DNA share a

similar design, there are some important distinctions. Like

DNA, RNA is made up of recurring building blocks , i.e.

nucleotides. In addition to A, C, and G, RNA incorporates

Uracil (U) instead of Thymine (T), which is found in DNA.

DNA sequences, and the proteins they make, change over

time through mutation and natural selection. Mutations can

http://creativecommons.org/licenses/by-nc-nd/4.0/

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

52

happen in different ways, but usually, they involve replacing

one building block, i.e. a nucleotide, with another, or adding

or removing one or more nearby building blocks. Similarly, in

proteins, mutations often involve swapping one amino acid for

another, or adding or removing one or more nearby amino

acids. Unlike shuffling a deck of cards, there is no easy way

to switch the order of building blocks in DNA or proteins. So,

when we compare two DNA or protein sequences to see if they

come from a common ancestor, the matching parts line up

directly, without any mixing or swapping.

Basecalling is an essential computational stage in

nanopore sequencing that converts complex electrical signals

into a recognizable DNA base sequence or reads. Sequence

alignment helps to identify similarities between sequences;

therefore, it is possible to know the function of newly

basecalled sequences by comparing them with sequences

already present in the database. Additionally, it allows

scientists to create phylogenetic trees, which are diagrams that

depict the evolutionary relationships between the analysed

sequences. Thus, it helps in determining evolutionary

similarity, especially in closely related species. It becomes

possible to predict the presence of more members within gene

families due to sequence alignment. It allows researchers to

predict the functions of the unknown sequences by identifying

conserved sequence patterns and motifs. Thus, it helps

identify regions within DNA/proteins that have structural and

functional similarity.

Field-Programmable Gate Arrays (FPGAs) are versatile,

programmable hardware devices made up of configurable

logic blocks such as Look-Up Tables (LUTs), memory, and

DSPs, connected via a programmable routing fabric. FPGAs

are widely used for prototyping and accelerating applications

due to their reconfigurability and parallel processing

capabilities. This makes them suitable for tasks like DNA

sequence alignment, which involve irregular parallelism. By

mapping alignment algorithms onto FPGAs, researchers

achieve faster and more efficient processing compared to

traditional CPU-based systems. Substantial advancements

have been made in utilizing FPGAs for accelerating DNA

sequence alignment algorithms based on Dynamic

Programming, but most of the existing FPGA designs are

optimized for specific sequence lengths or fixed scoring

schemes. There is a lack of adaptive, scalable architectures

that can efficiently handle varying read lengths and alignment

configurations, which are common in real-world genomic

datasets. When dealing with real-world datasets, FPGA

implementations often suffer from inefficient memory

management. Again, it is observed that there is limited

exploration of hardware-aware optimization techniques to

reduce LUT, BRAM, and power usage while maintaining

alignment accuracy. Many FPGA-based implementations

oversimplify alignment by neglecting biologically relevant

features such as affine gap penalties, ambiguous bases, or

multiple sequence alignment. This limits their applicability in

comprehensive genomic analysis. To overcome these gaps in

research, it is expected from researchers to design more

scalable, biologically accurate, and resource-optimized FPGA

architectures.

The aim of this paper is to provide a detailed and

systematic review of how FPGAs have been utilised to

accelerate biological sequence alignment algorithms based on

dynamic programming techniques. It seeks to analyse and

compare various FPGA architectures and implementation

strategies, discuss design challenges and trade-offs, and

identify potential areas for future research and improvement

in the field of hardware-accelerated bioinformatics. The

paper's structure is as follows: Section 2 focuses on the

biological and computational materials used for sequence

alignment and compares and contrasts the different methods

used for this process. Section 3 describes the scoring system

used for the dynamic programming approach of sequence

alignment. Section 4 reviews studies focused on FPGA

acceleration to improve Dynamic Programming (DP)

approaches. In Section 5, the difficulties in employing FPGA

acceleration for sequence alignment are discussed, followed

by a brief overview of the entire work in Section 6.

2. Materials and Methods
The key biological material required for DNA sequence

alignment is DNA extracted from biological samples, which

can be sourced from humans, animals, plants, bacteria,

viruses, or any organism under study. Technical materials

include DNA extraction kits to isolate DNA, PCR reagents to

amplify DNA segments before sequencing, and sequencing

technologies such as Illumina, PacBio, and Oxford Nanopore.

Illumina is a widely used sequencing technology, known for

producing short reads with high accuracy and throughput. It

utilizes a Sequencing-By-Synthesis (SBS) method, where

nucleotides are added one by one, and fluorescently labeled

nucleotides are detected as the DNA strand is synthesized.

However, Illumina's read lengths (100–300 base pairs) limit

its ability to resolve complex genomic regions , such as large

structural variants and repetitive sequences. Pacific

Biosciences (PacBio) offers Single Molecule Real-Time

(SMRT) sequencing, a long-read technology that generates

sequences thousands of base pairs long, which is

advantageous for resolving complex genomic regions.

However, PacBio has a lower throughput compared to

Illumina, making it more expensive for large-scale projects.

Oxford Nanopore Technologies (ONT) uses nanopore

sequencing, which is capable of real-time, ultra-long reads by

passing DNA through tiny pores. ONT stands out for its ability

to generate real-time data and its portability, with devices like

the MinION. However, ONT has a higher raw error rate (~5-

15%) compared to Illumina and PacBio, though

improvements in software have s ignificantly enhanced

accuracy. Each technology has specific strengths and

weaknesses, and the choice of sequencing platform depends

on the goals of the research project. Once DNA is extracted

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

53

and sequenced, the raw sequence data (comprising nucleotides

A, T, C, G) is aligned. Computational materials for DNA

sequence alignment include input sequences (query

sequences) and reference genomes. DNA sequences are stored

in formats like FASTA (which contains only the sequences)

and FASTQ (which includes sequence quality scores).

