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Abstract - Real-time intrusion detection has become crucial as a result of the rapid development of networks . This is because 

the distribution of the data and behaviors changes over time, a phenomenon known as concept drift. In order to address the data 

drift, this study suggests that an online adaptive sliding windowing method is used to tackle the concept drift, which gives a 

timely response for incoming data packets. Initially, collected different Intrusion Detection System (IDS) datasets like NSL KDD 

from the concerned repository and dataset evaluated by conventional machine learning models such as Logistic Regression(LR), 

Random Forest (RF), Decision Tree(DT), K-Nearest Neighbor (KNN), Gradient Boosting classifiers (GBT), and Light(GBM) 

and the results showed low detection rate 70.24%, 76.77%, 76.83%,77.20%,78.02% and 79.35% due to training and testing 

datasets consists of unequal class distribution and concept drift. Applying the oversampling, Undersampling , and SMOTE 

approaches, the accuracy was somewhat improved to 79.77% and 81.21% while using Synthetic Minority oversampling 

techniques (SMOTE) to address the majority and minori ty issues known as data imbalance. To further enhance the detection 

rate, developed a proposed model called Adaptive Drift -aware Windowing Intrusion Detection System with Optimization 

(ADWISE) was developed, combining adaptive sliding windows with random search hyperparameter tuning optimization. The 

proposed ADWISE framework achieves a top accuracy of 98.27% while effectively managing both class imbalance and concept 

drift.. 

Keywords - Concept Drift, Class Imbalance, Adaptive Machine Learning, Drift Detection, Streaming Data Analytics. Real-Time Learning. 

 

1. Introduction 
Due to the rapid development of the digital landscape, 

securing network systems against malicious activity is a top 

priority. As cyber threats become more sophisticated, the need 

for real and responsive Intrusion Detection Systems (IDS) has 

grown significantly. Conventional IDS approaches, which 

mostly rely on offline or static data processing, are unable to 

handle the dynamic nature of modern network traffic. One of 

the major challenges in real-time IDS is the presence of 

concept drift, a phenomenon where the statistical 

characteristics of the input data vary over time, and degrade 

the performance of the degradation model. In streaming 

environments where attack patterns evolve and legitimate 

behavior may shift, this is especially problematic. 

 

Class imbalance is another significant issue with IDS 

data, when benign traffic vastly outnumbers harmful 

instances. This imbalance can bias classifiers in favor of the 

majority class, reducing the system's ability to detect rare but 

critical attack events. Conventional machine learning models, 

when trained on such imbalanced and non-stationary data, 

tend to produce large false negative rates and poor detection 

rates, which restricts their use in practical situations. 

In order to overcome these issues, this study suggests an 

online adaptive sliding window framework (ADWISE) that 

can handle idea drift and class imbalance while detecting 

intrusions in real-time. The approach leverages a dynamic 

windowing technique that adapts to changes in data 

distribution, enabling timely model updates when new data 

becomes available. The benchmark IDS dataset (NSL-KDD) 

was used to test standard classifiers such as LR, RF, DT, 

KNN, GBT and LightGBM. The results showed lower 

performance due to the aforementioned problems. 

 

To improve classification accuracy, data balancing 

strategies such as oversampling, Undersampling, and the 

Synthetic Minority Over-sampling Technique (SMOTE) were 

investigated. While SMOTE produced moderate 

improvements, the study introduces a novel enhancement, an 

integrated framework combining the adaptive sliding window 

method with random search for hyperparameter tuning.  

 

This proposed framework demonstrates robust 

performance in real-time environments, attaining noticeably 

improved detection accuracy while adjusting to changing 

attack patterns and addressing class imbalance effectively. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Works 
Class imbalance and Concept drift in real-time or 

streaming data have been an emerging research challenge, 

especially in applications such as Intrusion Detection Systems 

(IDS). To meet the adaptive requirements of learning models 

in non-stationary environments, a variety of frameworks and 

algorithms have been put forth. 
 

