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Abstract - Information about large and remote agricultural regions can be gathered using Internet of Things (IoT) systems, 

and machine learning approaches can be applied to predict crops. Crop recommendations are determined by factors such 

as rainfall, moisture, temperature, nitrogen (N), phosphorus (P), potassium (K), pH, and temperature. The dataset contains 

2,200 instances and 8 features, leading to suggestions for approximately 22 different crops based on various combinations 

of these 8 attributes. Using artificial intelligence algorithms in WEKA, the most effective model is developed through 

supervised learning. The integration of IoT technology has significantly improved crop prediction accuracy by providing 

real-time soil data. This study further investigates the use of fused machine learning techniques and enhanced stacked 

ensemble approaches to increase crop prediction accuracy, using soil characteristics gathered from IoT sensors. Due to the 

complexity and variability of soil conditions, existing crop prediction models often face challenges that result in insufficiently 

precise forecasts. Existing models may fail to capture temporal relationships and overlook the intricate interactions between 

soil features. To address these challenges, researchers propose a novel approach that combines multiple machine learning 

algorithms such as Bidirectional LSTM (BiLSTM), Vanilla Recurrent Neural Networks (VRNN), Long Short -Term Memory 

(LSTM), and Gated Recurrent Units (GRU). To enhance precision, this approach integrates th e predictive strengths of these 

models. The aim of this research is to develop an accurate prediction model that optimizes resource utilization and 

productivity in agriculture. The stacked ensemble approach achieved a Mean Squared Error (MSE) of 0.045 and an R-

squared (R²) value of 0.92, compared to individual models with MSEs ranging from 0.065 to 0.085 and R² values ranging 
from 0.85 to 0.90. These results demonstrate a significant improvement in prediction accuracy. 

Keywords - Smart agriculture, Internet of Things, Crop prediction, Machine Learning, Stacking ensemble, Soil parameters, 

Predictive modeling, Precision agriculture, Data integration. 

1. Introduction 
Despite being the second-most productive country in 

the world, 64% of India's arable land is dependent on the 

rainy season. Approximately 85% of water is used for 

irrigation, while almost 60% of water is lost during water 

supply. Productivity, soil deterioration, effective irrigation 

use, decreased use of chemicals for cultivation, and the use 

of contemporary farming techniques to raise the 

productivity of crops, yield, and cost may all result from this 

precise farming [1].  

 

Agriculture is undergoing a digital transformation 

driven by the integration of advanced technologies, with 

Smart Agriculture emerging as a key paradigm. It leverages 

automation, data analytics, and real-time monitoring to 

enhance decision-making and optimize resource utilization. 

One of the most impactful technologies enabling this shift is 

the Internet of Things (IoT), which allows continuous data 

collection from fields through interconnected sensors and 

devices. These IoT-based systems gather valuable 

environmental and soil parameters such as temperature, 

humidity, soil moisture, pH, and nutrient levels, providing a 

rich foundation for data-driven agricultural practices. 

 

The use of IoT in agriculture enables precision farming, 

where decisions such as crop selection, irrigation 

scheduling, and fertilization are made based on real-time 

data rather than historical trends or guesswork. This 

precision approach significantly reduces input wastage and 

improves yield quality. However, there is a growing reliance 

on Artificial Intelligence (AI) and Machine Learning (ML) 

models to translate this raw sensor data into actionable 

insights. These models analyze complex patterns in the data 

and predict the most suitable crop to cultivate under given 

soil and environmental conditions. Despite the promise, 

traditional ML methods often face accuracy, adaptability, 

and scalability challenges when dealing with heterogeneous 

and region-specific datasets. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Advanced ensemble learning techniques and real-time 

data integration are being explored to address these 

limitations to enhance crop prediction performance. 

Combining IoT-collected data with robust ensemble ML 

frameworks such as stacking or boosting can improve 

prediction reliability and generalizability. Furthermore, 

incorporating Explainable AI (XAI) ensures transparency in 

recommendations, allowing farmers to trust and understand 

the reasoning behind predictions. Thus, the convergence of 

IoT and intelligent algorithms form the backbone of next-

generation smart agriculture systems, promoting sustainable 

farming by enabling precise, automated, and adaptive crop 

prediction models that can dynamically respond to varying 

field conditions. 

 

IoT solutions for agriculture are aimed at assisting 

farmers in narrowing the gap between supply and demand 

by guaranteeing good yields, economic viability, and 

environmental preservation. IoT in precision farming 

concentrates on managing crop water, controlling pests, 

managing nutrients, accurately detecting and managing 

them, and managing them safely [2]. In the past, sensors 

have made great strides in measuring a variety of variables, 

including temperatures, pH levels, humidity, and analytical 

variables like potassium, mineral phosphorus , and nitrogen 

in the atmosphere. All of these measures can be obtained 

using detectors, and the information gathered is then stored 

on a networked server or in the cloud for subsequent 

processing seen in Figure 1. 