Alignment tools like BLAST, Burrows-Wheeler Aligner

(BWA), Bowtie, and tools for multiple sequence alignment,

such as MAFFT, ClustalW, and MUSCLE, are commonly

used for sequence comparison and analysis. Aligning large

datasets often requires significant computational power. Some

modern sequence aligners leverage GPUs for faster

processing, FPGAs to accelerate alignment, and cloud

platforms like Amazon Web Services or Google Cloud to

manage large-scale projects. Databases such as GenBank

(NCBI), ENSEMBL, RefSeq, European Nucleotide Archive

(ENA), and DNA Data Bank of Japan (DDBJ) store vast

collections of nucleotide sequences and are frequently used as

reference points for DNA sequence alignment.

Fig. 1 Dot Plot Matrix[3]

Aligning sequences to find similarities can be done in

different ways. Two common methods are Dynamic

Programming (DP) and heuristics. The easiest way to check

the similarity of two sequences is a dot plot [3]. This is a kind

of grid (Matrix) where the sequences are placed along the

sides. A dot is positioned at each matrix intersection where the

respective elements from both sequences match (i.e., where

rows and columns display the same letter). Diagonal lines of

dots indicate areas of similarity between the two sequences, as

illustrated in Figure 1. The time and space complexity of the

Dot plot Matrix approach is O(mn), where m and n are the

lengths of the two sequences being compared. DP algorithms

determine the best solution by considering all potential

approaches to address a problem. This approach is used to

determine the best solution for complex problems by dividing

them into more manageable subproblems. This method is

applicable to problems where these subproblems overlap. By

merging the solutions of these smaller subproblems, we can

derive the final solution. After solving a particular

subproblem, its solution is stored in memory to avoid

redundant computations of the same subproblem. DP

algorithms discover the optimal solution by reviewing all

potential methods to tackle a problem [13]. Some examples of

DP algorithms used for sequence alignment include the

Needleman-Wunsch (N-W) Algorithm, the Smith-Waterman

(S-W) Algorithm, Hirschberg, and Miller-Myers.

Problem-solving through a heuristic approach relies on

past experiences, observations, and insights. While this

method offers a solution, it does not guarantee optimal results

as it makes assumptions about where or how to find the best

solution. However, this approach can expedite the original

problem-solving process. Unlike DP algorithms that explore

all potential solutions, which can be time-intensive, focusing

on the most likely methods to solve a problem can

significantly reduce computation time. Examples of a

heuristic approach for sequence alignment are the Basic Local

Alignment Tool (BLAST) [4], FASTA, etc.

Sequence alignment techniques are grouped into global

and local categories based on the scope of the alignment

(entire sequences vs. subsequences) and the specific

objectives or criteria used to evaluate and optimize the

alignment (maximizing overall similarity vs. identifying local

similarities). One goal of global approaches is to align the

reference and the search/query sequences, or as many

characters as feasible, from the beginning to the end of both

sequences. The Dot plot, the N-W algorithm, and the

Hirschberg method are all examples of global alignment

techniques. Dot plot uses a basic search algorithm, but

Hirschberg and N-W use dynamic programming [3]. Aiming

to identify brief portions of similarity between two sequences ,

specifically the query and database sequences, local

approaches differ from global methods. S-W and Miller-

Myers are two examples of DP approaches; FASTA and

BLAST are two examples of heuristic-based approximation

procedures.

Multiple Sequence Alignment (MSA) and Pairwise

Sequence Alignment (PSA) are two other ways that sequence

alignment techniques are categorized according to the number

of sequences that need to be aligned, the particular goals that

need to be achieved, and the applications that need to be

implemented. PSA compares two biological sequences (like

proteins or DNA) to find matching regions. These matches

might mean the sequences are related in function, structure, or

how they evolved.

The dot-plot method, DP methods like S-W and N-W,

and heuristic methods like FASTA and BLAST are examples

of PSA. MSA involves aligning three or more biological

sequences of comparable length. By analyzing the results from

MSA applications, one can infer homology and examine the

evolutionary connections between the sequences. MSA can be

conducted using either exhaustive or heuristic methods.

Exhaustive alignment entails evaluating all potential

alignments simultaneously.

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

54

Fig. 2 Classification of sequence alignment methods

A multidimensional search matrix, resembling the two-

dimensional matrix utilized in dynamic programming for

pairwise alignment, is necessary for executing multiple

sequence alignment with the exhaustive algorithm. The

progressive technique constructs multiple alignments

gradually, using pairwise similarity as a foundation. It is

termed "progressive" because it aligns sequences in a

sequential, step-by-step fashion. The classification is reflected

in Figure 2.

3. Scoring System for DP Alignment Process
By assessing all potential alignments and selecting the DP

matrix route that has the highest total alignment score, the DP

alignment technique seeks to identify the ideal alignment. The

scoring system is crucial for determining the optimal

alignment by assigning scores to matches, mismatches, and

gaps based on the similarity or dissimilarity between aligned

residues or bases. The scoring matrix and scoring calculation

methods guide the DP algorithm in efficiently exploring the

solution space and identifying the best alignment between

sequences.

 A C G T

A 1 -1 -1 -1

C -1 1 -1 -1

G -1 -1 1 -1

T -1 -1 -1 1

Fig. 3 Similarity matrix

3.1. Similarity Matrix

When two aligned sequences of nucleotides or amino

acids are identical, a Match Score is given. Similar residues or

bases are more likely to align when the match score is positive.