2.1. Concept Drift in Data Streams 

Concept drift refers to the description of how the 

distribution of underlying data varies over time, leading to 

model degradation. A thorough analysis of concept drift 

adaptation techniques was provided by Gama et al. [17], who 

made a difference between passive and active mechanisms.  
 

Zhang et al [6] presented a multilayer drift detection 

technique that uses model explainability to enhance 

interpretability and adaptability in dynamic scenarios. [16]. 

Similarly, Chen et al. [15] suggested a dual-layer variable 

sliding window method that can identify multiple kinds of 

drift in a frequent pattern mining context. 
 

Adaptive windowing (ADWIN), a key invention for 

learning from evolving data streams, was first presented in 

seminal work by Bifet and Gavalda [10]. In a related effort, 

Wang et al. [2] proposed how dynamic resampling techniques 

increase learner robustness in imbalanced environments by 

proposing a framework that integrates concept drift detection 

with online class imbalance learning. 
 

2.2. Class Imbalance in Streaming Data 

Another major challenge in streaming environments, 

where minority classes can reflect crucial outcomes such as 

cyberattacks, is imbalanced datasets. 
  

In their comparative analysis of undersampling, 

oversampling, and SMOTE, Wongvorachan et al. [9] offer 

insight into their effects in educational data mining, which can 

be generalized to other domains like fraud detection and 

security. In order to improve decision-making accuracy in 

real-time streaming tasks, Priya and Uthra  [3] developed an 

ensemble framework based on deep learning that uses 

recurrent architectures to jointly tackle concept drift and class 

imbalance. 
 

A similar hybrid ensemble strategy was implemented by 

S P. and R A. U. [1], who projected an ensemble concept drift 

detector for imbalanced streams, highlighting multi-learner 

collaboration for improved adaptability. 
 

2.3. Intrusion Detection Systems and Adaptive Learning 

Several studies in the cybersecurity domain have 

incorporated these techniques into the design of Intrusion 

Detection Systems (IDS). By employing a variable-length 

particle swarm optimization technique, Noori et al. [4] 

proposed a feature drift-aware intrusion detection system that 

demonstrated significant gains in attack detection accuracy. A 

genetic programming-based incremental learning method 

tailored to address concept drift and class imbalance in 

intrusion detection for streaming data was presented by Shyaa 

et al. [12]. 
 

In order to solve the scalability and latency issues 

associated with real-time data, Atbib et al. [11] designed a 

distributed intrusion detection system for Internet of Things 

scenarios. In order to ensure more reliable threat detection, 

Saeed [14] presented a hybrid IDS model that can adjust to 

evolving data distributions in a streaming setup. 
 

Earlier foundational analyses by Lippmann et al. [6] and 

Axelsson [5] explored the limitations of benchmark datasets 

such as DARPA and the base-rate fallacy, respectively. Later, 

the KDD CUP 99 dataset-which remains widely used for IDS 

benchmarking-was thoroughly examined by Tavallaee et al. 

[19]. 
 

By generating synthetic samples of the minority class, 

Chawla et al. [21] proposed the Synthetic Minority Over-

sampling Technique (SMOTE), a data-level approach for 

dealing with unbalanced datasets. Their study showed that 

combining SMOTE with majority class under-sampling 

enhanced classification performance. SMOTE remains a 

fundamental technique for improving the detection of 

uncommon but critical anomalies in the context of Intrusion 

Detection Systems (IDS), where malicious data is typically 

underrepresented. 
 

A thorough taxonomy of performance-aware concept 

drift detectors was provided by Bayram et al. [22], who also 

demonstrated how model degradation can be utilized as a 

proxy to detect significant data changes. The techniques that 

track prediction performance in non-stationary environments 

were the focus of their survey. These techniques are very 

relevant to real-time intrusion detection systems, where it is 

crucial to maintain constant accuracy in the face of evolving 

threats. 
 

The connection between Concept Drift, Feature 

Dynamics, and IDS was examined by Shyaa et al. [23]. They 

propose an integrated model that incorporates adaptive 

learners, dynamic feature selection, and continuous 

monitoring to address the lack of integration between drift-

aware algorithms and IDS frameworks. By addressing concept 

and feature drift in the cybersecurity domain, this work fills a 

significant research gap. 
 

