
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 8, 123-137, August 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I8P111 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Real-Time Intrusion Detection Using Adaptive Sliding

Windows for Concept Drift

S. Meganathan1, A. Sumathi2, S. Sheik Mohideen Shah3, R. Rajakumar4

1,2,3,4Departmen of Computer Science and Engineering, Srinivasa Ramanujan Centre, SASTRA University, Tamilnadu, India .

4Corresponding Author : rajakumar@src.sastra.edu

Received: 06 June 2025 Revised: 07 July 2025 Accepted: 08 August 2025 Published: 30 August 2025

Abstract - Real-time intrusion detection has become crucial as a result of the rapid development of networks . This is because

the distribution of the data and behaviors changes over time, a phenomenon known as concept drift. In order to address the data

drift, this study suggests that an online adaptive sliding windowing method is used to tackle the concept drift, which gives a

timely response for incoming data packets. Initially, collected different Intrusion Detection System (IDS) datasets like NSL KDD

from the concerned repository and dataset evaluated by conventional machine learning models such as Logistic Regression(LR),

Random Forest (RF), Decision Tree(DT), K-Nearest Neighbor (KNN), Gradient Boosting classifiers (GBT), and Light(GBM)

and the results showed low detection rate 70.24%, 76.77%, 76.83%,77.20%,78.02% and 79.35% due to training and testing

datasets consists of unequal class distribution and concept drift. Applying the oversampling, Undersampling , and SMOTE

approaches, the accuracy was somewhat improved to 79.77% and 81.21% while using Synthetic Minority oversampling

techniques (SMOTE) to address the majority and minori ty issues known as data imbalance. To further enhance the detection

rate, developed a proposed model called Adaptive Drift -aware Windowing Intrusion Detection System with Optimization

(ADWISE) was developed, combining adaptive sliding windows with random search hyperparameter tuning optimization. The

proposed ADWISE framework achieves a top accuracy of 98.27% while effectively managing both class imbalance and concept

drift..

Keywords - Concept Drift, Class Imbalance, Adaptive Machine Learning, Drift Detection, Streaming Data Analytics. Real-Time Learning.

1. Introduction
Due to the rapid development of the digital landscape,

securing network systems against malicious activity is a top

priority. As cyber threats become more sophisticated, the need

for real and responsive Intrusion Detection Systems (IDS) has

grown significantly. Conventional IDS approaches, which

mostly rely on offline or static data processing, are unable to

handle the dynamic nature of modern network traffic. One of

the major challenges in real-time IDS is the presence of

concept drift, a phenomenon where the statistical

characteristics of the input data vary over time, and degrade

the performance of the degradation model. In streaming

environments where attack patterns evolve and legitimate

behavior may shift, this is especially problematic.

Class imbalance is another significant issue with IDS

data, when benign traffic vastly outnumbers harmful

instances. This imbalance can bias classifiers in favor of the

majority class, reducing the system's ability to detect rare but

critical attack events. Conventional machine learning models,

when trained on such imbalanced and non-stationary data,

tend to produce large false negative rates and poor detection

rates, which restricts their use in practical situations.

In order to overcome these issues, this study suggests an

online adaptive sliding window framework (ADWISE) that

can handle idea drift and class imbalance while detecting

intrusions in real-time. The approach leverages a dynamic

windowing technique that adapts to changes in data

distribution, enabling timely model updates when new data

becomes available. The benchmark IDS dataset (NSL-KDD)

was used to test standard classifiers such as LR, RF, DT,

KNN, GBT and LightGBM. The results showed lower

performance due to the aforementioned problems.

To improve classification accuracy, data balancing

strategies such as oversampling, Undersampling, and the

Synthetic Minority Over-sampling Technique (SMOTE) were

investigated. While SMOTE produced moderate

improvements, the study introduces a novel enhancement, an

integrated framework combining the adaptive sliding window

method with random search for hyperparameter tuning.

This proposed framework demonstrates robust

performance in real-time environments, attaining noticeably

improved detection accuracy while adjusting to changing

attack patterns and addressing class imbalance effectively.

http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

124

2. Related Works
Class imbalance and Concept drift in real-time or

streaming data have been an emerging research challenge,

especially in applications such as Intrusion Detection Systems

(IDS). To meet the adaptive requirements of learning models

in non-stationary environments, a variety of frameworks and

algorithms have been put forth.

2.1. Concept Drift in Data Streams

Concept drift refers to the description of how the

distribution of underlying data varies over time, leading to

model degradation. A thorough analysis of concept drift

adaptation techniques was provided by Gama et al. [17], who

made a difference between passive and active mechanisms.

Zhang et al [6] presented a multilayer drift detection

technique that uses model explainability to enhance

interpretability and adaptability in dynamic scenarios. [16].

Similarly, Chen et al. [15] suggested a dual-layer variable

sliding window method that can identify multiple kinds of

drift in a frequent pattern mining context.

Adaptive windowing (ADWIN), a key invention for

learning from evolving data streams, was first presented in

seminal work by Bifet and Gavalda [10]. In a related effort,

Wang et al. [2] proposed how dynamic resampling techniques

increase learner robustness in imbalanced environments by

proposing a framework that integrates concept drift detection

with online class imbalance learning.

2.2. Class Imbalance in Streaming Data

Another major challenge in streaming environments,

where minority classes can reflect crucial outcomes such as

cyberattacks, is imbalanced datasets.

In their comparative analysis of undersampling,

oversampling, and SMOTE, Wongvorachan et al. [9] offer

insight into their effects in educational data mining, which can

be generalized to other domains like fraud detection and

security. In order to improve decision-making accuracy in

real-time streaming tasks, Priya and Uthra [3] developed an

ensemble framework based on deep learning that uses

recurrent architectures to jointly tackle concept drift and class

imbalance.

