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Abstract - In the present-day world, high-speed internet demand is increasing day by day. Optical Fiber communication, which 

can cater to high bandwidth requirements, has a bottleneck for extending till the last mile for mobile User Equipment (UE). 

Converged networks, which use the combined advantage of Optical Fiber for the backbone network  and wireless communication 

through Passive Optical Networks (PON) for the last mile, are the area of focus in this research paper. For effective utilization 

of available backbone bandwidth, it is essential to use Dynamic Bandwidth Allocation (DBA) techniques by the Optical Line 

Terminal (OLT) to allocate bandwidth to Optical Network Units (ONUs) to meet the requirements of UE devices. The growing 

density of UE devices demands power-saving techniques at the access network level. Significant research literature is available 

on the use of machine learning techniques for DBA in PON, but integration of spatial and temporal learning mechanisms is not 

widely explored for reducing power consumption in PON. A Hybrid dynamic bandwidth allocation technique is proposed in this 

work, which uses the temporal recognition capability of the Long Short-Term Memory (LSTM) algorithm and the spatial 

recognition capability of the Deep Q Network  (DQN) Algorithm. The proposed hybrid model requires a considerably large 

dataset for training, which is achieved using the Generative Adversarial Network (GAN) method. The results of the proposed 

hybrid model are compared with the standalone Deep Q Network  model, and it is verified that there is an 11% reduction in buffer 

occupancy at ONUs and a 20 % reduction in the Power consumption of the overall system. 

Keywords - Converged networks, Dynamic bandwidth allocation, Deep Q Learning, Generative Adversarial Networks, Long 

Short-Term Memory. 

 
1. Introduction 

In the realm of modern telecommunications, Passive 

Optical Networks (PONs) have become a cornerstone for 

high-speed, cost-effective broadband solutions. As networks 

continue to evolve, there is a growing demand for converged 

infrastructures that integrate multiple services into a unified 

platform. Optical fiber communication, with its superior 

bandwidth and transmission capabilities, plays a crucial role 

in enabling this transformation. To cater for the bandwidth 

from wired fiber to mobile end users , it is essential to establish 

a wireless connection. Here, Passive Optical Networks come 

into the picture. A PON consists of two major components : an 

Optical Line Terminal (OLT) and an Optical Network Unit 

(ONU). 

 

A PON is a fiber-based network architecture that delivers 

data services using optical fiber while minimizing the need for 

active electronic components between the provider’s central 

office and end users. Unlike traditional networks that require 

powered equipment at intermediate points, PONs rely on 

passive splitters, which efficiently distribute signals to 

multiple users. This characteristic significantly reduces power 

consumption and maintenance costs, making PONs an 

attractive choice for service providers . OLT to multiple ONUS 

is connected through fiber and passive splitters. ONU to end 

users are connected through a wireless radio link or sometimes 

through Local Area Network (LAN) cable or OFC. The 

bandwidth requirement of the ONU is dependent on the end 

users connected to it. Based on demand from different ONUs, 

the OLT must allocate bandwidth. Static bandwidth allocation 

techniques are not adaptive to the asymmetric bandwidth 

requirements of end users. Here, dynamic bandwidth 

allocation techniques play a role in adjusting bandwidths as 

per traffic demand. 

 

Increasing UE density implies the access network (ONU) 

has to grow proportionally to cater to the requirement. Power 

consumption of access networks is a major constraint in 

scaling up to the bandwidth demand. Integration of spatial and 

temporal learning mechanisms simultaneously is not widely 

explored for reducing power consumption in PON in the 

available literature. A Hybrid dynamic bandwidth allocation 

technique is proposed in this work, which uses the temporal 

recognition capability of the Long Short-Term Memory 

http://creativecommons.org/licenses/by-nc-nd/4.0/


Kompella Phani & K. Karuna Kumari / IJECE, 12(8), 111-122, 2025 
 

112 

(LSTM) algorithm and the spatial recognition capability of the 

Deep Q Network (DQN) Algorithm.   

 

Key types of PON technologies include: 

Gigabit Passive Optical Network (GPON) - A widely 

used standard offering high-speed data transmission suitable 

for residential and business applications. This research paper 

is based on 10G GPON standards. 

 

Ethernet Passive Optical Network (EPON) - Known for 

its compatibility with Ethernet-based systems, facilitating 

seamless integration with existing infrastructure. 

 

Next-Generation PON (NG-PON) - An advanced version 

that enhances data rates and supports larger network 

capacities. 

 

With the rise of converged networks, multiple 

communication services  are integrated -such as voice, video, 

and data into a single network infrastructure. PONs serve as 

an ideal foundation for this convergence, thanks to their ability 

to handle diverse data traffic while maintaining high-speed, 

low-latency performance. Some advantages of PON in 

converged environments include Scalability - Easily 

expandable to accommodate growing bandwidth demands. 

Enhanced Reliability - The absence of active elements in the 

distribution network minimizes points of failure. Cost 

Efficiency - Reduced energy consumption and maintenance 

costs compared to traditional copper-based networks. Optical 

Fiber’s Impact on PON Performance: The deployment of 

fiber-optic communication in PONs significantly improves 

network efficiency. Optical fibers enable long-distance, high-

speed data transmission with less signal degradation. This is 

particularly beneficial in converged networks where consistent 

performance across multiple services is required. 

Additionally, fiber optics supports higher data capacities, 

ensuring future-proof solutions for emerging broadband 

needs. 

 

In the evolving landscape of telecommunications, PON is 

important for the convergence of networks by offering a 

scalable, reliable, and cost-effective approach to broadband 

delivery. The integration of optical fiber communication 

further enhances the capabilities of PONs, making them a 

fundamental component in modern high-speed connectivity 

solutions. As technology advances, next-generation PON 

architecture will continue to shape the future of converged 

networks, meeting the ever-growing demands for seamless, 

high-performance digital communication. Optical hybrid 

communication is a communication system that combines 

several optical transmission methods to enhance performance 

and capabilities. It frequently involves the integration of 

numerous optical communication systems, such as fiber 

optics, both wired and wireless. A communication network 

that integrates optical and other transmission methods to 

enhance the exchange of information is commonly referred to 

as a converged network. This method combines optical 

communication with wired or wireless technologies, creating 

a diverse and efficient network infrastructure. Optical fiber 

serves as the backbone for high-speed, high-capacity data 

transmission across vast distances . 