Xiang et al. [24] concentrated on deep learning-based 

strategies for idea drift adaptation. They categorized the use of 

drift adaptation strategies in time-series and non-stationary 

environments, classifying them into discriminative, 

generative, and hybrid learning methods. The review provides 

valuable information on how to create robust IDS with deep 

models capable of handling evolving data distributions. 



R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025 
 
 

125 

The Internet of Intelligent Things (IoIT) was introduced 

by Oliveira et al. [23], who combined edge computing, 

embedded systems, and TinyML. The growing importance of 

using lightweight, flexible machine learning models on 

devices with limited resources is highlighted by their survey. 

The discussion of on-device learning in dynamic 

environments is pertinent to drift-aware intrusion detection in 

IoT networks, while not exclusively focused on IDS. 

 

3. Proposed Modelling  
3.1. Dataset Description 

The NSL-KDD dataset is an enhanced version of the 

original KDD Cup 1999 dataset, which was extensively used 

for assessing intrusion Detection Systems (IDS).  

 

A number of problems with the original KDD dataset, 

such as duplicate records and unbalanced classes, affected the 

performance evaluation of machine learning algorithms. 

 

Figures 2 and 3 visualize the distribution of attacks  in the 

NSL-KDD dataset. It helps to understand how many samples 

belong to each attack type, highlight class imbalance (some 

attacks are very common, others rare), and help decide 

whether to do class grouping (e.g., DoS, R2L, etc). 
 

Fig. 1 Training and Test dataset distribution 

 
Table 1. Attack categories 

Categories Types of Attacks 

DoS neptune, smurf, back, teardrop, etc. 

Probe satan, portsweep, nmap, ipsweep 

R2L guess_passwd, ftp_write, imap, warezclient 

U2R buffer_overflow, loadmodule, perl, rootkit 

 

 
Fig. 2 Distribution of attacks
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Fig. 3 Distribution of attacks (%) 

Based on the normal or attack categories, we first 

decoded the target label of the NSL KDD dataset to 0 and 1. 

Attack type is classified as 1 and normal type as 0. The training 

and testing datasets in the NSL KDD dataset have a combined 

total of 125973 and 22544 records.  

 

Figure 1 depicts the training and testing dataset 

distribution; 67343 records belong to the normal category, and 

58630 records belong to the attack categories. There are 9711 

records in the test dataset that belong to normal categories , and 

12833 records belong to attack categories. Table 1 lists the 

attack categories according to which we have been classified. 

These categories include Normal, DoS, Probe, R2L, and U2R 

attacks. 

 

In Figure 4, depicted as an outlier visualization using the 

combined Train and Test NSL KDD Datasets. It helps to 

understand and visualizing high-dimensional data in 2 

dimensions , detect outliers or unusual patterns in any class, 

evaluating class separability, and understand data structure 
before training machine learning models. 

 
Fig. 4 PCA plot for outlier visualization  
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Fig. 5 Heatmap visualization in NSL-KDD 

Figure 5 shows a heatmap visualisation using the 

combined Train and Test NSL KDD Datasets. It helps to 

visualize how different attack classes differ across selected 

features, identify discriminative features  for classification, 

spot trends and patterns in network behavior for each attack 

type, and guide feature selection for machine learning models. 

 

In Figure 6, shown as top features’ visualization using 

combined Train and Test NSL KDD Datasets. It helps to 

understand and visualize ranks features based on their 

contribution to model performance. Additionally, it aids in 

feature selection, model simplification, and dimensionality 

reduction. 

 

 
Fig. 7 Top 20 features importance using random forest 
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Figure 7 shows the distributions of major numerical 

features (violin plots) by dataset split and binary class. It 

facilitates comprehension of the distribution of important 

numerical features in the training and testing subsets of the 

NSL-KDD dataset across two classes (attack vs. normal). It is 

a powerful way to comprehend how class -specific features 

behave and how they are generalized across dataset splits . 
 