A similar hybrid ensemble strategy was implemented by

S P. and R A. U. [1], who projected an ensemble concept drift

detector for imbalanced streams, highlighting multi-learner

collaboration for improved adaptability.

2.3. Intrusion Detection Systems and Adaptive Learning

Several studies in the cybersecurity domain have

incorporated these techniques into the design of Intrusion

Detection Systems (IDS). By employing a variable-length

particle swarm optimization technique, Noori et al. [4]

proposed a feature drift-aware intrusion detection system that

demonstrated significant gains in attack detection accuracy. A

genetic programming-based incremental learning method

tailored to address concept drift and class imbalance in

intrusion detection for streaming data was presented by Shyaa

et al. [12].

In order to solve the scalability and latency issues

associated with real-time data, Atbib et al. [11] designed a

distributed intrusion detection system for Internet of Things

scenarios. In order to ensure more reliable threat detection,

Saeed [14] presented a hybrid IDS model that can adjust to

evolving data distributions in a streaming setup.

Earlier foundational analyses by Lippmann et al. [6] and

Axelsson [5] explored the limitations of benchmark datasets

such as DARPA and the base-rate fallacy, respectively. Later,

the KDD CUP 99 dataset-which remains widely used for IDS

benchmarking-was thoroughly examined by Tavallaee et al.

[19].

By generating synthetic samples of the minority class,

Chawla et al. [21] proposed the Synthetic Minority Over-

sampling Technique (SMOTE), a data-level approach for

dealing with unbalanced datasets. Their study showed that

combining SMOTE with majority class under-sampling

enhanced classification performance. SMOTE remains a

fundamental technique for improving the detection of

uncommon but critical anomalies in the context of Intrusion

Detection Systems (IDS), where malicious data is typically

underrepresented.

A thorough taxonomy of performance-aware concept

drift detectors was provided by Bayram et al. [22], who also

demonstrated how model degradation can be utilized as a

proxy to detect significant data changes. The techniques that

track prediction performance in non-stationary environments

were the focus of their survey. These techniques are very

relevant to real-time intrusion detection systems, where it is

crucial to maintain constant accuracy in the face of evolving

threats.

The connection between Concept Drift, Feature

Dynamics, and IDS was examined by Shyaa et al. [23]. They

propose an integrated model that incorporates adaptive

learners, dynamic feature selection, and continuous

monitoring to address the lack of integration between drift-

aware algorithms and IDS frameworks. By addressing concept

and feature drift in the cybersecurity domain, this work fills a

significant research gap.

Xiang et al. [24] concentrated on deep learning-based

strategies for idea drift adaptation. They categorized the use of

drift adaptation strategies in time-series and non-stationary

environments, classifying them into discriminative,

generative, and hybrid learning methods. The review provides

valuable information on how to create robust IDS with deep

models capable of handling evolving data distributions.

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

125

The Internet of Intelligent Things (IoIT) was introduced

by Oliveira et al. [23], who combined edge computing,

embedded systems, and TinyML. The growing importance of

using lightweight, flexible machine learning models on

devices with limited resources is highlighted by their survey.

The discussion of on-device learning in dynamic

environments is pertinent to drift-aware intrusion detection in

IoT networks, while not exclusively focused on IDS.

3. Proposed Modelling
3.1. Dataset Description

The NSL-KDD dataset is an enhanced version of the

original KDD Cup 1999 dataset, which was extensively used

for assessing intrusion Detection Systems (IDS).

A number of problems with the original KDD dataset,

such as duplicate records and unbalanced classes, affected the

performance evaluation of machine learning algorithms.

Figures 2 and 3 visualize the distribution of attacks in the

NSL-KDD dataset. It helps to understand how many samples

belong to each attack type, highlight class imbalance (some

attacks are very common, others rare), and help decide

whether to do class grouping (e.g., DoS, R2L, etc).

Fig. 1 Training and Test dataset distribution

Table 1. Attack categories

Categories Types of Attacks

DoS neptune, smurf, back, teardrop, etc.

Probe satan, portsweep, nmap, ipsweep

R2L guess_passwd, ftp_write, imap, warezclient

U2R buffer_overflow, loadmodule, perl, rootkit

Fig. 2 Distribution of attacks

67343

58630

9711
12833

0

10000

20000

30000

40000

50000

60000

70000

80000

Normal (0) Attack (1)

N
u

m
b

e
r

o
f

In
s
ta

n
c
e
s

Class (0: Normal, 1: Attack)

Binary Class Distribution by Dataset
Split (Train vs. Test)

Train Test

Dataset

77054

53385

14077

3549
331 121

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Normal DoS Probe R2L Other U2R

N
u

m
b

e
r

o
f

In
s
ta

n
c
e
s

Attack Category

Distribution of Attack Categories in NSL-KDD Dataset

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

126

Fig. 3 Distribution of attacks (%)

Based on the normal or attack categories, we first

decoded the target label of the NSL KDD dataset to 0 and 1.

Attack type is classified as 1 and normal type as 0. The training

and testing datasets in the NSL KDD dataset have a combined

total of 125973 and 22544 records.

Figure 1 depicts the training and testing dataset

distribution; 67343 records belong to the normal category, and

58630 records belong to the attack categories. There are 9711

records in the test dataset that belong to normal categories , and

12833 records belong to attack categories. Table 1 lists the

attack categories according to which we have been classified.

These categories include Normal, DoS, Probe, R2L, and U2R

attacks.