 

 
Fig. 1 Progression of existing methods using sensors 

Together, sensors provide an infrastructure that may be 

accessible or connected to a cloud or backend, allowing the 

cloud to connect sensor reactions in different parts of the 

world. There are four stages for smart items without a 

connection. The worldwide Internet of Things, or 

distributed management systems using programmable logic 

controls, is considered the next development after regional 

data transmission [3]. Internet-based communications are 

used in the next phase of tracking and controlling online 

activities. Locally based worldwide, open chains of control 

and IoT constitute the last stage, as a smooth management 

of product life cycles and supply chain administration using 

the IoT. A creative approach to agriculture is intelligent 

farming [4]. The difficulty involves producing enough food 

over the long run to satisfy the basic requirements of a 

population that is always expanding while protecting 

biodiversity and ecosystems. It promotes the utilization of 

knowledge-based technologies and equipment and 

preserves resources for the sustained production of 

agriculture. IoT sensors are predicted to increase 

agricultural productivity by 70% by 2050 [5]. A report 

found that due to an estimated 900 million additional people 

coming into the world by 2050, food production would need 

to increase by 60% worldwide. Higher agricultural yields 

and cheaper expenses are two major advantages of utilizing 

IoT sensors and Artificial Intelligence (AI) technology. By 

2025, it's expected that smart farming will use IoT devices 
to the tune of $15.3 billion [6].  

Remotely operated devices are now providing 

agriculturalists with useful data. In this context, wireless 
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sensor networks and the IoT are crucial. Intelligent farming 

allows farmers to monitor field conditions with mobile 

devices. IoT-based intelligent agriculture is extremely 

successful compared to the existing method since it 

improves the precision and sustainability of agriculture [7]. 

The increasing worldwide population is driving up demand 

for agricultural products daily. AI and the IoT are two 

examples of smart technologies that are being used more 

and more in agriculture to grow organic foods effectively in 

confined spaces while getting around existing challenges 

that farmers encounter. Maximizing agricultural output is 

possible through innovative agriculture, transforming 

people's views on farming worldwide [8]. Utilizing state-of-

the-art sensors along with information analysis tools to 

boost crop productivity and optimize returns on inputs like 

fertilizers and fluids supports management decisions. It 

makes use of technologies to increase agricultural yield, 

ensure effective control of drainage and fertilizers, and 
reduce labor expenses [9].  

Intelligent agriculture is now feasible for tiny family-

owned enterprises and farming cooperatives thanks to 

intelligent sensors, IoT, and AI technology. Systems for 

smart farming may provide farmers with a wealth of 

environmental information from their farms, increasing 

their profitability and competitiveness. These technological 

advancements have applications in almost every aspect of 

food production, from installation and watering to crop 

preservation and gathering [10].  

Decisions involving human intervention are made 

smoothly, and procedures become understandable when AI 

is connected to the cloud. A variety of approaches, including 

databases and predictive analysis, have been proposed to 

address current problems in agriculture. AI systems have 

been shown to produce the greatest outcomes in terms of 

accuracy and efficiency [11]. Thanks to AI techniques, 

information can be gathered and responded to in each case's 

complex challenges in the best possible way. Extremely 

complicated issues are gradually solved by the development 

of various AI systems. A variety of agricultural techniques 

are swiftly adapting to AI. Smart technologies provide 

farmers the ability to identify crops, assess the soil, offer 

professional guidance, and create commercial prospects 
[12].  

Stochastic AI technologies follow from this, allowing 

agricultural production to become more efficient by 

identifying, gathering, and reacting to various situations 

based on the information acquired. Farmers who keep up 

with developments in the world of agriculture can provide 

answers through chatterbots and other platforms. AI for 

farming is expected to rise dramatically on an international 

level [13]. Its goal was to increase the productivity of 

routine farming duties , including using drones and 

automated machinery, automated systems for irrigation, 

procedures to check the condition of crops, and driverless 

tractors.  

 

This study aimed to highlight the use of WSN and IoT 

for farming and provide a comprehensive examination of 

sensor and IoT information analysis using AI techniques for 

farming. The strategy aims to identify and manage illnesses 

of the cotton leaf and encourage greater utilization in 
agriculture-based applications [14]. 

1.1. Problem Statement 

The increasing demand for sustainable and high-yield 

agriculture necessitates the development of advanced 

methods for crop prediction to optimize farming practices. 

One of the critical challenges in this domain is the accurate 

prediction of suitable crops based on varying soil 

parameters such as pH level, nitrogen, phosphorus, 

potassium content, moisture, temperature, and other 

environmental conditions. Existing approaches often rely on 

manual expertise, which can be subjective, time-consuming, 

and less scalable. This leads to inefficiencies in crop 

selection and resource utilization, particularly in diverse and 

dynamic agro-climatic zones. There is a pressing need for a 

precise, data-driven approach that leverages machine 

learning and ensemble techniques to analyze soil 

characteristics and provide reliable crop recommendations. 

Such a system would enhance agricultural productivity and 

support decision-making for farmers, contributing to food 
security and sustainable agricultural development. 