 

Fiber optics includes advantages such as reduced signal 

loss, resilience to electromagnetic interference, and huge 

bandwidth capacities. This enables consistent and effective 

communication between network nodes. Wireless 

technologies, on the other hand, come into play when wired 

connections are not possible or practicable, such as in mobile 

or remote areas where wired connections are not feasible. For 

transmission between network nodes, optical signals are 

translated into wireless signals. Free-space optics transmits 

data over the air using lasers or LED-based devices, enabling 

high-speed wireless optical communication across short to 

medium distances. RF wireless communication, on the other 

hand, uses radio waves to wirelessly send data across larger 

distances. The combination of optical fiber and wireless 

technologies in an optical hybrid network communication 

system offers various advantages. It permits the development 

of high-speed optical links whenever possible, enabling 

efficient and reliable data transfer. Simultaneously, wireless 

technologies give flexibility and mobility in regions where 

physical connections are difficult or impossible to establish , 

such as in the case of public transport vehicles . This hybrid 

technique provides a balanced solution that combines the 

benefits of optical fiber’s speed and capacity with the ease and 

flexibility of wireless communication. 

 

It entails combining the benefits and strengths of fiber 

optics with wireless communication to build a complete and 

effective network solution. Light signals sent over tiny strands 

of glass or plastic fibers allow high-speed, dependable, and 

secure data transfer across great distances. It has a high 

bandwidth and low latency, making it excellent for 

transporting huge volumes of data with little signal 

deterioration. The combination of fiber optic and wireless 

communication technologies is referred to as fiber-wireless 

integration, sometimes known as fiber-wireless convergence 

or FiWi. This integration allows for the smooth integration and 

cohabitation of both technologies, exploiting their individual 

benefits to improve network performance and provide a 

diverse set of applications. The merging of fiber and wireless 

can give high-speed broadband access to households, 

companies, and public areas. Fiber optics can be employed as 

the network’s backbone architecture, giving high-bandwidth 

connectivity to wireless access points, which then wirelessly 

disseminate the signal to end-user devices. Fiber-wireless 

integration is critical for mobile network operators to meet the 

rising demand for mobile data traffic. To connect cellular base 

stations, fiber optic lines can be employed, allowing for high-

capacity and low-latency backhaul connections. This 

guarantees that data is sent efficiently between mobile devices 

and the main network. Fiber-wireless integration is critical to 
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the development of smart cities. Fiber optics is the foundation 

for a range of smart city applications, like intelligent 

transportation systems, smart grid networks, environmental 

monitoring, and public safety. Wireless connection 

supplements fiber optics by giving IoT devices, sensors, and 

end-user devices flexible and extensive access. 

 

The convergence of fiber and wireless speeds up the 

deployment of IoT devices and systems. Fiber optic networks 

can support the large volumes of generated data by IoT 

devices, whilst wireless connection provides the mobility and 

flexibility necessary for IoT applications. This combination 

enables an extended range of IoT use cases, like industrial 

automation, asset tracking, smart agriculture, and healthcare 

monitoring. The merging of fiber with wireless allows for the 

establishment of resilient and scalable wireless mesh 

networks. Mesh networks may be used for disaster recovery, 

outdoor events, and rural connections. By employing fiber 

optic connections to deliver signals throughout buildings, 

fiber-wireless integration can increase indoor wireless 

coverage. Fiber-To-The-distribution-point (FTTdp) designs 

can provide high-speed connections to a distribution point, 

from which wireless access points can be placed to guarantee 

robust and stable wireless coverage throughout the premises. 

Wireless signal strength decreases as the distance from the 

transmitter rises. This can be a problem in fiber-wireless 

integration since it limits the wireless network’s range. In the 

existing literature, it is identified that DBA techniques are 

discussed for various applications, but relatively less focus has 

been placed on PON applications. Delays in data transmission 

between the two networks  (wired and wireless) are 

challenging. Also, there is a need to enhance power efficiency 

as multiple PON devices need to be deployed over a wide area. 

Moreover, we need to improve the extended fiber connectivity 

and enhance security and scalability. However, strategies  are 

used to improve optical hybrid communication in the 

enhancement of fiber wireless integration using proposed 

Machine Learning (ML) techniques. 

 

ONUs smooth the interface between users and the 

network by changing the optical pulses into electrical signals 

for Ethernet cables or radio signals for wireless connection to 

UEs. They are typically placed at the client’s location. OLTs 

located at the Central Office (CO) manage multiple ONUs. 

They aggregate and groom traffic to ensure optimal 

throughput. Traffic requirements in the network keep 

changing with time, and the same need to be captured 

temporally with time stamps; this requirement is generally not 

taken care of while using Reinforced Learning techniques 

discussed in the majority of the literature. Deep Neural 

Networks (DNNs) are used in the proposed model. Weights 

and biases are adjusted such that the amount of influence of a 

particular neuron is controlled based on feedback from the 

predicted output of the DNN. In the proposed model, at each 

stage, two hidden layers are used. The LSTM stage is useful 

for capturing the temporal aspect of traffic and predicting 

future long-term traffic with special attention to important 

short-term traffic demands. The GAN stage will be useful for 

simulating diverse traffic conditions and patterns. This stage 

makes the model more robust with an enhanced data set for 

training the model. Deep Q Network stage makes use of the Q 

look-up table principle. While a Q table is generally used for 

a small discrete state space, DQN is used for a large state 

space. This stage requires extensive training to make the 

model robust.  

 

Some of the important concepts that are used in the 

proposed model are discussed below. 

 
1.1. Activation Function 

The activation function will determine the output of a 

neuron; it is a mathematical function that determines whether 

a specific neuron should be activated based on input. Choosing 

the right activation function is important to make the learning 

model effective in neural networks. Activation functions used 

at different stages of the proposed model are summarized in 

Table 1. 