In Figure 4, depicted as an outlier visualization using the

combined Train and Test NSL KDD Datasets. It helps to

understand and visualizing high-dimensional data in 2

dimensions , detect outliers or unusual patterns in any class,

evaluating class separability, and understand data structure
before training machine learning models.

Fig. 4 PCA plot for outlier visualization

2

3

4

7

8

9

10

11

18

20

30

53

201

890

892

956

1493

2646

2931

3599

3633

41214

67343

0 10000 20000 30000 40000 50000 60000 70000 80000

spy

perl

phf

multihop

ftp_write

loadmodule

motkit

imap

land

warezmaster

buffer_overflow

guess_passwd

pod

warezclient

teardrop

back

nmap

smurf

portsweep

Ipsweep

satan

neptune

normal

Count

A
tt

a
c
k
 T

y
p

e

NSL-KDD Training Set Multiclass Label Distribution

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

127

Fig. 5 Heatmap visualization in NSL-KDD

Figure 5 shows a heatmap visualisation using the

combined Train and Test NSL KDD Datasets. It helps to

visualize how different attack classes differ across selected

features, identify discriminative features for classification,

spot trends and patterns in network behavior for each attack

type, and guide feature selection for machine learning models.

In Figure 6, shown as top features’ visualization using

combined Train and Test NSL KDD Datasets. It helps to

understand and visualize ranks features based on their

contribution to model performance. Additionally, it aids in

feature selection, model simplification, and dimensionality

reduction.

Fig. 7 Top 20 features importance using random forest

0.017

0.018

0.02

0.022

0.023

0.025

0.025

0.027

0.028

0.03

0.035

0.04

0.045

0.045

0.045

0.05

0.06

0.08

0.12

0.24

0 0.05 0.1 0.15 0.2 0.25 0.3

dst_host_count

dst_host_rerror_rate

dst_host_diff_srv_rate

dst_host_srv_diff_host_rate

srv_count

dst_host_srv_serror_rate

service

dst_host_same_src_port_rate

count

srv_serror_rate

protocol_type

dst_host_same_srv_rate

serror_rate

diff_srv_rate

dst_host_srv_count

logged_in

same_srv_rate

flag

dst_bytes

src_bytes

Importance Score

F
e
a
tu

re

Top 20 Feature Importances for Binary
Classification (Random Forest)

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

128

Figure 7 shows the distributions of major numerical

features (violin plots) by dataset split and binary class. It

facilitates comprehension of the distribution of important

numerical features in the training and testing subsets of the

NSL-KDD dataset across two classes (attack vs. normal). It is

a powerful way to comprehend how class -specific features

behave and how they are generalized across dataset splits .

Fig. 7 Key numerical feature distributions

3.2. Conventional Classifiers Analysis

Following exploratory data analytics, conventional

machine learning classifiers such as K-Nearest Neighbors

(KNN), Logistic Regression (LR), Decision Tree (DT),

Gradient Boosting (GBT), and lgb. LGBM (LGBM) and

Random Forest (RF) were used to process offline static data.

The results of this analysis , Table 2, show that the

accuracy of the training dataset was 99.73%, 87.71%, 99.99%,

99.6%, 99.99% and 99.83%, while the accuracy of the testing

dataset was 77.20%, 70.24%, 79.35%, 78.84%, 76.24% and

79.35%. For this NSL KDD test dataset, the LGBM classifier

offers a 79.35% higher accuracy than all other models'

accuracy.

Table 2. Training and testing accuracy

Model

Train

Accy

(%)

Test

Accy

(%)

Precision Recall
F1-

Score

KNN 99.73 77.20 96.39 62.28 75.67

LR 87.71 70.24 88.09 55.19 67.86

DT 99.99 76.83 96.50 61.52 75.14

GBT 97.96 78.02 96.28 63.86 76.79

RF 99.99 76.77 96.59 61.37 75.05

LGBM 99.98 79.35 96.57 66.07 78.46

Fig. 8 Training and testing accuracy graph

Figure 8 depicts various models together with

performance metrics such as recall, accuracy score, precision,

and F1-measures. Because of differences in data distribution

or statistical properties between the training and test datasets,

all models have reduced accuracy. Therefore, more analysis is

required for accuracy improvement.

Fig. 9 KNN confusion matrix

1
0.88

1 0.98 1 1

0.77
0.7

0.77 0.78 0.77 0.79

0

0.2

0.4

0.6

0.8

1

1.2

A
c
c
u

ra
c
y

Models

Training vs Testing Accuracy by Model

Treining Accuracy Testing Accuracy

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

129

Fig. 10 LR confusion matrix

Fig. 11 DT confusion matrix

Fig. 12 GBT confusion matrix

Fig. 13 RF confusion matrix

Fig. 14 RF confusion matrix

Figures 9 to 14 show the confusion matrix for various

machine learning models, such as KNN, LR, DT, GBT, RF

and LGBM.

This matrix compares predicted and true labels to assess

how well a classification model performs.

3.3. Data Imbalance with Machine Learning Models

A significant challenge in machine learning, particularly

in supervised learning issues, is data imbalance. It occurs

when target classes ' distributions are uneven, which causes

model learning to be biased in favor of the majority class.

The model's performance may suffer as a result of this

imbalance, especially when it comes to detecting instances of

minority classes, which are frequently the most important in

security-related tasks such as intrusion detection.