 
Fig. 7 Key numerical feature distributions  

 
3.2. Conventional Classifiers Analysis 

Following exploratory data analytics, conventional 

machine learning classifiers such as K-Nearest Neighbors 

(KNN), Logistic Regression (LR), Decision Tree (DT), 

Gradient Boosting (GBT), and lgb. LGBM (LGBM) and 

Random Forest (RF) were used to process offline static data. 

  

The results of this analysis , Table 2, show that the 

accuracy of the training dataset was 99.73%, 87.71%, 99.99%, 

99.6%, 99.99% and 99.83%, while the accuracy of the testing 

dataset was 77.20%, 70.24%, 79.35%, 78.84%, 76.24% and 

79.35%. For this NSL KDD test dataset, the LGBM classifier 

offers a 79.35% higher accuracy than all other models' 

accuracy. 

Table 2. Training and testing accuracy 

Model 

Train 

Accy 

(%) 

Test 

Accy 

(%) 

Precision Recall 
F1-

Score 

KNN 99.73 77.20 96.39 62.28 75.67 

LR 87.71 70.24 88.09 55.19 67.86 

DT 99.99 76.83 96.50 61.52 75.14 

GBT 97.96 78.02 96.28 63.86 76.79 

RF 99.99 76.77 96.59 61.37 75.05 

LGBM 99.98 79.35 96.57 66.07 78.46 

 
Fig. 8 Training and testing accuracy graph 

Figure 8 depicts various models together with 

performance metrics such as recall, accuracy score, precision, 

and F1-measures. Because of differences in data distribution 

or statistical properties between the training and test datasets, 

all models have reduced accuracy. Therefore, more analysis is 

required for accuracy improvement. 

 
Fig. 9 KNN confusion matrix 
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Fig. 10 LR confusion matrix 

 
Fig. 11 DT confusion matrix 

 
Fig. 12 GBT confusion matrix 

 

Fig. 13 RF confusion matrix 

 
Fig. 14 RF confusion matrix 

Figures 9 to 14 show the confusion matrix for various 

machine learning models, such as KNN, LR, DT, GBT, RF 

and LGBM.  

This matrix compares predicted and true labels to assess 

how well a classification model performs. 

 

3.3. Data Imbalance with Machine Learning Models  

A significant challenge in machine learning, particularly 

in supervised learning issues, is data imbalance. It occurs 

when target classes ' distributions are uneven, which causes 

model learning to be biased in favor of the majority class.  

The model's performance may suffer as a result of this 

imbalance, especially when it comes to detecting instances of 

minority classes, which are frequently the most important in 

security-related tasks such as intrusion detection. 
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Fig. 15 Training dataset attack category distribution  

 
Fig. 16 Training dataset attack category distribution (%) 

 
Fig. 17 NSL KDD test dataset attack category distribution 
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Figures 15 and 16 show the target class distribution for 

the NL KDD training dataset. Based on this data, 3% of 

instances belong to the normal category, 36% and 8.5% 

belong to the DoS and Probe attack categories. However, R2L 

and U2R only belong to this category at 0.8% and 0.04%, 

respectively. Therefore, the R2L and U2R categories are 

considered minority classes, while the regular, DoS, and Probe 

categories are treated as majority classes.  

 

Figures 17 and 18, which depict the distribution of the 

NSL KDD Dataset test set, indicate that 53%, 36%, and 8.5% 

of the instances belong to the Normal, DoS, and Probe attack 

categories. Instances that belong to the R2L and U2R 

categories are 0.8% and 0.04%, respectively. Thus, this class's 

unequal distribution is also present in the test set.  

 

This is the issue that results in NSL KDD and training and 

test datasets. For this NSL KDD Training dataset, 

conventional classifiers are therefore unable to provide 

superior accuracy. In order to address this data imbalance 

issue for this dataset, we will concentrate on resampling 

strategies.