A mismatch score is given if there is a difference between two

matched sequences of nucleotides or amino acids.

Mismatched residues or bases are penalized when their

mismatch score is negative. A similarity matrix is utilized to

capture all probable letter pairings along with their respective

scores. The similarity matrix for the most basic system (for

which the scores are match = {1}, mismatch = {-1}, indel = {-

1}) is represented as shown in Figure 3. There are many

substitution matrices, like Blocks Amino Acid Substitution

Matrices (BLOSUM (50, 62)) or Point Accepted Mutation

(PAM (80, 250)), available to compare sequences during

alignment.

3.2. Gap Penalties

During sequence alignment, gaps, also known as indels

(insertions or deletions), frequently occur. Occasionally, these

gaps can be quite extensive. From a biological perspective, it

is more plausible for a significant gap to result from a single

large deletion rather than several individual deletions.

Therefore, scoring two small indels should be penalized more

harshly than scoring one large indel. A commonly employed

method to address this is to assign a higher score for initiating

a new gap (gap-opening penalty) and a lower score for each

subsequent nucleotide or amino acid added to extend the

existing gap (gap-extension penalty). In a system with a linear

gap penalty, the points for creating and maintaining a gap are

the same.

 𝑊𝑘 = 𝑘𝑊1 (1)

Here in Equation 1, 𝑊𝑘 represents the cost of a single

gap, with k denoting the gap length. An affine gap penalty

distinguishes between gap opening and gap extension.

 𝑊𝑘 = 𝑢𝑘 + 𝑣 (2)

Here in Equation 2, v > 0 serves as the penalty for gap

opening, while u > 0 represents the penalty for gap extension.

Compared to linear gap penalty, affine gap functions enhance

the applicability of sequence alignment algorithms to

biological sequences [23]. In the context of biological

sequences, it's logical to assign a larger penalty for initiating

Sequence alignment Methods

Global Local

Dot plot Hirschberg N-W Algo. S-W Algo. Miller-Myers
FASTA BLAST

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

55

gaps while keeping a lesser penalty for extending them, i.e. v

> u

3.3. Scoring Matrix

The score matrix H is ordered as (n+1) × (m+1), where

m is the length of the reference sequence and n is the length of

the query sequence. The elements of the scoring matrix, 𝐻𝑖, 𝑗
(where i is the row index and j is the column index) of the S-

W method, taking into account the linear gap penalty, are

determined by Equation 3.

 𝐻𝑖 ,𝑗=𝑚𝑎𝑥

{

0

𝐻𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝐻𝑖−1,𝑗 + 𝑊(1)

𝐻𝑖,𝑗−1 +𝑊(1)

 (3)

Similarly, the elements of the scoring matrix of the N-W

method, considering the linear gap penalty, are calculated

using Equation 4.

 𝐻𝑖 ,𝑗=𝑚𝑎𝑥 {

𝐻𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝐻𝑖−1,𝑗 + 𝑊(1)

𝐻𝑖 ,𝑗−1+ 𝑊(1)

 (4)

Where 𝑠(𝑎𝑖 , 𝑏𝑗) is the similarity score of comparing 𝑎𝑖

with 𝑏𝑗 and W(1) is the penalty for a mismatch.

The three steps of sequence alignment using the DP

approach are matrix initialization, matrix filling(scoring) and

traceback.

3.3.1. Matrix Initialization

The two-dimensional matrix, with dimensions (m+1) ×

(n+1), is initially populated with zeros. This is followed by the

first row and column of the matrix being penalized for gaps.

The top-left cell (0,0) will typically be initialized with a score

of 0.

3.3.2. Fill the DP Matrix

Cell values are calculated using the formula given by

equations (3) or (4) for S-W or N-W respectively. The process

is iterated through the DP matrix cell by cell, calculating the

alignment scores based on the recurrence relations using the

scoring scheme. The completely filled DP matrix for

alignment using the S-W algorithm is shown in Table 1.

3.3.3. Traceback

To find the optimal alignment path, begin with the cell or

cells with the highest score in the DP matrix and use traceback

to move across the matrix. Based on the traceback path,

construct the aligned sequences by inserting gaps where

necessary to align the sequences optimally. As S-W is a local

alignment (interested in short patches of similarity), the

traceback process starts with the cell having the highest score

and stops when zero is encountered [1], whereas N-W is a

global alignment method, so the traceback starts from the

bottom rightmost cell and stops when zero is encountered [2].

Table 1. DP Matrix for S-W Algorithm

 - A G C G A

- 0 0 0 0 0 0

A 0 1 0 0 0 1

C 0 0 0 1 0 0

G 0 0 1 0 2 0

A 0 1 0 0 0 3

A 0 1 0 0 0 1

Table 1 shows the results of calculating the dynamic

programming matrix H and the tracing back route, which is

shown in bold. The scoring scheme defined here is match = 1,

mismatch -1 and gap = -1. Table 2 lists the methods for

sequence alignment along with their respective time and space

complexity. Assuming a Reference sequence length of m and

a Query sequence length of n, the temporal complexity of each

of these methods is O(mn).

4. FPGA Acceleration of DNA Sequence

Alignment Methods
The DP method calculates items inside the scoring matrix

for about 98.6% of its execution time when executed on a

Central Processing Unit (CPU) [3]. So, to get better results

than what can be achieved with software on a regular CPU. It

is necessary to speed things up using dedicated hardware.

Separate from the CPU, a hardware accelerator is a piece of

hardware that is purpose-built to increase this acceleration.