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

130

Fig. 15 Training dataset attack category distribution

Fig. 16 Training dataset attack category distribution (%)

Fig. 17 NSL KDD test dataset attack category distribution

52

995

45927

11656

67343

0 10000 20000 30000 40000 50000 60000 70000 80000

u2r

r2l

dos

probe

normal

Count

A
tt

a
c
k
 C

a
te

g
o

ry

NSL-KDD Training Set Attack Category Distribution

9711

2421

5741

2885

67
0

2000

4000

6000

8000

10000

12000

normal probe dos r21 u2r

C
o

u
n

t

Attack Category

NSL-KDD Test Set Attack Category Distribution

52

2885

5741

2421

9711

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

u2r

r2l

dos

probe

normal

Count

A
tt

a
c
k
 C

a
te

g
o

ry

NSL-KDD Test Set Attack Category Distribution

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

131

Figures 15 and 16 show the target class distribution for

the NL KDD training dataset. Based on this data, 3% of

instances belong to the normal category, 36% and 8.5%

belong to the DoS and Probe attack categories. However, R2L

and U2R only belong to this category at 0.8% and 0.04%,

respectively. Therefore, the R2L and U2R categories are

considered minority classes, while the regular, DoS, and Probe

categories are treated as majority classes.

Figures 17 and 18, which depict the distribution of the

NSL KDD Dataset test set, indicate that 53%, 36%, and 8.5%

of the instances belong to the Normal, DoS, and Probe attack

categories. Instances that belong to the R2L and U2R

categories are 0.8% and 0.04%, respectively. Thus, this class's

unequal distribution is also present in the test set.

This is the issue that results in NSL KDD and training and

test datasets. For this NSL KDD Training dataset,

conventional classifiers are therefore unable to provide

superior accuracy. In order to address this data imbalance

issue for this dataset, we will concentrate on resampling

strategies.

Fig. 18 NSL KDD test dataset attack category distribution (%)

3.3.1. Random Undersampling

Equations (1) to (6) Initially, we applied random

undersampling to the NSL KDD dataset. It is a method for

addressing class imbalance in datasets that is used in data

preprocessing and machine learning. To balance the dataset,

samples from the majority class are randomly removed. This

helps prevent a model from becoming biased toward the

majority class. DoS attacks dominate the attack classes,

indicating a major imbalance in the dataset. There are very few

samples for R2L and U2R attacks. Therefore, by reducing the

number of samples in dominating classes (Normal, DoS, etc.),

this method aids in addressing class imbalance.

Steps:

𝐷 = {(𝑥 𝑖 ,𝑦𝑖
)}𝑖=1

𝑁 (1)

Be the dataset, where:

 𝑥 𝑖 ∈ { 𝐶1,𝐶2, 𝐶𝑘} 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙

 N is the total number of samples in the dataset.

 Cj is the j-th class among k classes (e.g., 'Normal', 'DoS',

'R2L', 'U2R', 'Probe').

Step 1: Compute Class Frequencies

For each class Cj, compute the number of instances:

𝑛𝑗 = | {𝑖: 𝑦𝑖 = 𝐶𝑗} | (2)

This gives you:

 n1=number of 'Normal' samples

 n2=number of 'DoS' samples

 n3=number of 'Probe' samples

 n4=number of 'R2L' samples

 n5=n_5 =n5= number of 'U2R' samples

Step 2: Identify the Minority Class

Find the minimum number of instances across all classes:

𝑛𝑚𝑖𝑛 =
𝑚𝑖𝑛 𝑛𝑗

𝑗
 (3)

This value determines the target number of samples per class

after undersampling.

67343

11656

45927

995 52
0

10000

20000

30000

40000

50000

60000

70000

80000

normal probe dos r21 u2r

C
o

u
n

t

Attack Category

NSL-KDD Training Set Attack Category Distribution

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

132

Step 3: Apply Random Undersampling

For each class Cj, randomly sample nmin instances without

replacement:

𝐷𝑗
′ = 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 ({(𝑥 𝑖 ,𝑥𝑗) ∈ 𝐷: 𝑦𝑖 = 𝐶𝑗},𝑛𝑚𝑖𝑛) (4)

That is, for every class, they randomly pick nmin samples.

Step 4: Combine Resampled Classes

Combine the undersampled class subsets into one balanced

dataset:

𝐷 ′ = ⋃ 𝐷𝑗
′

𝑘

𝑗=1

 (5)

Now, D′ contains k×nmin samples, with balanced classes.

Step 5: Shuffle the Dataset

Shuffle D′ to mix the classes randomly:

𝐷 ′′ = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 (𝐷 ′) (6)

Now D′′ is ready for training a machine learning model.

3.3.2. SMOTE Oversampling

Using the NSL-KDD dataset, SMOTE (Synthetic

Minority Oversampling Technique) improve classification

performance, especially for rare attack classes like R2L and

U2R. SMOTE helps by creating synthetic samples for these
minority classes instead of just duplicating them.

SMOTE Algorithm

1. Choose the number of synthetic samples to generate.

2. Find the k nearest neighbors for each minority instance.

3. Choose a neighbor at random.

4. To create a synthetic sample, interpolate between the

instance and its neighbor.

5. Add the dataset with synthetic samples

Mathematical Steps

𝐷 = (𝑥 𝑖 , 𝑦𝑖
) 𝑁
𝑖 = 1

 (7)

Where :

 𝑥 𝑖 ∈ 𝑅𝑑 : 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

 𝑦𝑖 ∈ {𝐶1,𝐶2 , 𝐶𝑘 }: 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙

Let Cm ⊂ D be the minority class with nm samples.

Synthetically create G new samples for class Cm, to equal

the number of majority class samples.

Step 1: Choose the Number of Synthetic Samples

Decide how many synthetic samples you wish to generate:

G = n target - nm

Where:

 n target : number of samples you wish the minority class to

have after oversampling

 G: total number of synthetic samples to create.