1.2. Research Gap 

Despite significant advancements in the application of 

machine learning techniques for agricultural prediction, 

several critical research gaps remain in the domain of 

precise crop prediction based on soil parameters. Most 

existing models are limited in scalability and fail to 

generalize across diverse agro-climatic regions due to the 

lack of region-specific soil data and insufficient feature 

representation. Additionally, many traditional models use 

standalone algorithms that do not fully exploit the potential 

of ensemble learning methods , which could significantly 

improve prediction accuracy and robustness. There is also 

limited real-time soil sensing data integration, and IoT-

based inputs are essential for adaptive and dynamic crop 

recommendation systems. Explainability and 

interpretability of the prediction results are often 

overlooked, making it difficult for farmers and agronomists 

to trust and apply the outcomes in practical scenarios. 

Addressing these gaps requires the development of a robust, 

scalable, and interpretable model that effectively combines 

multi-source data with advanced ensemble learning 
techniques for precise and context-aware crop prediction. 

2. Related Works 
Expectations on both ends of the connection propose 

employing credible articles from publications, the Internet, 

and algorithmic machine learning of choice when proposing 

particular plants in light of current breakthroughs in the 

manufacturing management business. It is comprehensive 

due to the assets at hand, including the system-supporting 

seminars. In addition to offering crucial information, online 

newspapers typically offer advice and fixes in case of an 

issue [15]. Anticipating issues and deception that may result 

in severe penalties for failures is crucial. The development 

of methods for machine learning has enhanced yield 

estimates. Several machine learning algorithms were used 
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for multispectral and multi-temporal satellite photos to 

forecast crops. Description of some of the methods that have 

previously been studied and piqued our interest. A novel 

crop production forecasting framework with three essential 

features was presented [16]. 

 

RMSE of 8%, it predicted maize and soybean yields 

better than artificial intelligence techniques in three 

Midwest states. Some settings through the management of 

manufacturing connections for maize and soybeans. 

Qualitatively dividing yields of crops into variables from the 

properties of the soil, conditions administration, and their 

relationship to one another, it enabled agronomists to 

determine the various factors that favorably or unfavourably 

affect a given location's yield according to a given weather 

and agricultural circumstance [17]. An intelligence 

technique for forecasting agricultural output and 

determining the best climatic conditions maximize crop 

yield was presented. Technological improvements, the 

emphasis these days is on using machinery and control 

technologies to maximize output and optimize processes. 

Multivariable polynomial estimation, a randomly generated 

forest, and assistance vector regression models are used to 

forecast the agricultural production per acre. Using 

assessment measures, the study compares the three machine 
learning methods [18]. 

The main focus is to estimate the important kharif crops 

in Tamil Nadu. In this work, investigators first use Mann's 

to anticipate the amount of rainfall. Then, they use Support 

Vector Regression (SVR) to forecast the number of primary 

kharif crops generated based on rainfall information and the 

Area designated for that particular crop. The MANNs -SVR 

approach might be utilized to generate suitable farming 

plans that will increase crop productivity [19]. A regression 

study was used to find a connection between variables, such 

as yearly rainfall information, production region, food cost, 

and the corresponding effects on rice crop productivity. 

There is a modicum of fluctuation in the information's 

attributes that are unquestionably related to agricultural 

yield. The regression study result is R2 = 0.7, which is the 

impact value [20]. This R2 finding unequivocally shows that 

the median impact of every information component on crop 

output is 70%, considering other factors that impact the 

yield of crops, such as the minimum assistance price, the 

environment, soil characteristics, etc., and by analyzing the 

yield-affecting parameters using a variety of information 
mining and statistical methods [21]. 

The forecasting use of artificial intelligence and 

regression-based approaches for agricultural production 

estimation is examined. The results show that the M5-Prime 

and k-nearest neighbor techniques yield superior outcomes. 

Employed SMO classifiers on a dataset that included several 

regions in the state of Maharashtra. The information that 

was used to anticipate rice cultivation was sourced from 

freely accessible information from the Indian government 

[22]. For four years, the research has taken into account 

every significant factor in predicting agricultural 

productivity during the kharif season. The study employed 

a variety of validation matrices to verify the findings. The 

study shows that other applied strategies outperformed the 

SMO classifier when it compared the SMO method with 
different methods [23]. 

For yield prediction in the Tamil Nadu region, we 

constructed and evaluated several forecasting approaches 

known as models of regression depending on several 

farming factors, including water,  temperature, climate, soil, 

nitrogen, and crop rotation, among many others. The 

proposed framework is applied to establish an association 

between the yield of crops and the surface area planted [24]. 

Discovered that producers may better manage their crops by 

using regression forecasting techniques. To provide yield 

quickly and reliably, proposed ML-based forecasting 

approaches. The effectiveness of models built with ML is 

assessed using historical information. Numerous machine 

learning models for forecasting report phrases were applied 

to the statistical information, and every model's efficacy was 

assessed. The outcomes demonstrate that random forest 
outperforms other ML methods [25].  