Deploying it on multiple platforms , including Graphical

Processing Units (GPUs), CPUs, and FPGAs , has been the

focus of efforts to speed up the method or its computationally

heavy components. FPGAs are reconfigurable computing

devices where algorithms are mapped directly onto

fundamental processing logic components, such as NAND

gates. While CPUs and GPUs are versatile and commonly

utilized for a range of computing functions .

Table 2. Comparisons of sequence alignment algorithms

Method Type
Search

method

Time

complexity

Space

complexity

Dot matrix global Basic O(mn) O(mn)

Needleman
Wunsch

global DP O(mn) O(mn)

Hirschberg global DP O(mn) O(m+n)

Smith

Waterman
local DP O(mn) O(mn)

Miller-
Myers

local DP O(mn) O(m+n)

Fasta Local Heuristic O(mn) O(mn)

Blast Local Heuristic O(mn) O(20w+mn).

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

56

FPGAs provide a distinct blend of features, including

reconfigurability, parallelism, low latency, high throughput,

energy efficiency, scalability, and real-time processing,

making them exceptionally suitable for enhancing sequence

alignment algorithms' speed. By harnessing FPGAs' inherent

parallelism and customization capabilities, substantial

performance enhancements and computational efficiency can

be achieved compared to conventional CPU and GPU-centric

methods for sequence alignment [5]. To reduce the O(mn)

complexity usually associated with the matrix filling step, it is

helpful to compute several elements of the H matrix

simultaneously. Nevertheless, this method becomes more

complicated due to data dependencies. Each 𝐻𝑖, 𝑗 value relies

on the values of three adjacent entries 𝐻𝑖−1,−1, 𝐻𝑖−1,𝑗 , and

𝐻𝑖,𝑗−1. In addition, there are three nearby values that are

dependent on each of these neighboring entries. This pattern

of reliance is essentially applicable to all other entries in the

area. Due to their placement outside of each other's data

dependence zones, all items inside each anti-diagonal may be

computed concurrently. Figure 4 displays an example of an H

matrix for two sequences, where the cells along the anti-

diagonal bands (highlighted in the same color) represent

elements that can be calculated concurrently. The greatest

number of elements that can be calculated simultaneously is

determined by the length of the longest anti-diagonal. The

bold diagonal arrow signifies the direction of computation

advancement. With a maximum of 5 cells that may be

calculated simultaneously, this calculation requires at least 9

cycles due to the 9 anti-diagonals [6].

 - A G C G A

- 0 0 0 0 0 0

A 0 1 0 0 0 1

C 0 0 0 1 0 0

G 0 0 1 0 2 0

A 0 1 0 0 0 3

A 0 1 0 0 0 1

Fig. 4 Sample H matrix where the elements in the antidiagonal band are
computed in paralle l

The authors of [7] looked at how using bespoke

instructions on an FPGA board may improve the

computational processing time of the SW method. For the sake

of comparison, the S-W algorithm is first implemented in the

C language. Based on the current letters being compared, the

scores and gaps from nearby cells, and the assessment model

in the C code, each cell in the S-W matrix is given a score. The

most computationally intensive part of the program, the

evaluation module, is replaced by an FPGA Custom

Instructions (CI) created in Verilog by the FPGA accelerator.

The Nios II microprocessor, known as Altera, is used to

instantiate these CI on the FPGA. After that, the hardware-

accelerated version's runtime was evaluated and compared to

that of the pure software version to find out how much faster

the processing was. The results showed that the average

processing time was cut by 287% using the hardware-

accelerated approach. Thus, it seems that using FPGA-specific

instructions might be a great way to further genomic sequence

searching research.

An approach to fast sequence alignment using Run Time

Reconfiguration (RTR) is presented in [8]. RTR is the capacity

to change the hardware configuration of an FPGA while the

system is running. Unlike traditional hardware design, where

the logic and connections are fixed after the design is

synthesized and implemented, RTR allows for dynamic

changes to the FPGA's configuration. In an RTR-enabled

FPGA system, the design is partitioned into multiple

configurations or "tiles." Each tile represents a specific

function or operation within the application or algorithm.

During system operation, the FPGA can switch between these

configurations based on the requirements of the task at hand.

According to [9], using run-time reconfiguration significantly

enhanced the performance of the S-W algorithm. The overall

time it took to run the method went down from 6,461 seconds

to just over 100 seconds, and the time allotted for calculating

the 𝐻i,j matrix elements was down by about a third. This

signifies a speed enhancement of around 64 times compared

to the implementation relying solely on software.

Fig. 5 Systolic array [6]

FPGAs use custom hardware building blocks named

Processing Elements (PEs). Each PE can compare a pair of

sequence elements in a single clock cycle. By connecting these

PEs in a special grid or line (systolic arrays), FPGAs can

perform many comparisons in parallel, making sequence

alignment much faster. In each stage, data is received by one

or more nearby elements (e.g., North and West), processed,

and then sent in the opposite direction (e.g., South and East)

by each Processing Element (PE). Matrix multiplication and

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

57

other systolic array operations work by taking one matrix at a

time and sending it down the array row by row. Another

matrix is simultaneously added to the array, starting from the

left side and working its way to the right, column by column.

Each processor processes a whole row and column before

moving on to the next set of fake data. After this is done, the

array is used to hold the result of the multiplication, which

allows it to process the array row by row or column by

column, depending on the user's preference. Figure 5 shows

the fundamental configuration of a systolic array. M and N are

the two input vector arrays here. In most cases, a preset

procedure is used to extract the value Uij from inside the

processing cells. Giga Cell Updates Per Second (GCUPS) is a

common metric measuring DP algorithm performance. Here,

a “cell" typically refers to an element in a DP matrix used to

score the alignment. Each cell update involves calculating a

new value based on the alignment score of neighboring cells,

considering possible matches, mismatches, and gaps. In

sequence alignment using a systolic array, GCUPS measures

the system’s performance and efficiency. This proves that the

systolic array can update the dynamic programming matrix

with one billion cells per second.