 

  

 
Fig. 18 NSL KDD test dataset attack category distribution (%) 

 

3.3.1. Random Undersampling 

Equations (1) to (6) Initially, we applied random 

undersampling to the NSL KDD dataset. It is  a method for 

addressing class imbalance in datasets that is used in data 

preprocessing and machine learning. To balance the dataset, 

samples from the majority class are randomly removed. This 

helps prevent a model from becoming biased toward the 

majority class. DoS attacks dominate the attack classes, 

indicating a major imbalance in the dataset. There are very few 

samples for R2L and U2R attacks. Therefore, by reducing the 

number of samples in dominating classes (Normal, DoS, etc.), 

this method aids in addressing class imbalance. 

Steps: 

𝐷 = {(𝑥 𝑖  ,𝑦𝑖
)}𝑖=1

𝑁                                                              (1) 

 

Be the dataset, where: 

 𝑥 𝑖 ∈ { 𝐶1,𝐶2, . . . . . 𝐶𝑘}  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠  𝑙𝑎𝑏𝑒𝑙  

 N is the total number of samples in the dataset.  

 Cj is the j-th class among k classes (e.g., 'Normal', 'DoS', 

'R2L', 'U2R', 'Probe'). 

 

Step 1: Compute Class Frequencies  

For each class Cj, compute the number of instances: 

𝑛𝑗 = | {𝑖: 𝑦𝑖 = 𝐶𝑗} |                                                           (2) 

This gives you: 

 n1=number of 'Normal' samples  

 n2=number of 'DoS' samples 

 n3=number of 'Probe' samples  

 n4=number of 'R2L' samples 

 n5=n_5 =n5= number of 'U2R' samples 

 

Step 2: Identify the Minority Class  

Find the minimum number of instances across all classes: 

𝑛𝑚𝑖𝑛 =
𝑚𝑖𝑛 𝑛𝑗

𝑗
                                                                     (3) 

 

This value determines the target number of samples per class 

after undersampling. 
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Step 3: Apply Random Undersampling 

For each class Cj, randomly sample nmin instances without 

replacement: 

𝐷𝑗
′ = 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 ({(𝑥 𝑖 ,𝑥𝑗) ∈  𝐷: 𝑦𝑖 = 𝐶𝑗},𝑛𝑚𝑖𝑛)   (4) 

That is, for every class, they randomly pick nmin samples. 

 

Step 4: Combine Resampled Classes  

Combine the undersampled class subsets into one balanced 

dataset: 

𝐷 ′ = ⋃ 𝐷𝑗
′

𝑘

𝑗=1

                               (5) 

Now, D′ contains k×nmin samples, with balanced classes. 

 

Step 5: Shuffle the Dataset 

Shuffle D′ to mix the classes randomly: 

𝐷 ′′ = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 (𝐷 ′)                                (6)                                     

Now D′′ is ready for training a machine learning model. 

3.3.2. SMOTE Oversampling 

Using the NSL-KDD dataset, SMOTE (Synthetic 

Minority Oversampling Technique) improve classification 

performance, especially for rare attack classes like R2L and 

U2R. SMOTE helps by creating synthetic samples for these 
minority classes instead of just duplicating them. 

SMOTE Algorithm  

1. Choose the number of synthetic samples to generate. 

2. Find the k nearest neighbors for each minority instance. 

3. Choose a neighbor at random. 

4. To create a synthetic sample, interpolate between the 

instance and its neighbor. 

5. Add the dataset with synthetic samples 

Mathematical Steps 

𝐷 = ( 𝑥 𝑖 ,  𝑦𝑖  
) 𝑁
𝑖 = 1

                                       (7) 

Where : 

 𝑥 𝑖 ∈ 𝑅𝑑 : 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  𝑣𝑒𝑐𝑡𝑜𝑟 

 𝑦𝑖 ∈  {𝐶1,𝐶2 . . . . . , 𝐶𝑘 }: 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 

Let Cm ⊂ D be the minority class with nm samples. 

Synthetically create G new samples for class Cm, to equal 

the number of majority class samples. 