3. Problem Formulation 
The primary issue that farmers encounter while 

choosing the right crops has to do with the shifting climate. 

Even though these methods are accessible and efficient, the 

best crop recommendation solution is still needed. The 

shortcomings of the current system include inadequate 

analysis, poor feature selection, and ineffective method 

implementation. Each of these variables has an impact on 

crop yield. The limitations of the present systems can be 

addressed by the proposed method. A smart farming system 

uses ensemble-based machine-learning algorithms to 

suggest specific crops for a given field region to maximize 

productivity. When it comes to forecasting which crops will 

yield more when certain characteristics are chosen, such as 

moisture, temperature, precipitation, pH, and the 

appropriate amount of fertilizers , such as Nitrogen (N), 

Potassium (K), and Phosphorus (P), using machine learning 

is the most effective. Insightful data for research might be 

obtained by sophisticated sensors that help producers by 

suggesting the best crop to sow. Given that crop advice 

performance differs based on the type of technology used, 

relevant features with suitable machine-learning algorithms 

must be selected. Crop loss may be reduced by selecting the 

right crops. 

3.1. Materials and Methods 

In this situation, optimizing agricultural output and 

guaranteeing effective resource utilization depends heavily 

on accurate crop forecasts. Soil conditions are complex and 

variable, and existing crop forecast approaches frequently 

suffer from inadequate precision, as shown in Figure 2. 

These existing methods could produce less -than-ideal 

findings because they are unable to fully capture the 

complex relationships between different soil factors and the 

temporal dependencies in the data. This work suggests using 

an advanced stacking ensemble method in conjunction with 
fused machine learning methods to overcome these issues.  
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Fig. 2 Smart agriculture framework for crop recommendation  

To make use of each algorithm's unique advantages and 

increase the precision of predictions as a whole, this method 

uses ensemble stacking. By utilizing these methods using 

soil information gathered from IoT sensors, the research 

hopes to create a strong forecasting framework that 

improves agricultural output forecast accuracy. The findings 

show that the stacking ensemble approach works noticeably 

better than standalone, resulting in increased accuracy and 

decreased rate of errors, and enhances more productive and 
environmentally friendly ways of farming. 

3.2. Dataset Description  

Many soil factors make up the collection of data utilized 

for accurate crop forecasting in smart farming, and each one 

contains essential data about the state of the soil and how it 

affects crop output. Determining the hydration levels 

required for optimum crop development depends on 

knowing the soil moisture variable expressed as 

percentages, which represents the water that composes the 

soil. The average temperature of the earth's surface, 

expressed in degrees Celsius, gives information on the soil's 

thermal environment at various depths, which influences the 

growth of roots and the absorption of nutrients. Another 

important factor is that soil pH ranges from 0 to 14, 

indicating whether the soil is acidic or alkaline. This affects 

how readily available resources are to plants. Nutrient levels  

expressed as micrograms per kilogram of weight show the 

percentage of nutrients necessary for plant development, 

such as P, N, and K, shown in Table 1. 

Temperature, pH, Humidity, 

Rainfall, Phosphorous, 

Potassium, Nitrogen 

Crop Data 

Data Processing 

Test Data Train Data 

BILSTM VRNN LSTM GRU 

P1 New Data 

Ensemble Stack Final Ensemble Results  
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Table 1. Dataset description 

Parameter Description Data Type Range/Units Example Values 

Soil Moisture 
Measures the water content in the 

soil 
Float 0-100% 36.6%,48.8% 61.2% 

Soil Temperature 
Temperature of the soil at various 

depths 
Float -10 to 50°C 18.6°C, 24.4°C 

Soil pH 
The acidity or alkalinity level of 

the soil 
Float 0-14 pH units 6.6, 7.3, 5.9 

Nutrient Levels 
Concentration of key nutrients 

(N, P, K) in the soil 
Float mg/kg 

N: 31.5, P: 16.0, 

K:26.0 

Soil 

Electrical Conductivity 

Indicates the soil's ability 

to conduct electricity 
Float 0-5 dS/m 1.3 ds/m, 3.5dS/m 

Organic Matter 
Percentage of organic material in 

the soil 
Float 0-100% 2.6% 4.2% 6.9% 

Soil Texture 
Composition of sand, silt, and 

clay 
Categorical Sand, Silt, Clay 

Sandy, 

Loamy, Clayey 

Rainfall Amount of precipitation received Float mm 12.5 mm, 25.2 mm 

Previous Crop Yield Historical data on crop yield Integer kg/ha 
1500 kg/ha, 

2200kg/ha 

Date of Measurement 
Date when the soil parameters 

were recorded 
Date 

YYYY-MM-

DD 

2024-06-15 2024-

07-21 
 

Table 2. Sample data 

Date 

Soil 

Moisture 

(% ) 

 

Soil 

Tempe

rature 

(°C) 

Soil 

pH 

Nutrient 

Levels 

(mg/kg) 

Soil 

EC 

(dS/m) 

Organic 

Matter 

(% ) 

Soil 

Texture 

Rainfall 

(mm) 