Step 2: For Each Minority Sample

𝑥 𝑖 ∈ 𝐶𝑚 (8)

Find its k nearest neighbors in feature space (typically k=5):

𝑁𝑁𝑘
(𝑥 𝑖

) = {𝑥 𝑖1,𝑥 𝑖2, , 𝑥 𝑖𝑘} (9)

Using Euclidean distance or another metric:

𝑑𝑖𝑠𝑡(𝑥 𝑖 ,𝑥𝑗) = || 𝑥𝑖 − 𝑥𝑗 || (10)

Step 3: Randomly Pick Neighbors

For each sample xi, randomly choose N≤ 𝑘 neighbors (often

N=1).

Step 4: Generate Synthetic Samples

For each selected neighbor xij, create a synthetic sample xnew

using interpolation:

𝑥𝑛𝑒𝑤 = 𝑥 𝑖 + 𝛿 . (𝑥 𝑖𝑗 − 𝑥 𝑖) (11)

W here:

 δ ∈[0,1]is a random number chosen from a uniform

distribution.

 This establishes a point along the line segment between xi

and its neighbor.

Repeat until you have G synthetic samples.

Step 5: Add Synthetic Samples to the Dataset

The synthetic data 𝐷𝑠 = {(𝑥𝑛𝑒𝑤,𝐶𝑚)} is added to the original

dataset:

𝐷 ′ = 𝐷 ⋃ 𝐷𝑠 (12)

Now the dataset D′ has a more balanced class distribution.

3.3.3. Undersampling and Oversampling Results and

Discussion

To resolve the class imbalance and improve model

accuracy in the NSL-KDD dataset, we applied resampling

techniques, specifically SMOTE (Synthetic Minority

Oversampling Technique) and random undersampling. The

results show that SMOTE with oversampling attained an

accuracy of 81.21%, while random undersampling attained

79.77%.

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

133

Table 3. Sampling techniques performance analysis

Metric Test Accy (%) F1 score Precision Recall

Original 0.7873 0.7894 0.9044 0.7003

SMOTE 0.8121 0.8110 0.9487 0.7082

Undersampling 0.7977 0.8019 0.9063 0.7190

Fig. 19 Sampling techniques with NSL-KDD performance

Although SMOTE provided a slight improvement in

accuracy compared to undersampling and conventional

classifiers' accuracy, SMOTE did not considerably boost the

model's overall performance to an optimal level. Table 3 and

Figure 19. displays comprehensive evaluation measures for

both approaches, such as accuracy, precision, recall, and F1-

score.

3.4. Proposed Work

We have experimented with different models and

imbalance techniques so far, but the performance in terms of

accuracy of this NSL-KDD dataset has not increased. The

statistical characteristics and behavior of the NSL KDD

training and test datasets are hence the issue. The samples in

the training set have a similar statistical distribution. However,

when the statistical distribution of the test set is different from

the training set, this kind of statistical distribution change is

called concept drift. Therefore, the model that was trained on
the training set is unable to identify assaults in the test set.

As a result, we created the Adaptive Drift-aware

Windowing Intrusion Detection System with Optimization

(ADWSE), a novel framework. It addresses handling

unbalanced data and concept drift. In addition, we used

random search to apply hyperparameter optimization to

choose the optimal parameters for enhancing the framework's

performance.

3.4.1. Major Contributions

 To create a concept drift detection and adaptation

technique that uses the adaptive sliding windowing

method to handle concept drift.

 To use the hyperparameter optimization techniques using

random search to produce the optimal hyperparameters

for the drift model.

 LightGBM should be used to create a real-time classifier

that detects concept drift.

A Proposed ADWSE framework is depicted in Figure 20.

To solve the majority and minority difficulties, we first

collected data from the concern repository, then performed

preprocessing techniques to normalize the data using

resampling techniques.

The model's performance was then analyzed using

traditional classifiers, and it produced lower accuracy. Hence,

we have developed adaptive sliding windowing-based drift

detection approaches with hyperparameter optimization, since

the reason is concept drift in this dataset.

Lastly, we have classified the attacks and detected the

drift using the LightGBM classifier. Finally, employing our

proposed ADWSE framework, we achieved an improved

accuracy of 98.27% in the test dataset.

0
.7

8
7
3

0
.9

0
4
4

0
.7

0
0
3

0
.7

8
9
4

0
.8

1
2
1 0
.9

4
8
7

0
.7

0
8
2

0
.8

1
1

0
.7

9
7
7

0
.9

0
6
3

0
.7

1
9

0
.8

0
1
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Precision Recall F1-score

S
c
o

re

Metric

Model Evaluation Metrics on NSL-KDD Dataset
Original

SMOTE

Undersampling

Sampling

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

134

Fig. 20 Proposed ADWISE framework

3.4.2. Adaptive Sliding Window Algorithm

First, we created an adaptive sliding window algorithm

that is used for concept drift detection and stream processing.