Step 1: Choose the Number of Synthetic Samples  

Decide how many synthetic samples you wish to generate: 

G = n target - nm 

Where: 

 n target : number of samples you wish the minority class to 

have after oversampling 

 G: total number of synthetic samples to create. 

Step 2: For Each Minority Sample  

𝑥 𝑖 ∈ 𝐶𝑚                                        (8) 

Find its k nearest neighbors in feature space (typically k=5): 

𝑁𝑁𝑘
(𝑥 𝑖

) =  {𝑥 𝑖1,𝑥 𝑖2, . . . . . . , 𝑥 𝑖𝑘}                                    (9) 

 

Using Euclidean distance or another metric: 

𝑑𝑖𝑠𝑡(𝑥 𝑖 ,𝑥𝑗) = || 𝑥𝑖  − 𝑥𝑗 ||                                             (10) 

Step 3: Randomly Pick Neighbors  

For each sample xi, randomly choose N≤ 𝑘 neighbors (often 

N=1). 

Step 4: Generate Synthetic Samples  

For each selected neighbor xij, create a synthetic sample xnew 

using interpolation: 

𝑥𝑛𝑒𝑤 = 𝑥 𝑖 + 𝛿 . (𝑥 𝑖𝑗 − 𝑥 𝑖)                                            (11) 

W here: 

 δ ∈[0,1]is a random number chosen from a uniform 

distribution. 

 This establishes a point along the line segment between xi 

and its neighbor. 

Repeat until you have G synthetic samples. 

Step 5: Add Synthetic Samples to the Dataset 

The synthetic data 𝐷𝑠 = {(𝑥𝑛𝑒𝑤,𝐶𝑚)} is added to the original 

dataset: 

𝐷 ′ = 𝐷 ⋃ 𝐷𝑠                                            (12)  

Now the dataset D′ has a more balanced class distribution. 

3.3.3. Undersampling and Oversampling Results and 

Discussion 

To resolve the class imbalance and improve model 

accuracy in the NSL-KDD dataset, we applied resampling 

techniques, specifically SMOTE (Synthetic Minority 

Oversampling Technique) and random undersampling. The 

results show that SMOTE with oversampling attained an 

accuracy of 81.21%, while random undersampling attained 

79.77%.  
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Table 3. Sampling techniques performance analysis  

Metric Test Accy (% ) F1 score Precision Recall 

Original 0.7873 0.7894 0.9044 0.7003 

SMOTE 0.8121 0.8110 0.9487 0.7082 

Undersampling 0.7977 0.8019 0.9063 0.7190 

 
Fig. 19 Sampling techniques with NSL-KDD performance  

 

Although SMOTE provided a slight improvement in 

accuracy compared to undersampling and conventional 

classifiers' accuracy, SMOTE did not considerably boost the 

model's overall performance to an optimal level. Table 3 and 

Figure 19. displays comprehensive evaluation measures for 

both approaches, such as accuracy, precision, recall, and F1-

score. 
 

3.4. Proposed Work  

We have experimented with different models and 

imbalance techniques so far, but the performance in terms of 

accuracy of this NSL-KDD dataset has not increased. The 

statistical characteristics and behavior of the NSL KDD 

training and test datasets are hence the issue. The samples in 

the training set have a similar statistical distribution. However, 

when the statistical distribution of the test set is different from 

the training set, this kind of statistical distribution change is 

called concept drift. Therefore, the model that was trained on 
the training set is unable to identify assaults in the test set. 

As a result, we created the Adaptive Drift-aware 

Windowing Intrusion Detection System with Optimization 

(ADWSE), a novel framework. It addresses handling 

unbalanced data and concept drift. In addition, we used 

random search to apply hyperparameter optimization to 

choose the optimal parameters for enhancing the framework's 

performance. 

3.4.1. Major Contributions 

 To create a concept drift detection and adaptation 

technique that uses the adaptive sliding windowing 

method to handle concept drift.  

 To use the hyperparameter optimization techniques using 

random search to produce the optimal hyperparameters 

for the drift model. 

 LightGBM should be used to create a real-time classifier 

that detects concept drift. 