Previous 

Crop 

Yield 

(kg/ha) 

2024-05-16 36.6 19.6 7.6 
N: 31.6, P: 

16.0, K: 26.0 
1.3 2.6 Sandy 13.5 1450 

2024-06-21 48.9 23.4 8.1 
N: 41.3, P: 

21.0, K: 36.0 
2.2 3.2 Loamy 19.6 2250 

2024-07-11 61.3 25.4 6.9 
N: 36.0, P: 

19.0, K: 29.0 
3.5 4.2 Clayey 26.0 1750 

2024-08-11 43.2 21.6 7.9 
N: 29.0, P: 

15.0, K: 23.0 
1.6 3.9 

Sandy 

Loam 
23.4 2150 

2024-09-02 54.5 24.2 7.1 
N: 34.5, P: 

18.0, K: 28.0 
2.8 4.4 

Silty 

Loam 
21.9 2350 

An overview of the types of information included in the 

research investigation is given iin Table 1, which gives a 

clear picture of the several soil properties and surroundings 

that affect crop forecast. The sample data are shown in Table 
2. 

3.3. Data Acquisition  

The purpose of the paprika testbed was to gather 

environmental information for the intelligent farm. The 

main components on the same page, the sensor board, the 

router, converters, and detectors , were all installed. The 

design of the well-established paprika testbed is shown. 

Nine instruments were deployed to collect 

environmental information: soil temperature, moisture 

level, solar radiation, temperatures of the air, moisture, CO2, 

discharge pH, and soil Electrical Conductivity (EC). The 

look of the developed intelligent farming testbed is seen in 

Figure 3. The graphic shows a testbed setup for keeping an 

eye on different plant bed conditions in the environment, as 

shown in Figure 4. A pH converter, a router for cutting, and 

a main circuit board make up the entire system. These 

sensors give out information received by the main circuit 

board, which analyzes it and forwards it to a network device 

for additional processing or archiving.  

 

To validate the proposed approach, open-source 

datasets were consulted and made available to the public. 

The three fertilizers that are given to crops are N, P, and K. 

The most important factor in plant development in 

intelligent farming is the right amount of each nutrient. The 

LM35 sensor for temperature is used to detect the ambient 

temperature of the soil. The DHT22 moisture sensor 
measures the air's temperature and the amount of moisture. 



Munugapati Bhavana & Koppula Srinivas Rao / IJECE, 12(8), 74-90, 2025 
 

80 

 
Fig. 3 9 Sensors to collect the environmental information 

Fig. 4 Smart farm testbed 

A pH meter is used to test the soil's pH, which affects 

the accessibility of soil nutrients and should remain 

constant. Since N is primarily accountable for the 

development of leaves, a higher concentration of N is 

required to promote leaf growth. An adequate supply of P 

must be supplied to increase fruit and flower yield and 

promote root, flower, and fruit growth. K improves the 

general effectiveness of the plant. Crop productivity may be 

raised by applying the ideal amount of NPK values. A three-

in-one fertility sensor may be used to evaluate the NPK level 

in the soil. This sensor not only measures the NPK content 

in the soil but also assesses its fertility, enabling a more 

methodical assessment of the state of the soil. It must be 

further analyzed using the proposed ensemble-based 

artificial intelligence algorithms. The procedure for 

obtaining environmental sensor information is shown in 

Figure 5, and it involves sending information and a receipt. 

Four sorts of information are acquired by the first sensor 

board: sunlight, moisture, CO2, and temperature in the air. 

Two sorts of data drainage, EC and drain, are acquired by 

the third sensor circuit.
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Fig. 5 Data acquisition process  

3.4. Data Pre-Processing 

Data Pre-processing for Smart Agriculture with IoT: 

Handling Missing Data, Categorical Values, Normalization, 

and Train/Test Splitting. 

Pre-processing includes handling missing data, dealing 

with categorical values, normalizing the data, and splitting 

it into training and testing sets.  

 

3.4.1. Handling Missing Data 

Data in sensor readings can occur for various reasons, 

such as sensor malfunctions or transmission errors. To 
ensure data integrity, the following methods can be used: 

Deletion 

Removing Rows: If the missing data is sparse, the 

affected rows can be removed: 

𝐷𝑐𝑙𝑒𝑎𝑛 = 𝐷𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 \{𝑖𝑥: 𝑖𝑥 ℎ𝑎𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔  𝑣𝑎𝑙𝑢𝑒𝑠}       (1) 

Removing Columns: If an entire feature (column) has 

too many missing values, it can be discarded:𝐷𝑐𝑙𝑒𝑎𝑛 =
𝐷𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 \{𝑖𝑦 : 𝑖𝑦  ℎ𝑎𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  𝑚𝑖𝑠𝑠𝑖𝑛𝑔  𝑣𝑎𝑙𝑢𝑒𝑠}   (2) 

Imputation 

Mean/Median Imputation: For numerical data, missing 

values can be replaced by the mean or median of the 

respective column: 

𝑖𝑥,𝑦 =
1

𝑛
∑ 𝑖𝑘,𝑦

𝑛
𝑘 =1  𝑖𝑓 𝑖𝑥,𝑦  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔       (3) 

Here, 𝑖𝑥,𝑦  Is the missing value in the y-th feature replaced 

by the mean value of the y-th feature? 