 
Table  1. Activation functions used in the proposed model 

Component Layer type Activation  

GAN (Generator) Hidden Leaky ReLU 

Output Sigmoid 

GAN (Discriminator) Hidden Leaky ReLU 

Output sigmoid 

DQN Hidden ReLU 

Output Linear 

LSTM Hidden Sigmoid 

Output ReLU 

 

ReLU activation is particularly chosen to avoid negative 

bandwidth predictions. The sigmoid activation function is 

useful for normalizing the range between 0 and 1.  

 
1.2. Buffer Size at ONUs 

Buffer at ONUs is used to collect and store packets 

received from End User (EU) devices. The EU packets are 

accumulated in the buffer until the window for uplink 

transmission is opened by the OLT for that ONU. Most of the 

existing literature is focused on static size ONU buffers, but in 

this article, variable buffer sizes are considered at ONUs based 

on the traffic demand at respective ONUs.  

 

The time between a packet (from EU) arriving at the 

buffer of ONU and the time at which that packet leaves the 

ONU buffer is considered latency at the ONU. If the buffer 

size is too large, end-user packets are processed without loss, 

but latency increases, whereas if the buffer size is too small, 

end-user packets will be lost. A Buffer size of 2Mb with 20% 

variation as per traffic requirement is considered at ONUs  in 

the proposed model. 
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1.3. Q Table 

The rewards for various actions at different states are 

updated from time to time in the Q Table. Based on the 

rewards in the Q Table, the Reinforcement learning model will 

make the decision.  

 

In this case, the decision is bandwidth allocation to ONUs 

as per traffic demand. It basically works as a look-up table 

from which the next step can be taken among a set of available 

options.  

 

Initially, bandwidth allocated to ONUs is decided 

randomly and through the Epsilon Greedy strategy, the model 

keeps learning the best possible decision in each scenario. 

 

1.4. Optimizers 

In a Neural network, weights and biases need to be 

optimized in such a way that the difference between the 

predicted output of the model and the actual output is 

minimum. Some of the prominent optimization techniques are 

presented in Table 2 below, elaborating their advantages and 

disadvantages. This knowledge is used to select the 

appropriate optimization technique for the presented model. 

Optimizers play an important part in defining convergence 

time to global minima. Optimizers are mathematically defined 

algorithms that are iteratively adjusted to reduce the loss 

function to a minimum. Usage of optimizers changes with 

respect to the nature of the application. The learning rate 

decides the speed of optimizing the solution. 

 
Table 2. Prominent optimization techniques 

Optimization Technique Advantages Disadvantages Suitable Applications 

Gradient Descent 
Efficient for large data sets . 

Simple and widely used 

Possibility of getting stuck in 

local minima and not suitable 

for multiple minima 

Small-scale machine 

learning tasks; Convex 

optimization problems 

Exponentially Weighted 

Moving Average (EWMA) 

Smooths noisy gradients; 

Helps stabilize updates 

Can lag behind actual values; 

Requires tuning decay factor 

Applications to find trends 

in time series-based data 

Momentum 

Accelerates convergence; 

Reduces oscillations in non-

convex functions 

Can overshoot the optimum 

due to its velocity 

Image and speech 

recognition 

Nesterov Accelerated 

Gradient (NAG) 

More accurate updates than 

momentum, as the gradient is 

calculated for the next step 

Dampens oscillations, which 

can limit them to local minima 

Applications that enable 

computers to interpret and 

understand visual data 

Adaptive Gradient 

(ADAGRAD) 

Learning rate is adaptively 

controlled 

Learning rate diminishes over 

time, leading to slow 

convergence 

Natural Language 

Processing Applications 

(NLPs) 

Root Mean Square Prop 

(RMS Prop) 

Recent Gradients are given 

more weight than older ones 

Requires hyperparameter 

tuning 

RNNs, LSTMs; Speech and 

text processing 

Adaptive Moment 

Estimation (ADAM) 

Combines the advantages of 

Momentum and RMSProp; 

Adaptive learning rates; 

Works well in practice 

Can converge to bad local 

minima; Sensitive to 

parameter tuning 

General deep learning 

applications: CNNs, RNNs, 

reinforcement learning 

Through proper usage of dynamic resource allocation 

during real-time, traffic fluctuations in the network can be 

captured. Operators can efficiently optimize resource usage 

while maintaining QoS for critical services. Some parameters 

of QoS, such as packet loss, jitter, and delay, must be regulated 

to a certain level to ensure uninterrupted services . Through 

adaptive traffic control, adaptive bandwidth allocation is 

accomplished. Future changes in network requirements will 

rely upon the collaboration between ONUs, OLTs, Adaptive 

Bandwidth Allocation, QoS, and throughput responsive 

networks to meet the performance demands of converged 

networks. With the application of these technologies, network 

providers can optimize user satisfaction and increase the 

adoption of services that use high bandwidth.  

Advanced data techniques, like predictive analytics , 

which enable assessment of traffic patterns, area congestion 

bottlenecks, and resource allocation in advance, can 

significantly enhance data transfer rates within Optical 

Network Units (ONUs). The Discount Factor will give an idea 

of the agent’s consideration for future rewards with respect to 

immediate rewards. Discount factor, also known as Gamma, 

often remains between 0.9 and 0.99 and utilize the assessment 

of value judgment of the weighted future benefits vs rewards. 

The gamma factor measures the importance of current rewards 

versus delayed ones. Discounting factors place more 

importance on future long-term rewards with selections nearer 

to 0 and short-term rewards with selections nearer to 1. In this 

work, a discount factor of 0.9 is considered for the DQN stage. 