 
A Proposed ADWSE framework is depicted in Figure 20. 

To solve the majority and minority difficulties, we first 

collected data from the concern repository, then performed 

preprocessing techniques to normalize the data using 

resampling techniques. 

 
The model's performance was then analyzed using 

traditional classifiers, and it produced lower accuracy. Hence, 

we have developed adaptive sliding windowing-based drift 

detection approaches with hyperparameter optimization, since 

the reason is concept drift in this dataset. 

 
Lastly, we have classified the attacks and detected the 

drift using the LightGBM classifier. Finally, employing our 

proposed ADWSE framework, we achieved an improved 

accuracy of 98.27% in the test dataset. 
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Fig. 20 Proposed ADWISE framework 

 

3.4.2. Adaptive Sliding Window Algorithm 

First, we created an adaptive sliding window algorithm 

that is used for concept drift detection and stream processing. 

It dynamically adjusts the size of the data window based on 

changes in data characteristics , making it highly useful for 

real-time applications like intrusion detection 

Mathematical Steps 

Input: 

 NSL KDD Dataset converted as data stream D= {x1, 

x2…., xt}  

 Confidence parameter δ 

 window size Wmin 

 Dynamically resized window 

Output: 

 Change detection alerts (if any) 

 

1. Initialization 

Set window W= []  

Set δ, the confidence threshold (e.g., 0.01) 

2. For each new data point xt: 

 Append xt to the end of the window: 𝑊 = 𝑊 ∪  {𝑥𝑡} 

3. While the window can be split into two parts , W1 and W2, 

such that: 

𝑊 = 𝑊1  + 𝑊2                                                                                       (13) 
 

|𝑊1| ≥ 𝑊𝑚𝑖𝑛′ |𝑊2 | ≥ 𝑊𝑚𝑖𝑛                                                     (14) 

Do the following 

 a. Compute: 

𝜇1 = 𝑚𝑒𝑎𝑛  (𝑊1), 𝜇2 = 𝑚𝑒𝑎𝑛  (𝑊2 )                                  (15)  
 

𝑛1 = |𝑊1 |, 𝑛2 = |𝑊2 |                                                               (16) 

 

b. Calculate threshold ϵ using Hoeffding's bound: 

∈= √
1

2
. 𝑙𝑛 (

4. 𝑙𝑜𝑔2(𝑛)

𝛿
). (  

1

𝑛1
+ 

1

𝑛2
 )                                             (17) 

Where n=n1+n2 

c. If: 

| 𝜇1 −  𝜇2 | >  𝜖                                                                     (18) 

 Drift Detected 

 Remove the oldest portion W1 

 Reset window 

𝑊 = 𝑊2  

4. Repeat for the next data point 

 

3.4.3. Hyper Parameter Optimization using Random Search 

Random Search is a simple yet effective strategy for 

hyperparameter optimization. Random search samples 

hyperparameters from established distributions and assesses 

performance for each combination instead of grid search, 

which searches across a predefined grid exhaustively. 

Especially in high-dimensional spaces, it often identifies 

appropriate combinations more quickly and effectively than 

grid search. 

 

Random Search Algorithm 

Step 1: Define the Objective Function  

Let f(θ) represent your objective, for example, the 

validation loss  or 1 - accuracy of a machine learning model. 

θ ∈ Θ is a vector of hyperparameters,  

e.g.: θ= [ a, b, win1, win2] 

 

Find the configuration θ∗ that minimizes the objective 

function: 

𝜃∗ = 𝑎𝑟𝑔 
𝑚𝑖𝑛

𝜃 𝜀 𝛩 
𝑓 (𝜃)                                                             (19) 

Step 2: Define the Search Space Θ 

Specify the range of each hyperparameter you want to 

optimize 
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Mathematically: 

𝑓𝑜𝑟  𝑖 = 1 𝑡𝑜 𝑁: 𝜃(𝑖) ∼ P(θ), 𝑓(𝑖) = f(𝜃(𝑖) )          (20) 

 

Example: 
Table 4. Search space  

Parameter Range Type 

𝒂 [0.95, 0.99] Continuous  

b [0.90, 0.98] Continuous  

Win1 [200, 1000] Integer 

Win2 [1000, 5000] Integer 

Step 3: Choose a Sampling Distribution  

 For continuous variables → use a uniform 

distribution over the range. 