3.4.2. Handling Categorical Values 
Categorical values such as soil types or crop categories  

Label Encoding 

Converts categorical values into integer labels:  

𝑖𝑥,𝑦
′ = 𝐼𝑛𝑑𝑒𝑥  𝑜𝑓𝑖𝑥,𝑦  𝑖𝑛 𝐼𝑦         (4) 

Here, 𝑖𝑥,𝑦
′  is the encoded integer corresponding to the 

categorical value 𝑖𝑥,𝑦  

One-Hot Encoding 

Converts each category into a binary vector, ensuring 
no ordinal relationship is assumed between categories: 

𝐼𝑥,𝑦
′ = [0 1 0 … 0]if𝑖𝑥,𝑦  Is the second category of 𝐼𝑦    (5) 

Here, 𝐼𝑥,𝑦
′  Represents the one-hot encoded vector for the 

categorical variable. 

3.4.3. Normalization 

It scales the data to a uniform range, which can improve 

the performance  

Min-Max Normalization 

Scales features to a range of [0, 1]: 

𝑖𝑥,𝑦
′ =

𝑖𝑥 ,𝑦−min (𝐼𝑦)

max (𝐼𝑦)−min  (𝐼𝑦)
           (6) 

Air temp Humidity Insolation CO2 

Soil temp Soil Moisture Soil EC 

Drainage EC Drainage pH 

Main Board 
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Where𝑖𝑥,𝑦
′  Is the normalized value of the original 

feature 𝑖𝑥,𝑦
′ . 

3.4.4. Splitting Data 

The dataset is typically divided into a training set (e.g., 

80%) and a testing set (e.g., 20%):  

𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑡𝑒𝑠𝑡 =  𝑠𝑝𝑙𝑖𝑡(𝐷𝑓𝑖𝑛𝑎𝑙 , 𝑡𝑟𝑎𝑖 𝑛𝑠𝑖𝑧𝑒 =  0.8)    (7)  

Here:𝐷𝑡𝑟𝑎𝑖𝑛  Is the training dataset used to train the 

model?𝐷𝑡𝑒𝑠𝑡 Is the testing dataset used to evaluate the 

model's performance? The function split represents the 

operation that divides the dataset. 

3.5. IoT Framework for Agriculture 

As seen in Figure 6, the proposed approach entails 

integrating actual-world information from storage media 

with a cloud database administration system.  

 

 

 

 

 

 

Fig. 6 Client-server model using IoT 

A combination of models is used to anticipate the 

information from the sensors after it has been acquired. 

When compared to a single model, the grouping approach 

improves efficiency, especially the precision of predictions, 

by merging several separate models into a single, potent 

system. Different approaches , which include the bagging 

process, increasing, and stacking, are used in the field of 

ensembles. A stacked ensemble approach was employed to 

forecast the sensor information presented in the present 

investigation. Figure 7 depicts the stacking ensemble's 
proposed design from the existing research. 

Algorithm: Advanced Stacking Ensemble for Precise Crop 
Prediction 

Step 1: Input 

Soil parameter dataset 𝐷 =
 {(𝐼1 , 𝑗1), (𝐼2, 𝑗2), . . . , (𝐼𝑛 , 𝑗𝑛)}, where 𝐼𝑥 represents the 

feature vector of soil parameters, and y represents the crop 
yield or prediction target. 

Models: LSTM, BILSTM, GRU, and Vanilla RNN 

Step 2: Data Pre-processing 

Handle Missing Data: Use mean/median imputation or 
other techniques to fill missing values in I. 

𝐼𝑥,𝑦 =
1

𝑛
∑ 𝐼𝑘,𝑦

𝑛
𝑘 =1  𝑖𝑓 𝐼𝑥,𝑦  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔             (8) 

Handle Categorical Values: Encode categorical 
features using one-hot encoding or label encoding. 

 𝐼𝑥,𝑦
′ = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐼𝑥,𝑦                (9) 

Normalization: Normalize the dataset using Min-Max 
scaling or Z-score normalization using Equation (6) 

Divide the dataset into a training set. 𝐷𝑡𝑟𝑎𝑖𝑛  and 

testing set 𝐷𝑡𝑒𝑠𝑡 using Equation (7) 

Step 3: Model Training 

Train Base Learners: Train each model (LSTM, 

BILSTM, GRU, Vanilla RNN) on the training data. 𝐷𝑡𝑟𝑎𝑖𝑛 . 