The formula to get GCUPS is GCUPS = (n × m /t) ×

10^9, where n and m are the sequence lengths and t is the

calculation time. When working with huge biological datasets,

this parameter becomes even more important for determining

the system's computing capability. High-throughput

processing is vital in these cases. The systolic array might be

fed several data sets all at once, according to the authors of

[10]. A high-speed linear systolic array was used to implement

the S-W algorithm. The goal was to find a way around the

limitations caused by the I/O bus. The scoring matrix, which

is the edit-distance matrix, was divided into four-element

clusters so that each systolic cell could analyze two data points

at the same time. As a result, the data is sent over the bus with

two nucleotides packed together, which makes the processing

speed twice as fast.

An improved linear systolic array is used to construct the

S-W method in [11]. The method of generating PE included

merging two processing units into a compact cell. To

determine the edit distance between the reference and test

sequences, the compact cell that is so generated is used. This

cell utilizes 3 Xilinx Vertex slices. It enables loading both

sequences into the system, avoiding the need for the runtime

configuration. Successful verification of the implementation

was achieved with the assistance of the Pilchard platform,

which offers a memory-mapped bus that is 64 bits in width

and operates at 133 MHz.

A new approach to meeting the need for high-throughput

processing with minimal FPGA board resources is detailed in

[12]. Alignment Pointer Generation Unit (APGU), Accurate

Memory Address Generator (AMAG), Weight Matrix (WM),

and Alignment Matrix (AM) are the components of the

hardware circuitry. In order to make the method more

compact, we modify the NW technique and use a dynamic

WM. After the WM is built, the AMAG will allocate the

direction pointers to the AM at a certain location. Ultimately,

alignment is performed utilizing the values stored in the AM

cells. Simulation outcomes have demonstrated that this

method utilizes FPGA resources quite conservatively.

Parallel implementations on GPU and FPGA platforms

compared to a sequential CPU-based version of the NW

algorithm in terms of execution times, in [14]. Focusing on

tree-based transformation on CUDA-enabled GPUs, the study

aimed to parallelize the N-W technique. A tree-based

approach is used to sort out dependencies and get everything

in sync. This method eliminates interdependence by

coordinating various tasks. If the computer needs to do the

same thing multiple times, instead of doing it over and over

again, it does it once and then uses that result for all the similar

tasks at the same time. This way, tasks with different needs

work together better because they communicate more

efficiently. The implementation of this method emerges as

highly efficient, employing block synchronization with a lock-

free approach, enabling the aggregation of numerous threads

compared to conventional sequential algorithms. Despite this,

data movement presented challenges for GPUs, prompting the

adoption of FPGA-based implementation. Data movement

presents no concerns in FPGA setups, as all components,

including RAM and Flash cells, are linked via horizontal and

vertical channels on the same board, unlike in CPUs. Both

methodologies demonstrated notable advancements over the

sequential CPU-based implementation. Specifically, the

FPGA implementation showcased consistent execution times

for small sequences, whereas for larger sequences, there was

a considerable improvement.

The S-W algorithm, outlined in [15], is renowned for its

computational demands in large database sequencing tasks.

To address this, the algorithm is accelerated by implementing

it on an FPGA board using 2D systolic arrays. However, due

to the limited hardware resources on the FPGA, only a

constrained number of processing elements (PE) can be

deployed. Consequently, the similarity/score matrix is

partitioned into sub-matrices for computation. The PE array

calculates a single sub-matrix during each cycle and keeps the

intermediate results in memory for the next cycle. With a top

performance of 78 GCUPS, this method considerably

improves performance, reaching a speedup of up to 625x when

compared to a software-only solution.

In [16], the banded Smith-Waterman method is

implemented on an FPGA using a two-stage pipeline

topology. This structure enables scoring and backtracking to

be performed simultaneously. A lookahead calculation

technique is employed for the scoring matrix, resulting in a

reduction in LUT consumption and improved throughput.

Instead of using larger bit-widths to represent increasing

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

58

scores, the scoring matrix is replaced by a direction matrix,

which uses only two bits to represent match, mismatch,

insertion, and deletion, effectively compressing data and

conserving resources. An error-counting mechanism,

executed concurrently with scoring, filters out reads with

excessive errors, thereby skipping the backtracking step and

saving computational time. The backtracking module is fully

implemented in hardware to address potential bandwidth

issues encountered when sending the scoring matrix to a CPU

for backtracking. Reading the direction matrix buffer is

initiated by this module upon score completion. When the

clock cycles, the backtracking module receives 2-bit direction

information at each position, starting with the last entry and

working its way to the first. The alignment route is then

updated with these bits , and the final alignment information is

generated by combining the alignment path with the read and

reference sequences. However, a limitation of this technique

is that it can only backtrack along a single alignment path.

The Adaptively Banded Smith-Waterman method

(ABSW), developed by Y. Liao et al. [19], is designed to align

long genomic sequences and is compatible with many types of

hardware. Given the computational intensity of the Smith-

Waterman algorithm, computing entire score matrices during

read-to-reference genome alignment is unfeasible. Hence, the

search space is minimized using seed-and-extend paradigms.

In this initial phase, the algorithm identifies small, highly

similar subsequences (called seeds) between the read and the

reference genome. Seeds are short, exact or nearly exact

matches that serve as anchor points for further alignment.

Once the seeds are identified, the algorithm extends the

alignment outwards from these anchor points. In order to

determine the best local alignment, this extension step

calculates the alignment score in the areas around each seed.