It dynamically adjusts the size of the data window based on

changes in data characteristics , making it highly useful for

real-time applications like intrusion detection

Mathematical Steps

Input:

 NSL KDD Dataset converted as data stream D= {x1,

x2…., xt}

 Confidence parameter δ

 window size Wmin

 Dynamically resized window

Output:

 Change detection alerts (if any)

1. Initialization

Set window W= []

Set δ, the confidence threshold (e.g., 0.01)

2. For each new data point xt:

 Append xt to the end of the window: 𝑊 = 𝑊 ∪ {𝑥𝑡}

3. While the window can be split into two parts , W1 and W2,

such that:

𝑊 = 𝑊1 + 𝑊2 (13)

|𝑊1| ≥ 𝑊𝑚𝑖𝑛′ |𝑊2 | ≥ 𝑊𝑚𝑖𝑛 (14)

Do the following

 a. Compute:

𝜇1 = 𝑚𝑒𝑎𝑛 (𝑊1), 𝜇2 = 𝑚𝑒𝑎𝑛 (𝑊2) (15)

𝑛1 = |𝑊1 |, 𝑛2 = |𝑊2 | (16)

b. Calculate threshold ϵ using Hoeffding's bound:

∈= √
1

2
. 𝑙𝑛 (

4. 𝑙𝑜𝑔2(𝑛)

𝛿
). (

1

𝑛1
+

1

𝑛2
) (17)

Where n=n1+n2

c. If:

| 𝜇1 − 𝜇2 | > 𝜖 (18)

 Drift Detected

 Remove the oldest portion W1

 Reset window

𝑊 = 𝑊2

4. Repeat for the next data point

3.4.3. Hyper Parameter Optimization using Random Search

Random Search is a simple yet effective strategy for

hyperparameter optimization. Random search samples

hyperparameters from established distributions and assesses

performance for each combination instead of grid search,

which searches across a predefined grid exhaustively.

Especially in high-dimensional spaces, it often identifies

appropriate combinations more quickly and effectively than

grid search.

Random Search Algorithm

Step 1: Define the Objective Function

Let f(θ) represent your objective, for example, the

validation loss or 1 - accuracy of a machine learning model.

θ ∈ Θ is a vector of hyperparameters,

e.g.: θ= [a, b, win1, win2]

Find the configuration θ∗ that minimizes the objective

function:

𝜃∗ = 𝑎𝑟𝑔
𝑚𝑖𝑛

𝜃 𝜀 𝛩
𝑓 (𝜃) (19)

Step 2: Define the Search Space Θ

Specify the range of each hyperparameter you want to

optimize

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

135

Mathematically:

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁: 𝜃(𝑖) ∼ P(θ), 𝑓(𝑖) = f(𝜃(𝑖)) (20)

Example:
Table 4. Search space

Parameter Range Type

𝒂 [0.95, 0.99] Continuous

b [0.90, 0.98] Continuous

Win1 [200, 1000] Integer

Win2 [1000, 5000] Integer

Step 3: Choose a Sampling Distribution

 For continuous variables → use a uniform

distribution over the range.

 For integers → use random integers within the

range.

So:

 A ∼ u (0.95,0.99)

 B ∼ u (0.90,0.98)

 win1∼UniformInt (200,1000)

 win2∼UniformInt (1000,5000)

Step 4: Random Sampling and Evaluation

Perform the following steps for N trials (e.g., 20 or 50):

1. Randomly sample one combination of parameters

θ(i)∼P(θ)

2. Evaluate the model using f(θ(i))

3. Record the result and compare with the previous best

Step 5: Select the Best Hyperparameters

After N iterations, select the best-performing configuration:

𝜃∗ = 𝜃(𝑖∗) 𝑤ℎ𝑒 ↓ ∗= 𝑎𝑟𝑔
𝑚𝑖𝑛

𝑖
 𝑓 (𝑖) (21)

Step 6: Use the Optimal Configuration

Train your final model using the best hyperparameters θ∗

found during search.

Table 5. Best parameters

Parameter Range

𝑎 0.973

b 0.904

Win1 618

Win2 2759

Applying this random search space method, we were able

to extract the optimal parameters from the search space that

was initially used. These parameters will be used for the

Adaptive Sliding Windowing approach; ultimately, the

proposed AWSE framework attained an enhanced accuracy of

98.27%.

Figure 21 illustrates that when the test set begins, the

current accuracy starts to decline significantly due to the
statistical distribution change in the dataset.

Fig. 21 ADWSE framework-drift detection

Fig. 22 ADWSE - real-time drift detection and model accuracy

Real-time intrusion detection with accuracy changes is

shown in Figure 22. With the use of Python river packages,

we first converted the data into a stream and fed it into the

ADWSE model, detecting the outcomes as real-time accuracy

change detection.

4. Results and Discussions
Initially, we used the NSL KDD Dataset to apply

conventional classifiers. Test accuracy was 70.24%, 76.77%,

76.83%, and 77.20%.LR, RF, DT, KNN, GBT, and

LightGBM produced 78.02% and 79.35%, respectively.

Utilizing sampling techniques such as SMOTE

oversampling and undersampling, the model's accuracy was

slightly increased to 79.77% and 81.21%, respectively. Lastly,

we used the proposed framework ADWISE, which obtained a

superior accuracy of 98.27% for this dataset.

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

136

Fig. 23 Performance analysis

Fig. 24 Model-wise performance trends

Figures 23 and 24 display the accuracy and trends of the

model, while Table 6 displays the accuracy (%) of the model's

performance. Hence, the above study performed better when

using the adaptive sliding windowing method with random

search hyperparameter tuning algorithms.

Table 6. O verall model performance (%)

Model Accuracy (%)

ADWSE 98.27

SMOTE 81.21

Undersampling 79.77

LGBM 79.35

GBT 78.02

KNN 77.20

DT 76.83

RF 76.77

LR 70.24

5. Conclusion
The suggested ADWISE framework, which combines an

adaptive sliding window technique with random search

hyperparameter tuning, significantly outperformed any other

models. This outcome shows that dynamic data segmentation

and optimal learning are excellent ways to enhance model

performance.