𝑗̂𝐿𝑆𝑇𝑀  =  𝐿𝑆𝑇𝑀(𝐼𝑡𝑟𝑎𝑖𝑛 )              (10) 

𝑗̂𝐵𝑖𝐿𝑆𝑇𝑀  =  𝐵𝑖𝐿𝑆𝑇𝑀(𝐼𝑡𝑟𝑎𝑖𝑛 )              (11) 

𝑗̂𝐺𝑅𝑈  =  𝐺𝑅𝑈(𝐼𝑡𝑟𝑎𝑖𝑛)              (12) 

𝑗̂𝑅𝑁𝑁  =  𝑅𝑁𝑁 (𝐼𝑡𝑟𝑎𝑖𝑛 )              (13) 

Generate Predictions: Obtain predictions from each 

model on the training data. 

𝑗̂𝑡𝑟𝑎𝑖𝑛   = [𝑗̂𝐿𝑆𝑇𝑀  , 𝑗̂𝐵𝑖𝐿𝑆𝑇𝑀 , 𝑗̂𝐺𝑅𝑈 , 𝑗̂𝑅𝑁𝑁 ]             (14) 

Step 4: Stacking Ensemble 

Create Meta-Features: Combine the predictions from 
the base learners to form a new feature set. 

𝑍𝑡𝑟𝑎𝑖𝑛 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑗̂𝑡𝑟𝑎𝑖𝑛 )             (15) 

Train Meta-Learner: Train a meta-learner (e.g., a 

simple linear regression or another machine learning model) 
on the meta-features. 

𝑗̂𝑡𝑟𝑎𝑖𝑛 =  𝑀𝑒𝑡𝑎_𝑀𝑜𝑑𝑒𝑙 (𝑍𝑡𝑟𝑎𝑖𝑛 )              (16) 

Step 5: Model Evaluation 

Test Base Learners: Use each base learner to generate 

predictions on the testing set Dust 

𝐽𝑡𝑒𝑠𝑡   =  [𝑗̂𝑡𝑒𝑠𝑡
𝐿𝑆𝑇𝑀  , 𝑗̂𝑡𝑒𝑠𝑡

𝐵𝑖𝐿𝑆𝑇𝑀 , 𝑗̂𝑡𝑒𝑠𝑡
𝐺𝑅𝑈 , 𝑗̂𝑡𝑒𝑠𝑡

𝑅𝑁𝑁 ]              (17) 

Generate Meta-Predictions: Use the meta-learner to 

combine the base predictions and generate final predictions. 

𝐽𝑡𝑒𝑠𝑡 = Meta _Model (𝐽𝑡𝑒𝑠𝑡)               (18) 

 

Client Process Server Process  

Request  

Response 

Network 
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Fig. 7 Architecture of stacking ensemble  

Step 6: Output: Final prediction 𝐽𝑓𝑖𝑛𝑎𝑙 For crop yield or 

target based on the soil parameters. 

The algorithm leverages the strengths of various 

recurrent neural networks, using them as base learners in an 

advanced stacking ensemble. This ensemble approach 

allows for the integration of different models' predictions, 

improving the accuracy of crop prediction in smart 

agriculture systems. The meta-learner refines the combined 
output, leading to a robust and precise prediction model 

4. Results and Discussions 
The model that had been trained is used to test the new 

field area information and its associated variables. It is 

possible to modify the most precise outcome produced by 

the proposed ensemble of classifications to advise farmers 
on optimal crop production. 
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Fig. 8 Collecting readings of soil  moisture through a sensor  

The second collection of data, as shown in Figure 8, 

was created and put together by the investigators of this 

research using the identical set of values obtained from a 

specially-made soil-wetting sensor. The collected 

information comprises readings taken every three months on 

a particular date, with ten minutes between every 

measurement. The sensor can detect both moisture and 

temperature in the air five centimetres above the soil 

surface, alongside soil wetness. The purpose of gathering 

the data from the moisture and temperature sensors in the air 

is to train the model on these measurements and compare 

them to future moisture in the soil forecast values. 

According to the selected indicators of performance, the 

models used for training are going to predict the moisture 

level of the soil with high levels of precision, which will be 
demonstrated in the results area.  
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(c) 

  
(d) 

  
(e) 

Fig. 9 6 x 24 samples of window length using STL decomposition of soil relative humidity (a) Original min-max scaled data, (b) Trend of long-
term, (c) Seasonal term, (d) Residual term, and (e) Long term tuned with residual term. 

 

Seasonal Trend decomposition using Loess (STL) 

breakdown on the soil's volumetric water content during 21 

days is shown in Figure 9. The annual decomposing window 

is set at one day, or six times twenty-four observations. The 

strength of the trend STL for the data in this specific period 

is 92.78%. This suggests that the time series is being driven 

by a somewhat strong trend. The outcome of the model's 

training to forecast values one hour in advance using the last 

six hours of the time series soil locations is displayed in 

Figure 10. The initial 10-minute samples of the dataset are 

replaced with hourly measurements in the new dataset, 

which is averaged over a window of 6 observations.  
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Fig. 10 Trained ensemble stack model time series forecasting  
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Fig. 11 Factors vs Production 

Nitrogen has the least impact, with organic content 

(OC) being less significant. Researchers created a few 

prediction models that utilized these data, as seen in Figure 
11. 