This is ideal for faster convergence to global minima.  
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The type of technology used usually influences 

measurement metrics . Varying from 1 Gbps to 10 Gbps, 

higher data speeds may be offered by business -grade ONUs 

depending on bandwidth and Quality of Service (QoS) 

requirements. Among the services they support are high-speed 

internet, VoIP, and video conferencing. The data rate may 

decrease due to signal attenuation as the distance from the 

Central office increases. The architecture of the network, with 

the location of splitters, also has an impact on data rate. Both 

ONUs and OLTs are necessary to determine the data rate of a 

passive optical network. While ONU is responsible for 

providing services to end users, OLT manages and aggregates 

traffic for multiple ONUs. The data rates of these components 

depend on the configuration and specific hardware 

characteristics. To provide faster and more reliable internet 

access, the data rate is influenced by several factors, such as 

fibre quality and the distance of the ONU from the OLT, 

network congestion, and optical signal strength. 

 

2. Discussion on the Available Literature 

Pertaining to the Research Topic 
In the discussion literature, we have covered the earlier 

works which focused on (i) energy saving in PON networks 

and Fiber Wireless (FiWi) networks and (ii) Various machine 

learning techniques used in FiWi networks for improvement 

of overall PON system efficiency. In this paper, the authors 

use FiWi networks and converged networks interchangeably. 

Earlier work by the same authors of this paper studied the 

bandwidth prediction performance of a Deep Q Network 

(DQN) based DBA model, which is trained with the help of an 

enhanced data set generated through the GAN method. It has 

been identified that there has been a considerable 

improvement in data rate and a reduction in latency due to the 

incorporation of GAN. With the help of Forward Error 

Correction (FEC), the bandwidth prediction of OLT is 

improved further, which in turn improves throughput, but the 

variable bandwidth requirements of ONUs lead to inconsistent 

buffer utilization.  

 

The inconsistent buffer utilization at ONUs leads to an 

increase in jitter. The present work is focused on reducing the 

jitters and conserving the energy of the PON network. An 

extensive study of the evolution of energy conservation in 

PON was presented by Shah Newaz and the team [1]. Various 

energy saving approaches in PON are elaborated, which 

include a) Sleep mode, b) Adaptive link rate control, c) 

Dynamic ONU buffer size, d) wavelength reuse at ONUs and 

e) Energy-enabled orchestration & virtualization. The 

Analyzis suggested that sleep mode-based approaches may 

face challenges in future requirements of 6G networks, hence 

suggested researching on the virtualization of PON, especially 

the OLT network, to improve energy saving. A Unified 

Dynamic Bandwidth Allocation Scheme (UDBAS) is 

proposed by Manjur Kolhar et al. It incorporates a Service 

Level Agreement (SLA) verifier and a decision-making agent 

to monitor and manage users  exceeding bandwidth limits, 

ensuring SLA compliance. The queue size at respective ONUs 

is regularly monitored by the SLA verifying agent and 

proactively allocated bandwidth to privileged users  [2]. 

Various PON standardization efforts made by ITU-T Q2/15 

from the early 1990s till recently are elaborated by Jun Shan 

Wey. Emerging PON standards and the driving factor for such 

standardization, i.e. bandwidth requirement and Power 

efficiency, are discussed [3].  

 

Pegcheng Li and colleagues have proposed a Bandwidth 

Prediction Based Resource Allocation  (BPSTA) scheme, 

where patterns in the traffic based on time stamps are 

identified, and with the help of such patterns, allocations are 

made to ONUs for the next cycle. BPTSA also decides the 

starting time at which ONU can transmit to OLT and vice 

versa, which helps in extending the available sleeping time of 

ONUs [4]. Yapeng Xie and colleagues have provided reviews 

of Machine Learning (ML) applications for optical 

communication within a distance of 100km. ML techniques 

useful for Artificial Neural Networks (ANN), Convolutional 

Neural Networks (CNN), and Recurrent Neural Networks 

(RNN) and Auto encoders for short-reach optical 

communication were elaborately discussed  [5]. Ganesh and 

team have identified [6] that the approximate power 

consumption for a 2MB buffer at ONU is 1.29W. Ways are 

proposed to run the network at an acceptable performance 

level even with buffer reduction [6]. Buffer reduction was 

proposed using three strategies: (i) zero buffers, (ii) node 

proportional buffers, and (iii) OLT-ONU rate proportional 

buffers. A proportional buffer strategy was used in the present 

work as well. Sandra Arnaout and team have transformed the 

problem of best possible utilization of bandwidth and 

wavelength into an Integer Linear Programming (ILP) 

problem.  

 

Transmission Containers  (TCONS) were deployed in 

ONU to optimize bandwidth distribution among ONUs. To 

solve the optimization problem of ILP, a branch and bound 

(BB) algorithm is proposed [7]. A method called Gated 

Recurrent Unit (GRU) was proposed by Shiwen Song et al. 

This method aggregates PON OLTs into virtual resources. The 

traffic of the factory network is divided into layers /slices based 

on bandwidth requirement, and ONU resources are allocated 

in slices, which is identified to improve data rate and reduce 

latency [8]. Lihua Ruan and team proposed a Reward Variance 

Oriented (RVO) exploration strategy where Bandwidth 

decisions made by the Central Office (CO) are proportional to 

reward variance. Their work explored how rapidly models can 

learn an optimal bandwidth decision for minimizing optical 

access network latency [9]. Alaelddin Mohamm et al 

introduced a novel Dynamic Bandwidth Allocation system 

that proactively allocates bandwidth for Federated Learning. It 

will show the benefits of multiple grants due to improved 

capacity for implementing PON in implementing FL flows. 

Unlike the case of traditional DBA, where delay increases with 
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increasing units, the proposed model utilizes the resources 

effectively by segregating federal traffic and regular traffic by 

using multiple grants for better Utilization [10]. Garima and 

team reviewed existing DBA schemes for XG PON systems. 

They proposed a method with four TCONS that are used to 

maintain four different queues at ONUs for four categories of 

services in order of priority. Service Interval (SI) and 

Allocation Bandwidth (AB) are parameters that are used to 

characterize TCONs. Scheduling of TCONs is improved using 

an ML Algorithm [11].  