In order to assess ADWISE's usefulness in streaming data

conditions, we want to deploy it in real-time systems in

subsequent research. In order to validate the framework's

generalizability, we also want to evaluate it across a range of

domains.

In larger, more complex datasets, scalability and

adaptability will be supported by additional research into deep

learning integration and computational efficiency

optimization.

70.20%
76.80% 76.80% 77.20% 78.00% 79.30% 79.80% 81.20%

98.30%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%
A

c
c
u

ra
c
y

 (
%

)

Model

NSL-KDD Accuracy by Model

77.2

70.24

76.83 78.02 76.77
79.35 79.77 81.21

98.27

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y

 (
%

)

Model

Model Accuracy Comparison (NSL-KDD)

Accuracy

R. Rajakumar et al. / IJECE, 12(8), 123-137, 2025

137

References
[1] S. Priya, and R. Annie Uthra, “Ensemble Framework for Concept Drift Detection and Class Imbalance in Data Streams,” Multimedia

Tools and Applications, vol. 84, pp. 8823-8837, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[2] Shuo Wang et al., “Concept Drift Detection for Online Class Imbalance Learning,” The 2013 International Joint Conference on Neural

Networks (IJCNN), Dallas, TX, USA, pp. 1-10, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[3] S. Priya, and R. Annie Uthra, “Deep Learning Framework for Handling Concept Drift and Class Imbalanced Complex Decision-Making

on Streaming Data,” Complex & Intelligent Systems, vol. 9, pp. 3499-3515, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Mustafa Sabah Noori et al., “Feature Drift Aware for Intrusion Detection System Using Developed Variable Length Particle Swarm

Optimization in Data Stream,” IEEE Access, vol. 11, pp. 128596-128617, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Stefan Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion Detect ion,” ACM Transactions on Information and System

Security, vol. 3, no. 3, pp. 186-205, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[6] R.P. Lippmann et al., “Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation,” Proceedings

DARPA Information Survivability Conference and Exposition, DISCEX'00, Hilton Head, SC, USA, pp. 12-26, 2000. [CrossRef] [Google

Scholar] [Publisher Link]

[7] K. Ashok Kumar, “Optimized Bayesian Regularization-Back Propagation Neural Network using Data-Driven Intrusion Detection System

in Internet of Things,” IEEE Access, vol. 13, no. 2, 249-263. [CrossRef] [Publisher Link]

[8] P. García-Teodoro et al., “Anomaly-based Network Intrusion Detection: Techniques, Systems and Challenges,” Computers & Security,

vol. 28, no. 1-2, pp. 18-28, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[9] Tarid Wongvorachan, Surina He, and Okan Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing

with Imbalanced Classification in Educational Data Mining,” Information, vol. 14, no. 1, pp. 1-15, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Albert Bifet, and Ricard Gavaldà, “Learning from Time-Changing Data with Adaptive Windowing,” Proceedings of the 2007 SIAM

International Conference on Data Mining, pp. 443-448, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[11] Souad Atbib, Chaimae Saadi, and Habiba Chaoui, “Design of A Distributed Intrusion Detection System for Streaming Data in IoT

Environments,” 2023 9th International Conference on Optimization and Applications (ICOA), AbuDhabi, United Arab Emirates, pp. 1-6,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Methaq A. Shyaa et al., “Enhanced Intrusion Detection with Data Stream Classification and Concept Drift Guided by the Incremental

Learning Genetic Programming Combiner,” Sensors, vol. 23, no. 7, pp. 1-34, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Mingyuan Zang, and Ying Yan, “Machine Learning-Based Intrusion Detection System for Big Data Analytics in VANET,” 2021 IEEE

93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, pp. 1-5, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Mozamel M. Saeed, “A Real-Time Adaptive Network Intrusion Detection for Streaming Data: A Hybrid Approach,” Neural Computing

and Applications, vol. 34, pp. 6227-6240, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Jing Chen et al., “Multi-type Concept Drift Detection under a Dual-Layer Variable Sliding Window in Frequent Pattern Mining with

Cloud Computing,” Journal of Cloud Computing, vol. 13, pp. 1-19, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Haolan Zhang et al., “Multilayer Concept Drift Detection Method Based on Model Explainability,” IEEE Access, vol. 12, pp. 190791-

190808, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[17] João Gama et al., “A Survey on Concept Drift Adaptation,” ACM Computing Surveys, vol. 46, no. 4, pp. 1-37, 2014. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Guolin Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” Proceedings of the 31st International Conference on

Neural Information Processing Systems, Long Beach California, USA, pp. 3149-3157, 2017. [Google Scholar] [Publisher Link]

[19] Mahbod Tavallaee et al., “A Detailed Analysis of the KDD CUP 99 Data Set,” 2009 IEEE Symposium on Computational Intelligence for

Security and Defense Applications, Ottawa, ON, Canada, pp. 1-6, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[20] Bobak Shahriari et al., “Taking the Human Out of the Loop: A Review of Bayesian Optimization,” Proceedings of the IEEE, vol. 104, no.