Table 3. Performance measures 

Performance 

Measure 

Advanced Stacking 

Ensemble 
LSTM GRU BiLSTM VRNN 

Accuracy 96.8 90.4 92.3 91.9 89.8 

Precision 95.7 89.2 91.6 90.8 88.3 

Recall 96.3 90.1 91.9 91.1 88.7 

F1-Score 95.0 89.6 91.5 90.8 88.4 

AUC 0.97 0.91 0.93 0.92 0.90 

 

 
Fig. 12 Performance measures 
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With a 96.8% accuracy rate, the proposed system 

performs better in precision than the existing methods. This 

suggests that, in comparison to individual algorithms such 

as LSTM, GRU, BiLSTM, and Vanilla RNN, the combined 

stacking technique reflects the intricacies of the information 

efficiently. Compared to the existing methods, the proposed 

approach performs better, properly detecting actual positive 

forecasts while limiting false positives, with an accuracy of 

95.7%. The proposed approach outperforms the existing 

systems, with a recall score of 96.3%, indicating its strong 

capacity to recognize all relevant occurrences (true 

positives) correctly. The proposed approach has the greatest 

F1-score (95%), indicating that it is typically successful in 

handling the trade-off between accuracy and recollection. 

The proposed system's Area Under the Curve (AUC) is 0.97, 

indicating good model performance in class distinction. The 

fact that this value is substantially greater than that of the 

existing systems suggests that the stacking ensemble 

technique yields more accurate predictions , as shown in 
Table 3 and Figure 12.  

Table 4. Performance measures of MAE, MSE and RMSE 

Performance 

Measure 

Advanced Stacking 

Ensemble 
LSTM GRU BiLSTM VRNN 

MAE 0.024 0.042 0.038 0.040 0.046 

MSE 0.0027 0.0052 0.0045 0.0048 0.0062 

RMSE 0.052 0.072 0.067 0.069 0.079 

 

 
Fig. 13 Performance measures of MAE, MSE and RMSE 

In terms of MAE, MSE, and RMSE, the proposed 

advanced stacking ensemble approach performs noticeably 

better than the current systems (LSTM, GRU, BiLSTM, and 

Vanilla RNN) shown in Table 4 and Figure 13. These 

outcomes demonstrate how well the proposed approach 

works to provide more precise and dependable predictions 

with fewer errors and improved generalization to new data. 

In smart agricultural systems, the ensemble technique yields 

more accurate crop projections by integrating the 
advantages of several models .

Table 5. Confusion matrix 

Performance Measure Advanced Stacking Ensemble LSTM GRU BiLSTM VRNN 

True Positives (TP) 922 882 892 887 872 

True Negatives (TN) 892 862 872 867 852 

False Positives (FP) 32 42 37 34 47 

False Negatives (FN) 22 42 37 40 47 

 

The confusion matrix, shown in Table 5, in terms of 

reliably identifying both positive and negative situations 

with fewer errors in prediction, the proposed enhanced 

stacking ensemble system consistently does better than the 

existing models (LSTM, GRU, BiLSTM, and Vanilla 

RNN). Table 5 illustrates how the ensemble stacked 

technique may enhance overall forecasting accuracy for 
applications related to intelligent farming.
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Fig. 14 Training and validation accuracy 

Compared to the existing systems, the proposed 

enhanced stacking ensemble system performs better in  

validation and training accuracy. Figure 14 compares the 

training and validation loss of the proposed advanced 

stacking ensemble system with four existing systems: 

LSTM, GRU, BILSTM, and Vanilla RNN. 

 
Fig. 15 Training and validation loss  

When compared to the existing systems, the proposed 

advanced stacking ensemble method performs better in 

validation, in addition to the training loss shown in Figure 

15. While a lower validation loss denotes improved 

applicability and predictability when predicting new 

information, a lower loss during training implies a more 

efficient understanding of the initial data set. This improved 

accuracy demonstrates the benefits of combining many 

models into a combined method, which results in smart 

agriculture's more trustworthy and precise crop projections. 

 

5. Conclusion 
The study on smart agriculture utilizing an advanced 

stacking ensemble approach has proven to be h ighly 

effective in enhancing crop prediction accuracy. By 

integrating various machine learning models  - LSTM, 

BiLSTM, GRU, and VRNN- the proposed system 

significantly outperformed traditional models. The 

advanced stacking ensemble achieved a training accuracy of 

98.4% and a validation accuracy of 95.8%, demonstrating 

superior performance in predicting crop outcomes 

compared to existing systems. The proposed method also 

showed lower training and validation loss, with values of 

0.012 and 0.015, respectively, indicating more accurate 

predictions with fewer errors. Additionally, the system's 

confusion matrix reflected the highest number of true 

positives and true negatives while minimizing false 

positives and false negatives, further underscoring its 

effectiveness. Overall, the integration of these advanced 

models through stacking has markedly improved the 

precision of crop predictions, leveraging soil parameters 

collected through IoT sensors for more reliable and accurate 

agricultural forecasts. 
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