 

Priyanka Singh and the team discussed the Stochastic 

Optimization Algorithm for a novel backup Optical Network 

Unit (ONU) architecture. By reducing the average distance 

between backup ONU-AP and the end users, the Location of 

backup ONU-AP is optimized, thereby improved the 

bandwidth availability for end user devices and reducing the 

power consumption of the overall system [12]. Huayn Zhu et 

Al discussed a Deep Reinforcement Learning (DRL) method 

that will convert scheduling problems with multiple resources 

into one learning target to learn effective strategies on its own 

[13]. This work is relevant to the PON traffic data set, where 

multiple factors such as distance from OLT to ONU, buffer 

sizes at ONUs, variable traffic at different ONUs are multiple 

resources based on which a single learning target of bandwidth 

allocation is to be achieved.  

 

Addallah Shami and team have worked on jitter reduction 

in PON networks through three proposed strategies , i.e. (a) 

Expedited Forwarding for high priority traffic, (b) Assured 

Forwarding for medium priority traffic, and (c) Best effort 

forwarding for low priority traffic  [14]. Also, the general 

ONU bandwidth allocation strategy of Grant after Report 

(GAR) is replaced with Grant Before Report (GBR), thereby 

helping the dynamic allocation of bandwidth. The Authors 

proposed a vanilla-RNN-based algorithm to predict the 

unutilized time of RNUs in 25G NGEPON networks  [15]. 

Based on the predicted unutilized time, the ONUs were put 

into sleep mode, thereby reducing their energy consumption . 

The  [16] Zhiyong Du and team have proposed Reinforcement 

learning for context-aware network selection in 

Heterogeneous traffic of LTE, WLAN and VLC using 

knowledge transfer. Knowledge Transfer here refers to 

predicting location-based traffic patterns and using that to 

identify network selection [17].  

 

Shafiqur Rahman et Al discussed Deep reinforcement 

learning for optimal offloading of computation to the cloud by 

End-User Devices (EUD). The essential idea of the proposal 

is to have a DRL controller that autonomously determines if a 

generated task of computation can be executed on a local 

device, offloaded to a fog access point, or assigned to a cloud 

server for processing. This computation offloading will, in 

turn, offload the power consumption at the end-user device. 

[18].This analysis can be further explored to find the 

possibility of offloading computation at ONUs to the cloud to 

reduce power consumption at ONUs. Gyungmin Kim et Al 

proposed Deep Reinforcement Learning based routing 

optimization on Software Defined Network [19], the DRL 

agent learns interdependency between the traffic load of 

network switches and network performance. Federico Celi et 

Al explored a Strategy to directly learn control action without 

building a system Model in a distributed controller network 

using Reinforcement Learning [20]. Claudio Savaglio and 

colleagues discussed about Reinforcement Learning, which is 

used to identify the sleep and wake-up schedule of nodes 

communicating through Media Access Control (MAC) 

address [21]. Mostafa Zaman Chowdhury et al [22] studied the 

features of Optical Wireless Communication (OWC) and RF 

and observed that they are complementary; a combination of 

usage is viewed as a potential method to support LTE, 5G and 

future generation communication systems.  

 

Hybrid RF/optical and optical/optical wireless systems 

provide an ideal alternative for overcoming the limits of 

separate systems while still delivering the benefits of each 

technology. An RF/optical wireless hybrid system is made up 

of both RF and optical-based wireless technologies, whereas 

an optical/optical wireless hybrid system is made up of two or 

more types of OWC technologies. Wireless system co-

deployment can increase system performance in terms of 

throughput, dependability, and energy efficiency of separate 

networks. Xiang Liu et al [23] proposed an intelligent 

nonlinear compensation method for an End-To-End (E2E) 

fiber-wireless integrated system using a Stacked Autoencoder 

(SAE) model in conjunction with Principal Component 

Analysis (PCA) technology coupled with an ANN. The 

nonlinear constellation designed for SAE is used to reduce 

nonlinearity throughout the optical and electrical conversion 

processes.  

 

The proposed BiLSTM-ANN equalizer is largely focused 

on temporal memory and information extraction properties, 

which compensate for residual nonlinear redundancy. At 92.5 

GHz, a low-complexity 50 Gbps E2E-optimized nonlinear 32 

QAM signal is successfully delivered via a 20 km Standard 

Single-Mode Fiber (SSMF) and 6 m wireless connection. 

BiLSTM analysis in this paper has motivated us to explore the 

possibility of developing a hybrid DBA model that can capture 

temporal traffic aspects . 

 

Through the above literature survey, it is identified that a 

wide focus was not given to us ing temporal and spatial traffic 

recognition methods simultaneously. There is scope for 

improving the efficiency of DBA in PON networks using 

time-based events and capturing traffic, i.e., through LSTM 

together with DQN, which captures the spatial traffic pattern. 

The hybrid model is trained using large datasets developed 

with the help of a GAN module. Delay due to computational 

complexity is taken care of using a sliding window section, 

which will help stabilize the trained model. 
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3. Methodology Implemented 
                   

 
 
 
 

 

 

 

 

 

                                             

       

 
Fig. 1 Block diagram of proposed model  

 

In this research, we propose an intelligent Dynamic 

Bandwidth Allocation (DBA) scheme for Passive Optical 

Networks (PONs), leveraging a hybrid GAN-DQN-LSTM 

model to predict bandwidth demands and optimize resource 

allocation. Through the proposed model, the prediction of idle 

time for ONUs is captured. Based on the idle time of ONUs, 

sleep cycles are allocated, thereby saving power consumption 

at ONUs. The primary goal is to reduce jitter, buffer 

occupancy, and power consumption at Optical Network Units 

(ONUs) and the Optical Line Terminal (OLT), compared to 

conventional standalone DQN-based DBA methods. 

 
3.1. System Overview 

The methodology integrates three key components: 

1. Generative Adversarial Network (GAN): Utilized to 

generate synthetic traffic data that mimics realistic 

network traffic patterns. This helps in expanding the 

training dataset for more robust learning and prediction by 

the model. 

2. Deep Q-Network (DQN): Functions as a reinforcement 

learning agent that makes bandwidth allocation decisions 

based on the current network state and predicted traffic 

demands. 