 For integers  → use random integers within the 

range. 

So: 

 A ∼ u (0.95,0.99) 

 B ∼ u (0.90,0.98) 

 win1∼UniformInt (200,1000) 

 win2∼UniformInt (1000,5000)  

Step 4: Random Sampling and Evaluation  

Perform the following steps for N trials (e.g., 20 or 50): 

1. Randomly sample one combination of parameters 

θ(i)∼P(θ) 

2. Evaluate the model using f(θ(i)) 

3. Record the result and compare with the previous best 

Step 5: Select the Best Hyperparameters  

After N iterations, select the best-performing configuration: 

𝜃∗ = 𝜃(𝑖∗ )  𝑤ℎ𝑒 ↓ ∗=  𝑎𝑟𝑔 
𝑚𝑖𝑛

𝑖
 𝑓 (𝑖)                        (21) 

 

Step 6: Use the Optimal Configuration  

Train your final model using the best hyperparameters θ∗ 

found during search. 

 
Table 5. Best parameters 

Parameter Range 

𝑎 0.973 

b 0.904 

Win1 618 

Win2 2759 

Applying this random search space method, we were able 

to extract the optimal parameters from the search space that 

was initially used. These parameters will be used for the 

Adaptive Sliding Windowing approach; ultimately, the 

proposed AWSE framework attained an enhanced accuracy of 

98.27%. 

Figure 21 illustrates that when the test set begins, the 

current accuracy starts to decline significantly due to the 
statistical distribution change in the dataset. 

 
Fig. 21 ADWSE framework-drift detection 

 
Fig. 22 ADWSE - real-time drift detection and model accuracy 

Real-time intrusion detection with accuracy changes is 

shown in Figure 22. With the use of Python river packages, 

we first converted the data into a stream and fed it into the 

ADWSE model, detecting the outcomes as real-time accuracy 

change detection. 

 

4. Results and Discussions 
Initially, we used the NSL KDD Dataset to apply 

conventional classifiers. Test accuracy was 70.24%, 76.77%, 

76.83%, and 77.20%.LR, RF, DT, KNN, GBT, and 

LightGBM produced 78.02% and 79.35%, respectively.  

 

Utilizing sampling techniques such as SMOTE 

oversampling and undersampling, the model's accuracy was 

slightly increased to 79.77% and 81.21%, respectively. Lastly, 

we used the proposed framework ADWISE, which obtained a 

superior accuracy of 98.27% for this dataset. 
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Fig. 23 Performance analysis 

 

 
Fig. 24 Model-wise performance trends 

 

Figures 23 and 24 display the accuracy and trends of the 

model, while Table 6 displays the accuracy (%) of the model's 

performance. Hence, the above study performed better when 

using the adaptive sliding windowing method with random 

search hyperparameter tuning algorithms. 
 

Table 6. O verall model performance (%) 

Model Accuracy (% ) 

ADWSE 98.27 

SMOTE 81.21 

Undersampling 79.77 

LGBM 79.35 

GBT 78.02 

KNN 77.20 

DT 76.83 

RF 76.77 

LR 70.24 

5. Conclusion 
The suggested ADWISE framework, which combines an 

adaptive sliding window technique with random search 

hyperparameter tuning, significantly outperformed any other 

models. This outcome shows that dynamic data segmentation 

and optimal learning are excellent ways to enhance model 

performance.  
 

In order to assess ADWISE's usefulness in streaming data 

conditions, we want to deploy it in real-time systems in 

subsequent research. In order to validate the framework's 

generalizability, we also want to evaluate it across a range of 

domains.  
 

In larger, more complex datasets, scalability and 

adaptability will be supported by additional research into deep 

learning integration and computational efficiency 

optimization. 
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