To make sure the end result is correct and takes gaps and

mismatches into consideration, the S-W algorithm is used to

improve the alignment. However, because this calculation is

limited to the seeds' immediate vicinity, it is more efficient.

To address the significant time difference between the seeding

and extension phases, an FPGA Accelerator is created. The

Banded Smith-Waterman method with constant memory is

used to align fixed-length subsequences during the extension

phase, when the best alignment pathways of the subsequences

are concentrated in diagonal bands. Heuristic techniques and

dynamic overlapping are proposed to further improve

accuracy by band overlapping in subsequences .

The author showed a digital version of the S-W and N-W

algorithms that was optimized in terms of both software and

hardware in [21]. For hardware implementation, a

combinational circuit is built using Look-Up Tables (LUT)

and then implemented on an FPGA platform. A Convolutional

Neural Network (CNN) model that has been specifically

tailored is used for the software implementation. The use of

ML in a sequence alignment method has never been done

before. With a minimum value of four, N denotes the length

of each sequence, and this approach runs in O(N/4)

computation steps. The N-W method achieves a 98.3%

accuracy in its implementation. The author presented a new

application of classical ML for global sequence Alignment

using the N-W algorithm in [20]. Building a lookup table or

dataset is important to this solution. The category of the

alignment array is the goal, and the two DNA sequences

expressed in binary or decimal form are the dataset's input

(features or characteristics). With just a handful of possible

output classes or alignment patterns, the N-W method is

implemented using ML techniques. On two real-life, 4.1-

million-nucleotide-long DNA sequences, an astonishing 99.7

percent accuracy was achieved by combining a multilayer

perceptron with the ADAM optimizer, leading to up to 2912

CGUPS. However, the drawback of these two approaches is

that the length of the two sequences to be compared must be

the same and a multiple of four.

5. Challenges in FPGA-Accelerated Biological

Sequence Alignment
The survey highlights the challenges encountered by

researchers when utilizing FPGA accelerators for biological

sequence alignment. The challenges are as follows: 1) Fitting

resource-hungry dynamic programming algorithms onto

FPGAs requires a careful balancing act due to limited logic,

memory, and interconnect availability; 2) Limited resources

of FPGAs create a bottleneck when dealing with massive

datasets like whole genomes. 3) The inherently sequential

nature of DP algorithms clashes with the parallel processing

power of FPGAs, creating a challenge in optimizing resource

usage and maximizing throughput. 4) Although FPGAs excel

at parallel processing, fully utilizing this strength for sequence

alignment algorithms requires careful optimization. The key

challenge lies in partitioning the DP algorithm and mapping it

onto the FPGA architecture in a way that minimizes

communication between processing units and maximizes

parallel execution. 5) Effectively transferring data between the

FPGA and external memory, including RAM or storage

devices, is essential for achieving optimal performance. The

challenges lie in reducing data movement and enhancing data

transfer speeds, especially when dealing with extensive
datasets.

6. Conclusion
Within this paper, a classification scheme for diverse

sequence alignment algorithms documented in existing

literature has been outlined. DP algorithms offer accurate but

computationally intensive solutions suitable for scenarios

where precision is crucial, whereas heuristic approaches

provide faster, approximate solutions that are more scalable

for large datasets but may sacrifice some level of accuracy.

Through this paper, the key challenges faced by researchers

up to the present have been outlined. Therefore, the survey has

shown that FPGA is the most appropriate hardware to

accelerate the DP algorithms. Flexible and adaptable designs,

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

59

hardware-software co-design, and advanced FPGA

architectures can be used further to enhance performance and

scalability in biological sequence alignment tasks.

There is a need for future work to implement AI

algorithms for the optimization of hardware and software. ML

models like CNNs and RNNs can be used to identify important

features from raw sequence data that help to improve

alignment accuracy. Embedding techniques like Word2Vec,

Doc2Vec, and others can be adapted to generate dense vector

representations of biological sequences, which capture

semantic similarities and can be used to improve alignment

algorithms using ML.

References
[1] T.F. Smith, and M.S. Waterman, “Identification of Common Molecular Subsequences,” Journal of Molecular Biology, vol. 147, no. 1,

pp. 195-197, 1981. [CrossRef] [Google Scholar] [Publisher Link]

[2] Saul B. Needleman, and Christian D. Wunsch, “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence

of Two Proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970. [CrossRef] [Google Scholar] [Publisher Link]

[3] Robert Giegerich, “A Systematic Approach to Dynamic Programming in Bioinformatics,” Bioinformatics, vol. 16, no. 8, pp. 665-677,

2000. [CrossRef] [Google Scholar] [Publisher Link]

[4] Stephen F. Altschul et al., “Basic Local Alignment Search Tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403-410, 1990.

[CrossRef] [Google Scholar] [Publisher Link]

[5] Licheng Guo et al., “Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race between FPGA and

GPU,” 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA,

USA, pp. 127-135, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Laiq Hasan, and Zaid Al-Ars, “An Overview of Hardware-Based Acceleration of Biological Sequence Alignment,” Computational

Biology and Applied Bioinformatics, pp. 187-202, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[7] Jason Chiang et al., “Hardware Accelerator for Genomic Sequence Alignment,” 2006 International Conference of the IEEE Engineering

in Medicine and Biology Society, New York, NY, USA, pp. 5787-5789, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[8] Yoshiki Yamaguchi et al., “High Speed Homology Search using Run-Time Reconfiguration,” Field-Programmable Logic and

Applications: Reconfigurable Computing Is Going Mainstream, pp. 281-291, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[9] S. Margerms, “Reconfigurable Computing in Real-World Applications,” FPGA Structures and ASIC Journal, vol. 10, no. 5, pp. 1-8, 2006.