3. Long Short-Term Memory (LSTM): A Recurrent Neural 

Network (RNN) component that processes sequential 

traffic data to forecast near-future traffic loads accurately. 

 
3.2. Block Diagram Description 

Stages of the GAN-DQN-LSTM model are: 

1. Traffic Input Layer: A 10G GPON architecture of one 

OLT and 8 ONUs is considered for simplicity. The traffic 

data set is generated using the Python sympy library and 

fine-tuned using a subsequent GAN stage. Generated 

PON traffic is fed into the input layer. 

The traffic parameters considered for the bandwidth 

allocation decision of the proposed model: 

i) ONU ID 

ii) Time Stamp 

iii) Packet Arrival rate 

iv) Average packet size 

v) Total data arrival 

vi) Buffer occupancy at ONU 

vii) Service Type (Voice, data, video) 

viii) Grant size from ONU 

ix) Round-trip time  

x) Distance between OLT and ONU (limited to 

2km maximum for ease of computation) 

2. GAN Module: The Generator works to generate realistic 

traffic data, which is cross-checked and validated by the 

discriminator component. Final validated traffic is 

augmented by this module, which helps in robust training 

of the proposed model. 

3. DQN Decision Engine: Receives the augmented traffic as 

input and selects the optimal action (e.g., active or sleep 

state, bandwidth allocation) based on a learned policy. 

4. LSTM Predictor: Processes the enriched traffic dataset to 

predict future bandwidth demands at each ONU. Time-

varying characteristics of traffic are captured at this stage 

and used to predict future traffic requirements for each 

ONU. 

5. Action Execution Layer: Implements the selected action, 

adjusting ONU/OLT states and bandwidth allocations 

accordingly. 

6. Feedback Loop: Network metrics (e.g., buffer level, 

delay) are fed back into the system to refine learning over 

time. 

 

At each stage of GAN, DQN and LSTM, two numbers of 

hidden layers are considered. Neurons at each stage of the 

model are defined as in Table 3. 

 
Table 3. Number of neurons at hidden layers  

Stage of Model 
Hidden Layer 

1 Neurons 

Hidden Layer 

2 Neurons 

GAN (Generator) 128 128 

GAN 

(Discriminator) 
128 128 

DQN 128 64 

LSTM 64 32 

 

Optimizers deployed at different stages of the presented 

model are shown in Table 4. 

 
Table 4. O ptimizers employed at three stages of the model 

GAN (For Generator & 

Discriminator) 
ADAM 

DQN RMS Prop 

LSTM ADAM 

 

3.3. Sliding Window Section 

By making use of three sections, i.e GAN, DQN and 

LSTM, the accuracy of predicting bandwidth demand of 

ONUs has increased, which is reflected in the reduction of 

jitter. Due to the computational complexity involved in the 

three stages of the proposed model, the convergence time of 

the model will also increase. The improvement in accuracy 

Cleaning 

data set 

GAN 

Algorithm 

DQN 

Algorithm 

LSTM 

Algorithm 
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achieved in terms of bandwidth prediction will be at the cost 

of increasing latency due to computational complexity. A 

sliding window buffer is used to maintain bandwidth 

prediction accuracy without increasing latency. In the sliding 

window, the generated traffic is fed as input. The sliding 

window buffer is programmed such that the generated traffic, 

which is an epoch behind the live traffic, is considered as input 

for predicting the bandwidth requirement. As the traffic of the 

previous epoch is used, the delay of capturing live traffic and 

using it for model preparation is avoided. After 100 epochs , 

the system is found to attain convergence. The changes in the 

trained model after convergence time are minimal, hence the 

buffer occupancy at ONUs is also improved.  

 

4. Mathematical Model 
4.1. GAN Function 

4.1.1. Generator 𝐺(𝑧;  𝜃𝐺
) 

This will generate artificial traffic imitating actual ONU 

traffic. 

𝑥𝑔𝑒𝑛 = 𝐺(𝑧;  θ𝐺
), 𝑧~𝑝𝑧 (𝑧)                       (1) 

 

Here 𝑧 is random noise, 

θG is the generator parameters, i.e weights and biases. 

𝑝𝑧 (𝑧) is a Gaussian probability distribution from which 

the generator samples noise 

 

4.1.2. Discriminator D (x; θD): 

This will differentiate between original ONU                                                              

traffic samples and generator samples 

 

𝐷(𝑥; 𝜃𝐷
) = 𝑃(𝑥 𝑖𝑠 𝑟𝑒𝑎𝑙 |𝜃𝐷 )                    (2) 

Here 

x = input sample (could be real ONU traffic or generated 

traffic samples) 

𝜃𝐷  is the discriminator parameters , i.e weights and biases 

 

4.1.3. Loss Function for Discriminator (𝐿𝐷 )  

 

          𝐿𝐷 = −𝐸𝑥 ~𝑃𝑑𝑎𝑡𝑎(𝑥)
𝑙𝑜𝑔 𝐷(𝑥) −

                         𝐸𝑧 ~𝑃𝑧
(𝑍)

𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧) ))                            (3) 

 

Here 𝐷(𝑥) is the probability that the discriminator assigns    

to a real traffic being real (should be close to 1) 

 

𝐷(𝐺(𝑧)) is the probability that the discriminator assigns 

a    fake sample as real (generated samples should be close to 

0) 

 
𝐸𝑥 ~𝑃𝑑𝑎𝑡𝑎(𝑥)

is the expected value over a real data sample 

𝐸𝑧 ~ 𝑃𝑧(𝑍)
 is the expected value over noise input z, used as 

input to the generator. 

 

DQN Function 

Based on the traffic requirement of the ONU, the DQN 

agent allocated bandwidth dynamically. 