1, pp. 148-175, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[21] Nitesh V. Chawla et al., “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16,

pp. 321-357, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[22] Firas Bayram, Bestoun S. Ahmed, and Andreas Kassler, “From Concept Drift to Model Degradation: An Overview on Performance-

Aware Drift Detectors,” Knowledge-Based Systems, vol. 245, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Franklin Oliveira et al., “Internet of Intelligent Things: A Convergence of Embedded Systems, Edge Computing and Machine Learning,”

Internet of Things, vol. 26, pp. 1-20, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[24] Methaq A. Shyaa et al., “Evolving Cybersecurity Frontiers: A Comprehensive Survey on Concept Drift and Feature Dynamics Aware

Machine and Deep Learning in Intrusion Detection Systems,” Engineering Applications of Artificial Intelligence, vol. 137, pp. 1-34, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s11042-024-18349-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+framework+for+concept+drift+detection+and+class+imbalance+in+data+streams&btnG=
https://link.springer.com/article/10.1007/s11042-024-18349-y
https://doi.org/10.1109/IJCNN.2013.6706768
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Concept+drift+detection+for+online+class+imbalance+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/6706768
https://doi.org/10.1007/s40747-021-00456-0
https://scholar.google.com/scholar?q=Deep+learning+framework+for+handling+concept+drift+and+class+imbalanced+complex+decision-making+on+streaming+data&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s40747-021-00456-0
https://doi.org/10.1109/ACCESS.2023.3333000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Drift+Aware+for+Intrusion+Detection+System+Using+Developed+Variable+Length+Particle+Swarm+Optimization+in+Data+Stream&btnG=
https://ieeexplore.ieee.org/abstract/document/10318159
https://doi.org/10.1145/357830.357849
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Base-Rate+Fallacy+and+the+Difficulty+of+Intrusion+Detection&btnG=
https://dl.acm.org/doi/abs/10.1145/357830.357849
https://doi.org/10.1109/DISCEX.2000.821506
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.P.+Lippmann%2C+Evaluating+Intrusion+Detection+Systems%3A+The+1998+DARPA+Off-line+Intrusion+Detection+Evaluation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.P.+Lippmann%2C+Evaluating+Intrusion+Detection+Systems%3A+The+1998+DARPA+Off-line+Intrusion+Detection+Evaluation&btnG=
https://ieeexplore.ieee.org/abstract/document/821506
https://doi.org/10.1080/23080477.2024.2376971
https://www.tandfonline.com/doi/full/10.1080/23080477.2024.2376971
https://doi.org/10.1016/j.cose.2008.08.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly-based+network+intrusion+detection%3A+Techniques%2C+systems+and+challenges&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404808000692
https://doi.org/10.3390/info14010054
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparison+of+Undersampling%2C+Oversampling%2C+and+SMOTE+Methods+for+Dealing+with+Imbalanced+Classification+in+Educational+Data+Mining&btnG=
https://www.mdpi.com/2078-2489/14/1/54
https://doi.org/10.1137/1.9781611972771.42
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+from+Time-Changing+Data+with+Adaptive+Windowing&btnG=
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42
https://doi.org/10.1109/ICOA58279.2023.10308826
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+A+Distributed+Intrusion+Detection+System+for+Streaming+Data+in+IoT+Environments&btnG=
https://ieeexplore.ieee.org/abstract/document/10308826
https://doi.org/10.3390/s23073736
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Intrusion+Detection+with+Data+Stream+Classification+and+Concept+Drift+Guided+by+the+Incremental+Learning+Genetic+Programming+Combiner&btnG=
https://www.mdpi.com/1424-8220/23/7/3736
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning-Based+Intrusion+Detection+System+for+Big+Data+Analytics+in+VANET&btnG=
https://ieeexplore.ieee.org/abstract/document/9448878
https://doi.org/10.1007/s00521-021-06786-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+real-time+adaptive+network+intrusion+detection+for+streaming+data%3A+a+hybrid+approach&btnG=
https://link.springer.com/article/10.1007/s00521-021-06786-x
https://doi.org/10.1186/s13677-023-00566-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-type+concept+drift+detection+under+a+dual-layer+variable+sliding+window+in+frequent+pattern+mining+with+cloud+computing&btnG=
https://link.springer.com/article/10.1186/s13677-023-00566-9
https://doi.org/10.1109/ACCESS.2024.3517697
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multilayer+Concept+Drift+Detection+Method+Based+on+Model+Explainability&btnG=
https://ieeexplore.ieee.org/abstract/document/10802879
https://doi.org/10.1145/2523813
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+concept+drift+adaptation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+concept+drift+adaptation&btnG=
https://dl.acm.org/doi/abs/10.1145/2523813
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LightGBM%3A+A+Highly+Efficient+Gradient+Boosting+Decision+Tree&btnG=
https://dl.acm.org/doi/10.5555/3294996.3295074
https://doi.org/10.1109/CISDA.2009.5356528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+detailed+analysis+of+the+KDD+CUP+99+data+set&btnG=
https://ieeexplore.ieee.org/abstract/document/5356528
https://doi.org/10.1109/JPROC.2015.2494218
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Taking+the+Human+Out+of+the+Loop%3A+A+Review+of+Bayesian+Optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/7352306
https://doi.org/10.1613/jair.953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SMOTE%3A+Synthetic+Minority+Over-sampling+Technique&btnG=
https://www.jair.org/index.php/jair/article/view/10302
https://doi.org/10.1016/j.knosys.2022.108632
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+concept+drift+to+model+degradation%3A+An+overview+on+performance-aware+drift+detectors&btnG=
https://www.sciencedirect.com/science/article/pii/S0950705122002854
https://doi.org/10.1016/j.iot.2024.101153
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Internet+of+Intelligent+Things%3A+A+convergence+of+embedded+systems%2C+edge+computing+and+machine+learning&btnG=
https://www.sciencedirect.com/science/article/pii/S2542660524000945
https://doi.org/10.1016/j.engappai.2024.109143
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evolving+cybersecurity+frontiers%3A+A+comprehensive+survey+on+concept+drift+and+feature+dynamics+aware+machine+and+deep+learning+in+intrusion+detection+systems&btnG=
https://www.sciencedirect.com/science/article/pii/S0952197624013010