[Google Scholar]

[10] S. Bojanic et al., “High Speed Circuits for Genetics Applications,” 2004 24th International Conference on Microelectronics, Nis, Serbia,

vol. 2, pp. 517-524, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[11] C.W. Yu et al., “A Smith-Waterman Systolic Cell,” Proceedings of the 13th International Conference on Field Programmable Logic and

Applications (FPL), Lisbon, Portugal, pp. 375-384, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[12] Ardhendu Sarkar, and Som Banerjee, “FPGA Implementation of DNA Sequence Alignment with Traceback,” 2020 4th International

Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, pp. 47-52, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[13] Yu-Cheng Li, and Yi-Chang Lu, “BLASTP-ACC: Parallel Architecture and Hardware Accelerator Design for BLAST-based Protein

Sequence Alignment,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1771-1782, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[14] Chirag Kyal, Rishav Kumar, and Adil Zamal, “Performance-based Analogising of Needleman-Wunsch Algorithm to Align DNA

Sequences using GPU and FPGA,” 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, pp. 1-5, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Anna Hakim et al., “Performance Analysis of DNA Sequencing Using Smith-Waterman Algorithm on FPGA,” Journal of VLSI Design

Tools & Technology, vol. 9, no. 2, pp. 9-15, 2019. [Google Scholar] [Publisher Link]

[16] Luyi Li, Jun Lin, and Zhongfeng Wang, “PipeBSW: A Two-Stage Pipeline Structure for Banded Smith-Waterman Algorithm on FPGA,”

2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, pp. 182-187, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Muhammad Irfan, Kizheppatt Vipin, and Rizwan Qureshi, “Accelerating DNA Sequence Analysis using Content -Addressable Memory

in FPGAs,” 2023 IEEE 8th International Conference on Smart Cloud (SmartCloud), Tokyo, Japan, pp. 69-72, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Behnam Khaleghi et al., “SALIENT: Ultra-Fast FPGA-based Short Read Alignment,” 2022 International Conference on Field-

Programmable Technology (ICFPT), Hong Kong, pp. 1-10, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Yi-Lun Liao et al., “Adaptively Banded Smith-Waterman Algorithm for Long Reads and its Hardware Accelerator,” 2018 IEEE 29th

International Conference on Application-Specific Systems, Architectures and Processors (ASAP), Milan, Italy, pp. 1-9, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1016/0022-2836(81)90087-5
https://scholar.google.com/scholar?q=Identification+of+common+molecular+subsequences&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/0022283681900875
https://doi.org/10.1016/0022-2836(70)90057-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+B.+Needleman%2C+A+general+method+applicable+to+the+search+for+similarities+in+the+amino+acid+sequence+of+two+proteins&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0022283670900574
https://doi.org/10.1093/bioinformatics/16.8.665
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+approach+to+dynamic+programming+in+bioinformatics&btnG=
https://academic.oup.com/bioinformatics/article/16/8/665/190161
https://doi.org/10.1016/S0022-2836(05)80360-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+F.+Altschul%2C+Basic+local+alignment+search+tool&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0022283605803602
https://doi.org/10.1109/FCCM.2019.00027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+acceleration+of+long+read+pairwise+overlapping+in+genome+sequencing%3A+a+race+between+FPGA+and+GPU&btnG=
https://ieeexplore.ieee.org/abstract/document/8735515
https://doi.org/10.5772/23044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+overview+of+hardware-based+acceleration+of+biological+sequence+alignment&btnG=
https://www.intechopen.com/chapters/18997
https://doi.org/10.1109/IEMBS.2006.260286
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware+accelerator+for+genomic+sequence+alignment&btnG=
https://ieeexplore.ieee.org/abstract/document/4463122
https://doi.org/10.1007/3-540-46117-5_30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+speed+homology+search+using+run-time+reconfiguration&btnG=
https://link.springer.com/chapter/10.1007/3-540-46117-5_30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reconfigurable+computing+in+real-world+applications&btnG=
https://doi.org/10.1109/ICMEL.2004.1314878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+speed+circuits+for+genetics+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/1314878
https://doi.org/10.1007/978-3-540-45234-8_37
https://scholar.google.com/scholar?q=C.+W.+Yu,+A+Smith-Waterman+systolic+cell&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-540-45234-8_37
https://doi.org/10.1109/ICECA49313.2020.9297554
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+DNA+sequence+alignment+with+traceback&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+DNA+sequence+alignment+with+traceback&btnG=
https://ieeexplore.ieee.org/abstract/document/9297554
https://doi.org/10.1109/TBCAS.2019.2943539
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BLASTP-ACC%3A+parallel+architecture+and+hardware+accelerator+design+for+BLAST-based+protein+sequence+alignment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BLASTP-ACC%3A+parallel+architecture+and+hardware+accelerator+design+for+BLAST-based+protein+sequence+alignment&btnG=
https://ieeexplore.ieee.org/abstract/document/8854971
https://doi.org/10.1109/INDICON49873.2020.9342078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance-based+analogising+of+Needleman-Wunsch+algorithm+to+align+DNA+sequences+using+GPU+and+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/9342078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+analysis+of+DNA+sequencing+using+Smith-Waterman+algorithm+on+FPGA&btnG=
https://engineeringjournals.stmjournals.in/index.php/JoVDTT/article/view/2287
https://doi.org/10.1109/ISVLSI51109.2021.00042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PipeBSW%3A+A+two-stage+pipeline+structure+for+banded+Smith-Waterman+algorithm+on+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/9516752
https://doi.org/10.1109/SmartCloud58862.2023.00020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+DNA+sequence+analysis+using+content-addressable+memory+in+FPGAs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+DNA+sequence+analysis+using+content-addressable+memory+in+FPGAs&btnG=
https://ieeexplore.ieee.org/abstract/document/10349148
https://doi.org/10.1109/ICFPT56656.2022.9974548
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Salient%3A+Ultra-fast+FPGA-based+short+read+alignment&btnG=
https://ieeexplore.ieee.org/abstract/document/9974548
https://doi.org/10.1109/ASAP.2018.8445105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptively+banded+Smith-Waterman+algorithm+for+long+reads+and+its+hardware+accelerator&btnG=
https://ieeexplore.ieee.org/abstract/document/8445105