 

State Space  

𝑆𝑡 = {𝑄𝑖
(𝑡), 𝐷𝑖

(𝑡) ,𝐵𝑖 (𝑡)} 𝑖 = 1 𝑡𝑜 8             (4) 

Here 

𝑄𝑖
(𝑡) = Queue length for ONU i at time t 

𝐷𝑖
(𝑡) = Traffic requirement for ONU i at t 

𝐵𝑖(𝑡) = bandwidth allocated to ONU i at t 

 

Action Space 𝐴𝑡   

𝐴𝑡 = {𝐵𝑖
(𝑡 + 1)|𝐵𝑖

(𝑡 + 1)Є{𝐵𝑚𝑖𝑛 , 𝐵𝑚𝑎𝑥 }}              (5) 

 

Reward Function 𝑅𝑡: 

It works such that delay, jitter and packet loss are 

minimized 

𝑅𝑡 = −(𝛼𝐽𝑡 + 𝛽𝐷𝑡 + 𝛾𝑃𝑡 )                             (6) 

Here 

𝐽𝑡 = jitter at time t 

𝐷𝑡= delay at time t 

𝑃𝑡 = Packet loss at time t 

Α, β,γ are weights 

 

Bellman equation for Q-value update: 𝑄(𝑆𝑡, 𝐴𝑡)  ←
𝑄(𝑆𝑡 , 𝐴𝑡) + ŋ(𝑅𝑡 + 𝛾 𝑚𝑎𝑥𝑄(𝑆𝑡+1, 𝐴′) − 𝑄(𝑆𝑡 , 𝐴𝑡)) 
 

Here  ŋ = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  𝑟𝑎𝑡𝑒 ,𝛾 = 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡  𝑓𝑎𝑐𝑡𝑜𝑟  
 

LSTM Function 

Long-term dependencies of ONU traffic are captured by 

this function, and future bandwidth demands are predicted. 

Demands of past traffic for ONU i are given by, 

𝑋𝑖 = {𝐷𝑖
(𝑡 − 3), 𝐷𝑖

(𝑡 − 2), 𝐷𝑖
(𝑡 − 1), 𝐷𝑖

(𝑡)}                (7) 

Based on the above input, the predicted bandwidth at t+1: 

                        Ɗ(𝑡 + 1) = 𝑓𝐿𝑆𝑇𝑀 (𝑋𝑖 )                                    (8) 

Loss function of LSTM: 

It is given by the mean squared error, 

𝐿 = 1/𝑁𝛴𝑖=1
𝑁 (𝐷𝑖

(𝑡 + 1) − Ɗ(𝑡 + 1))
2
                (9) 

 

Sliding Window Function 

Sliding window predicts bandwidth demand based on past 

N time steps: 

𝑌𝑡 = 𝑓(𝑋𝑡
) = 𝑓(𝑋𝑡 −𝑊 ,𝑋𝑡 −𝑊+1, … . , 𝑋𝑡 −1

)            (10) 

Here, f is a learned function of the GAN-DQN-LSTM 

Model 

Sliding Window update: 

𝑋𝑡 +1 = (𝑋𝑡 −𝑊 +1 ,𝑋𝑡 −𝑊+2,… . , 𝑋𝑡
)                         (11) 
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Predicted bandwidth will be: 

𝑌𝑡+1 = 𝑓(𝑋𝑡 +1
)                                                      (12) 

 

By this, the model will continuously predict future 

bandwidth requirements without waiting for a live traffic 

update. 

Loss function for convergence: 

𝐿 = 1/𝑁𝛴𝑡 =1
𝑁 (𝑌𝑡 − ӯ𝑡

)2                                        (13) 

Here  

𝑌𝑡= bandwidth actually used at time t 

ӯ𝑡= bandwidth predicted using the model 

𝐿= Model minimizes the Mean Square Error                                

(MSE) over time 

 

ӯ𝑡 = f((𝑋𝑡 −𝑊 , 𝑋𝑡 −𝑊 +1 ,… . , 𝑋𝑡 −1
) +  Є                 (14) 

 

Here Є represents the error in prediction, which reduces 

over the convergence of the model. 

Algorithmic Steps 

1. Initializing parameters: 

 Initialize parameters of GAN, DQN, and LSTM. 

 Learning rate α and discount factor γ are to be set. 

2. Training: 

 Use GAN to generate synthetic traffic data. 

 Use predicted traffic as input to DQN to train optimal 

action policies. 

 Train an LSTM on real and GAN-generated data to 

predict  

Ɗ(𝑡 + 1) = 𝑓𝐿𝑆𝑇𝑀 (𝑋𝑖 ). now 

Ɗ(𝑡 + 1) is the predicted bandwidth demand at time 

t+1 for a given ONU. 

𝑓𝐿𝑆 𝑇𝑀  is a trained LSTM model. 

𝑋𝑖  is the input feature vector. 

 

3. Simulation Execution: 

 At each time step, LSTM predicts traffic. 

 DQN selects action: sleep or active state for ONUs; 

allocates bandwidth. 

 Update power usage and buffer status. 

 Record metrics: jitter, buffer occupancy, and power. 

 

4. Feedback and Learning: 

 Adjust GAN and DQN parameters (weights and 

biases) based on performance metrics. 

 Reinforce actions leading to lower jitter and energy 

consumption. 

 

 

Simulation & Integration parameters 

The methodology was validated using SimPy-based 

simulations. Eight ONUs and one OLT were modelled, with 

ONUs generating traffic between 0.5 and 5 Mbps. The 

baseline standalone DQN model will keep ONUs always 

active, while the proposed GAN-DQN-LSTM scheme allows 

ONUs to enter low-power sleep states during low predicted 

traffic.  

 

Power consumption was calculated using realistic wattage 

ratings for transmission (4 watts), reception (4 watts), and idle 

states (1.5 watts). The ONU buffer size is considered to be 2 

Mb with a variation of 20% based on traffic demand at the 

respective ONU.  

 

In the proposed novel model, blocks of Generative 

Adversarial Network (GAN), Deep Q Learning (DQN) and 

Long Short-Term Memory (LSTM) are used with specific 

customizations through layers of neurons, optimization 

techniques and activation functions as discussed to improve 

the prediction of bandwidth requirement for ONUs.  

 

5. Results and Discussion 
The results show that the proposed novel model of GAN-

DQN-LSTM has a combined advantage over Generative 

Adversarial Networks (GANs) and Long Short-Term Memory 

(LSTM). GAN helps improve the data set quality and train the 

model exhaustively.  
 
GANs can model complex traffic patterns and generate 

realistic future traffic scenarios . The LSTM algorithm can 

capture the temporal features of traffic. Long Short-Term 

Memory (LSTM) networks are well-suited for sequential data 

and can capture long-term dependencies in traffic flows.  

 

This simulation uses SimPy for event-driven simulation 

and matplotlib for plotting. Based on the results , it is identified 

that the proposed novel model has better Jitter performance 

than the traditional RL model. From the results, it is observed 

that there is an average improvement of 1ms in jitter 

performance with the proposed DBA scheme. The lower jitter 

performance indicates consistent packet delivery times , which 

in turn is essential for latency-sensitive applications like video 

traffic and gaming.  

Hence, the proposed DBA scheme provides better QoS. 

The improvement in the jitter implied that the scheme 

proposed is more responsive and adaptive to traffic demands. 

The proposed scheme reduces traffic delays  and re-

transmission, which are contributors to jitters.  

From Figure 2, it is observed that there is a 1ms reduction 

in jitters. A 1ms jitter reduction improves the predictability of 

network performance, which is especially important in multi-

user environments or when scaling the network. In terms of 

percentage, this converts to an improvement of jitter by 21% 

with the proposed novel model. In real-world deployments, 

ISPs and network operators could leverage this improvement 

as a selling point for better Service-Level Agreements (SLAs). 
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Fig. 2 Jitter comparison graph  

OLT buffer occupancy is reduced by 59% using the 

proposed model in comparison with the traditional DQN 

model, as evident from Figure 3. 

The buffer occupancy at ONUs has been reduced by 500 

packets in the case of the proposed model as compared to 

traditional DQN, as visible in Figure 4. This is evidenced by 

its 10.98% improvement in buffer occupancy reduction.  

 
                   Fig. 3 Comparison of OLT buffer occupancy

 
Fig. 4 Comparison of O NU buffer occupancy 

 

Improvement in Power Consumption: 

                   
Fig. 5 Comparison of power consumption  
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Figure 5 illustrates the comparative power consumption 

between two bandwidth allocation models - the conventional 

DQN-based approach and the proposed GAN-DQN-LSTM 

model - over a simulated period of one hour. The 

measurements account for total power usage by both Optical 

Network Units (ONUs) and the Optical Line Terminal (OLT), 

presented in Watt-Hours (Wh). 

The results demonstrate a clear energy efficiency 

advantage of the GAN-DQN-LSTM model. Specifically, the 

ONUs operating under the DQN scheme consumed 

approximately 32,000 Wh, while those using the proposed 

model recorded a reduced consumption of 25,000 Wh, 

signifying an energy saving of over 20%. This reduction is 

attributed to the dynamic sleep mechanism in the GAN-DQN-

LSTM design, which allows ONUs to enter low-power sleep 

states during periods of predicted low traffic. 

Similarly, at the OLT level, power consumption dropped 

from approximately 18,000 Wh under the DQN model to 

around 16,000 Wh using the GAN-DQN-LSTM approach. 

Although the OLT typically remains active due to its central 

role in data distribution, the reduced upstream and 

downstream traffic resulting from efficient ONU activity 

contributed to lower transmission and reception power 

demands. 

Overall, these findings validate the effectiveness of 

integrating predictive intelligence into bandwidth allocation 

strategies, yielding substantial improvements in energy 

efficiency at both the ONU and OLT levels. The reduction in 

power usage not only benefits network operators through 

lower operational costs but also supports sustainability goals 

by minimizing energy footprints. 

5.1. Discussion 

The improvement in results compared to the existing 

state-of-the-art standalone DQN system is possible because 

the proposed hybrid model captures both temporal and spatial 

patterns of network traffic. In contrast, the existing standalone 

DQN models could not capture intricate spatial and temporal 

traffic patterns simultaneously. Also, the extensive data set 

required for training a computationally complex hybrid model 

is achieved using a GAN module. 

6. Conclusion 
The performance evaluation of the proposed GAN-DQN-

LSTM Dynamic Bandwidth Allocation (DBA) framework 

demonstrates notable enhancements across critical network 

performance metrics when compared to the traditional DQN-

based scheme. Through extensive simulation, three key 

improvements were observed: jitter minimization, buffer 

occupancy reduction, and significant power savings.  

 

Firstly, the integration of Generative Adversarial 

Networks (GANs) and Long Short-Term Memory (LSTM) 

networks enables highly accurate traffic prediction, allowing 

the DBA mechanism to anticipate bandwidth demands more 

effectively. As a result, jitter, characterized by fluctuations in 

packet delay, was considerably reduced. This stability ensures 

smoother data transmission and improved Quality of Service 

(QoS), particularly for latency-sensitive applications such as 

VoIP and streaming. Secondly, buffer occupancy at both the 

ONU and OLT levels experienced a marked reduction under 

the proposed model. By accurately predicting traffic trends 

and dynamically adjusting transmission patterns, the system 

minimized the risk of buffer overflow and underutilization. 

This efficient buffer management not only decreases packet 

loss but also enhances overall network throughput. 

 

Finally, one of the most impactful outcomes is the 

observed power consumption reduction. The ability of ONUs 

to enter sleep modes during predicted low-traffic intervals, 

guided by the GAN-LSTM traffic forecast, led to significant 

energy savings. The simulations revealed that ONUs under the 

GAN-DQN-LSTM scheme consumed over 20% less energy 

compared to those in the always -active DQN system. 

Similarly, OLT power usage was reduced, albeit to a lesser 

extent, owing to decreased transmission load from the energy-

efficient ONU behaviour. In summary, the GAN-DQN-LSTM 

model provides a robust, intelligent solution for next-

generation passive optical networks, achieving lower jitter, 

reduced buffer usage, and enhanced energy efficiency without 

compromising performance. These improvements contribute 

to both cost-effective network operation and sustainable 

energy usage, making the approach highly suitable for 

modern, large-scale PON deployments. 
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