Anita Wagh et al. / IJECE, 12(8), 51-60, 2025

60

[20] Amr Ezz El-Din Rashed et al., “Sequence Alignment using Machine Learning-based Needleman–Wunsch Algorithm,” IEEE Access, vol.

9, pp. 109522-109535, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Amr Ezz El-Din Rashed, Marwa Obaya, and Hossam El~Din Moustafa, “Accelerating DNA Pairwise Sequence Alignment using FPGA

and a Customized Convolutional Neural Network,” Computers & Electrical Engineering, vol. 92, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Osamu Gotoh, “An Improved Algorithm for Matching Biological Sequences,” Journal of Molecular Biology, vol. 162, no. 3, pp. 705-

708, 1982. [CrossRef] [Google Scholar] [Publisher Link]

[23] Stephen F. Altschul, and Bruce W. Erickson, “Optimal Sequence Alignment using Affine Gap Costs,” Bulletin of Mathematical Biology,

vol. 48, pp. 603-616, 1986. [CrossRef] [Google Scholar] [Publisher Link]

[24] T.K. Attwood, and D.J. Parry-Smith, Introduction to Bioinformatics, Pearson PLC, 2003. [Google Scholar] [Publisher Link]

[25] Peng Chen et al., “Accelerating the Next Generation Long Read Mapping with the FPGA-based System,” IEEE/ACM Transactions on

Computational Biology and Bioinformatics, vol. 11, no. 5, pp. 840-852, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[26] Jeff Allred et al., “Smith-Waterman Implementation on a FSB-FPGA Module Using the Intel Accelerator Abstraction Layer,” 2009 IEEE

International Symposium on Parallel & Distributed Processing, Rome, Italy, pp. 1-4, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[27] Enzo Rucci et al., “Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA,” Proceedings of the 5th

International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), Granada, Spain, pp. 500-511, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[28] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Michitaka Kameyama, “FPGA-Accelerator for DNA Sequence Alignment

based on an Efficient Data-Dependent Memory Access Scheme,” Highly-Efficient Accelerators and Reconfigurable Technologies , pp.

127-130, 2014. [Google Scholar] [Publisher Link]

[29] Mostafa Morshedi, and Hamid Noori, “FPGA Implementation of a Short Read Mapping Accelerator,” Proceedings of the 13th

International Symposium on Applied Reconfigurable Computing (ARC), Delft, The Netherlands, pp. 289-296, 2017. [CrossRef] [Google

Scholar] [Publisher Link]

[30] Simone Casale-Brunet, Endri Bezati, and Marco Mattavelli, “Design Space Exploration of Dataflow-Based Smith-Waterman FPGA

Implementations,” 2017 IEEE International Workshop on Signal Processing Systems (SiPS), Lorient, France, pp. 1-6, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2021.3100408
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sequence+alignment+using+machine+learning-based+Needleman%E2%80%93Wunsch+algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/9497110
https://doi.org/10.1016/j.compeleceng.2021.107112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+DNA+pairwise+sequence+alignment+using+FPGA+and+a+customized+convolutional+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790621001178
https://doi.org/10.1016/0022-2836(82)90398-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+algorithm+for+matching+biological+sequences&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0022283682903989
https://doi.org/10.1007/BF02462326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+sequence+alignment+using+affine+gap+costs&btnG=
https://link.springer.com/article/10.1007/BF02462326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T.+K.+Attwood+and+D.+J.+Parry-Smith%2C+Introduction+to+Bioinformatics&btnG=
https://research.manchester.ac.uk/en/publications/introduction-to-bioinformatics
https://doi.org/10.1109/TCBB.2014.2326876
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+the+next+generation+long+read+mapping+with+the+FPGA-based+system&btnG=
https://ieeexplore.ieee.org/abstract/document/6822570
https://doi.org/10.1109/IPDPS.2009.5161214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smith-Waterman+implementation+on+a+FSB-FPGA+module+using+the+Intel+Accelerator+Abstraction+Layer&btnG=
https://ieeexplore.ieee.org/abstract/document/5161214
https://doi.org/10.1007/978-3-319-56154-7_45
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+Smith-Waterman+alignment+of+long+DNA+sequences+with+OpenCL+on+FPGA&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-56154-7_45
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA-accelerator+for+DNA+sequence+alignment+based+on+an+efficient+data-dependent+memory+access+scheme&btnG=
https://www.ecei.tohoku.ac.jp/hariyama/papers/C20140610_HEART_FPGA-Accelerator-for-DNA-Sequence-Alignment.pdf
https://doi.org/10.1007/978-3-319-56258-2_25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+a+short+read+mapping+accelerator&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+implementation+of+a+short+read+mapping+accelerator&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-56258-2_25
https://doi.org/10.1109/SiPS.2017.8109982
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+space+exploration+of+dataflow-based+Smith-Waterman+FPGA+implementations&btnG=
https://ieeexplore.ieee.org/abstract/document/8109982

